搜档网
当前位置:搜档网 › 实验三--三相同步电动机

实验三--三相同步电动机

实验三--三相同步电动机
实验三--三相同步电动机

实验三--三相同步电动机

————————————————————————————————作者:————————————————————————————————日期:

实验报告

实验名称:三相同步电动机

小组成员:许世飞许晨光杨鹏飞王凯征

一.实验目的

1.掌握三相同步电动机的异步起动方法。

2.测取三相同步电动机的V形曲线。

3.测取三相同步电动机的工作特性。

二.预习要点

1.三相同步电动机异步起动的原理及操作步骤。

2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取?

三.实验项目

1.三相同步电动机的异步起动。

≈0时的V形曲线。

2.测取三相同步电动机输出功率P

2

3.测取三相同步电动机输出功率P

=0.5倍额定功率时的V 形曲线。

2

4.测取三相同步电动机的工作特性。

四.实验设备及仪器

1.实验台主控制屏;

2.电机导轨及转速测量;

3.功率、功率因数表(NMCL-001);

4.同步电机励磁电源(含在主控制屏左下方,NMEL-19);

5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18);

6.三相可调电阻器900Ω(NMEL-03);

7.三相可调电阻器90Ω(NMEL-04);

8.旋转指示灯及开关板(NMEL-05A);

9.三相同步电机M08; 10.直流并励电动机M03。

五.实验方法

被试电机为凸极式三相同步电动机M08。 1.三相同步电动机的异步起动 实验线路图如图3-1。

实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。

R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。 开关S 选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。

a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。

b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)

流电源输出同步电机励磁电源

A

V

G

A

U

V W

I f

12

S

R 选用NMEL-04的90 电阻选用NMEL-05的双刀双掷开关

图3-1 三相同步电动机接线图

(MCL-11、MEL-11B )

c.当转速接近同步转速时,把开关S迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程完毕,接通功率表、功率因数表、交流电流表。

2.测取三相同步电动机输出功率P

2

≈0时的V形曲线

a.按1方法异步起动同步电动机。使同步电动机输出功率P

2

≈0。

b.调节同步电动机的励磁电流I

f 并使I

f

增加,这时同步电动机的定子三相电流

亦随之增加,直至电流达同步电动机的额定值,记录定子三相电流和相应的励磁电流、输入功率。

c.调节同步电动机的励磁电流I

f 使I

f

使逐渐减小,这时定子三相电流亦随之减

小,直至电流过最小值,记录这时的相应数据,

d.继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在这过励和欠励范围内读取9~11组数据。数据记录于表3-1。

表3-1 n=1500r/min; U=220V;P

2

≈0

序号三相电流(A) 励磁电流

(A)

输入功率(W)

IA IB IC I If P1 P2 P

1 0.096 0.096 0.096 0.096 0.75 27.81 23.0

2 50.83

2 0.11 0.11 0.11 0.11 0.7 21.12 25.82 46.94

3 0.127 0.127 0.127 0.127 0.65 14.11 28.45 42.56

4 0.146 0.146 0.146 0.146 0.6 0 31.5

5 31.55

5 0.172 0.172 0.172 0.172 0.55 0 35.1

6 35.16

6 0.348 0.348 0.348 0.348 0.2 -47.1 58.71 11.61

7 0.406 0.406 0.406 0.406 0.1 -61.2 66.64 5.44

8 0.44 0.44 0.44 0.44 0.03 -67.5 71.4 3.9

9 0.121 0.121 0.121 0.121 0.7 16.93 28.16 45.09

10 0.094 0.094 0.094 0.094 0.8 29.38 23.06 52.44

11 0.089 0.089 0.089 0.089 0.9 44.85 17.11 61.96

12 0.109 0.109 0.109 0.109 1 59.49 11.89 71.38

14 0.181 0.181 0.181 0.181 1.2 87.72 0 87.72

15 0.224 0.224 0.224 0.224 1.3 103.3 0 103.3

16 0.265 0.265 0.265 0.265 1.4 117 -6.4 110.6

17 0.307 0.307 0.307 0.307 1.5 131.5 -10.3 121.2

18 0.348 0.348 0.348 0.348 1.6 145.6 -13.8 131.8

19 0.39 0.39 0.39 0.39 1.7 159.6 -17.4 142.2

20 0.449 0.449 0.449 0.449 1.85 182.03 -36 146.03

21 0.087 0.087 0.087 0.087 0.79 32.83 21.23 54.06 表中I = (I A + I B + I C)/3

P = P

Ⅰ+ P

3.测取三相同步电动机输出功率P

2

≈0.5 倍额定功率时的V形曲线。

a.按1方法异步起动同步电动机,调节测功机“转矩设定”旋钮使之加载,使同步电动机输出功率改变,输出功率按下式计算:

P

2 = 0.105nT

2

式中 n——电机转速,r/min; T

2

——由转矩表读出,N·m。

b.使同步电动机输出功率接近于0.5倍额定功率且保持不变,调节同步电动机

的励磁电流I

f 使I

f

增加,这时同步电动机的定子三相电流亦随之增加直到电流

达同步电动机的额定电流,记录定子三相电流和相应的励磁电流、输入功率。c.调节同步电动机的励磁电流If,使I

f

逐渐减小,这时定子三相电流亦随之减小直至电流达最小值,记录这时的相应数据,继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在过励和欠励范围内读取9~11组数据并记录于表3-2中。

表3-2 n=1500r/min; U=220V;P

2≈0.5P

N

序号三相电流(A) 励磁电

流(A)

输入功率(W)IA IB IC I If P1 P2 P

2 0.216 0.216 0.216 0.216 0.65 59.7 35.89 95.59

3 0.228 0.228 0.228 0.228 0.6 52.17 52.71 104.88

4 0.24

5 0.245 0.245 0.245 0.55 45.27 55.72 100.99

5 0.287 0.287 0.287 0.287 0.45 31.05 62.

6 93.65

6 0.34 0.34 0.34 0.34 0.35 15.5

7 71.01 86.58

7 0.351 0.351 0.351 0.351 0.33 12.44 72.54 84.98

8 0.203 0.203 0.203 0.203 0.7 65.03 47.14 112.17

9 0.194 0.194 0.194 0.194 0.75 71.83 44.3 116.13

10 0.187 0.187 0.187 0.187 0.8 78.73 41.54 120.27

11 0.186 0.186 0.186 0.186 0.9 92.01 36.35 128.36

12 0.197 0.197 0.197 0.197 1 106.9 31.96 138.86

13 0.22 0.22 0.22 0.22 1.1 122.1 25.74 147.84

14 0.253 0.253 0.253 0.253 1.2 137 20.77 157.77

15 0.287 0.287 0.287 0.287 1.3 152.4 16.14 168.54

16 0.325 0.325 0.325 0.325 1.4 167.6 11.89 179.49

17 0.35 0.35 0.35 0.35 1.46 177.3 9 186.3 表中 I = (I A + I B + I C)/3 P = PⅠ+ PⅡ

4.测取三相同步电动机的工作特性

a.按1方法异步起动同步电动机,按3方法改变负载电阻,使同步电动机输出功率改变,输出功率按下式计算:

P

2 = 0.105nT

2

式中 n——电机转速,r/min;

T

2

——由直流发电机的电枢电流.转矩表读出,N·m

b.同时调节同步电动机的励磁电流使同步电动机输出功率达额定值时,且功率因数为1。

c.保持此时同步电动机的励磁电流恒定不变,逐渐减小负载, 使同步电动机输出功率逐渐减小直至为零,读取定子电流、输入功率、功率因数、输出转矩、转

速,共取6~7组数据并记录于表3-3中。

表3-3 U=U

N =220V; I

f

= A; n=1500r/min

同步电动机输入同步电动机输出

IA (A )IB

(A

)

IC

(A

I

(A

If

(A

P1

(W

P2

(W

P(W)co

s

φ

T2(N

.m)

Pn(W

)

η(%)

1 0.3

45 0.3

45

0.3

45

0.3

45

1.1

8

190 50.

5

240.

5

1 0.57 89.7

75

37.32

848

2 0.3

36 0.3

36

0.3

36

0.3

36

1.1

8

185 47.

87

232.

87

1 0.55 86.6

25

37.19

887

3 0.3

2 0.3

2

0.3

2

0.3

2

1.1

8

177 43.

28

220.

28

1 0.5 78.7

5

35.74

995

4 0.3

03 0.3

03

0.3

03

0.3

03

1.1

8

167

.8

37.

97

205.

77

1 0.45 70.8

75

34.44

38

5 0.2

84 0.2

84

0.2

84

0.2

84

1.1

8

157

.1

32.

7

189.

8

1 0.4 63 33.19

283

6 0.2

67 0.2

67

0.2

67

0.2

67

1.1

8

147

.7

27.

69

175.

39

1 0.35 55.1

25

31.42

996

7 0.2

49 0.2

49

0.2

49

0.2

49

1.1

8

137

.3

22.

68

159.

98

1 0.3 47.2

5

29.53

494

8 0.2

19 0.2

19

0.2

19

0.2

19

1.1

8

117

.8

13.

84

131.

64

0.

96

0.2 31.5 23.92

89

9 0.2

08 0.2

08

0.2

08

0.2

08

1.1

8

109

.2

9.8

5

119.

05

0.

93

0.15 23.6

25

19.84

46

1 0 0.1

93

0.1

93

0.1

93

0.1

93

1.1

8

97.

45

5.1

8

102.

63

0.

9

0.1 15.7

5

15.34

639

1 1 0.1

8

0.1

8

0.1

8

0.1

8

1.1

8

80.

57

0 80.5

7

0.

85

0.04 6.3 7.819

288

12 0.179 0.179

0.179

0.179

1.18

84.69

0 84.69

0.84

0.03 4.725

5.579

171

表中 I = (I A + I B + I C )/3

P = P Ⅰ+ P Ⅱ P 2=0.105nT 2

%1001

2

?=

P P η

六.实验报告分析

1.作P 2≈0时同步电动机的V 形曲线I =f(I f ),并说明定子电流的性质。

定子电流的性质:在输出功率为0的状态下,电动机从电源吸收的功率用于定子铜损耗和机械损耗。当励磁电流很小时,定子电流I 相对于U 的相位处于滞后状态,此时同步电动机相当于电阻电感负载,从电源吸收滞后的无功功率;当励磁电流逐渐增大时,定子电流逐渐减小,直至与电压同相位,此时处于正常励磁状态;当励磁电流继续增大时,定子电流随之增大,电动机处于过励磁状态。

2.作P 2≈0.5倍额定功率时同步电动机的V 形曲线I =f(I f ),并说明定子电流的性质。

0.050.10.150.20.250.30.350.40.450.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P=0的V 型曲线

定子电流:当励磁电流很小时,定子电流是相位滞后于电压的正弦交流电,同步电动机从电源吸收的功率除了用于定子铜损耗和机械损耗之外,其余转化为机械功率;当励磁电流增大时,定子电流随之减小,定子电流与电压的相位差逐渐减小直至为0,此时同步电动机处于正常励磁状态;当励磁电流继续增大时,定子电流随之增大,电动机处于过励磁状态,此时电动机从电网中吸收超前的无功功率,对于改善电网的功率因数有很大好处。

3.作同步电动机的工作特性曲线:I 、P 、cosφ、T 2、η=f(P 2)

分析:由图中可以看出,当定子电流增大时,输出功率随之增大,且系统效率逐渐提高。

当定子电流逐渐增大时,功率因数基本保持1不变,这是由于调节了励磁电流,使得电动机的定子电流和电压处于同相位;定子电流很小、输出功率很小的时候,

0.050.10.150.20.250.30.350.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I

If

P=0.5倍额定功率时的V 型曲线

01020304050607080901000

0.05

0.1

0.15

0.20.25

0.3

0.35

0.4

输出功率/效率

I

输出功率效率

功率因数略小于1,这是由于当输出功率增大时,各条V型曲线逐渐向右上方移动,使得功率因数为1的点连成一条向右上方倾斜的曲线,在这种情况下,由于我们保持励磁电流不变,当输出功率很小时,功率因数会略小于1。

由于输出转矩正比与输出功率,故图中没有画出输出转矩与定子电流的关系曲线。

七.思考题

1.同步电动机异步起动时先把同步电动机的励磁绕组经一可调电阻组成回路,这可调电阻的阻值调节在同步电动机的励磁绕值的10倍约90欧姆,这电阻在起动过程中的作用是什么?若这电阻为零时又将怎样?

这是由于在启动时,励磁绕组不能开路。所以用一个较大的电阻组成一个回路。若励磁绕组开路,在大转差时,气隙旋转磁场在励磁绕组里感应出较高的电动势,有可能损坏他的绝缘。若没有该电阻,励磁绕组中感应出的电流产生的转矩,有可能使电动机启动不到接近同步速的转速。

2.在保持恒功率输出测取V形曲线时输入功率将有什么变化?为什么?

在V型曲线中,定子电流随着励磁电流的增大而先减小后增大。由于输入功率与输入电流成正比关系,则输入功率将先减小后增大。从原理上讲,当定子电流减小时,电动机从电源中吸收滞后的无功功率逐渐减小;当定子电流增大时,电动机从电源中吸收的超前无功功率逐渐增多。因此,输入功率先减小后增大。3.对这台同步电动机的工作特性作分析。

同步电动机在启动的时候,采用异步启动的方式。给定子绕组通入220V交流电,使得转子达到95%的转速。随后将励磁绕组与直流电源接通,使得转子产生恒定磁场。在磁场吸引力的作用下将电机拖入同步转速。励磁电流的变化会影响定子电流的相位,呈现一条V型曲线。当定子电流与电压同相位时,功率因数为1,此时电流越大,输入功率、输出功率、输出转矩就越大。当定子电流超前于电压相位时,电动机从电网中吸收超前的无功功率,对于改善电网的功率因数有很大作用。

同步电机检测实验报告

三相同步发电机的运行特性

一、实验目的 1.掌握三相同步发电机的空载、短路及零功率因素负载特性的实验求取法 2.学会用试验方法求取三相同步发电机对称运行时的稳态参数 二、实验参数 实验在电力系统监控实验室进行,每套实验装置以直流电动机作为原动机,带动同步电动机转动,配置常规仪表进行实验参数进行测量,本次同步发电机运行试验,仅采用常规控制方式。 同步发电机的参数如下 额定功率2kw 额定电压400v 额定电流 3.6A 额定功率因素0.8 接法Y 三、实验原理 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁

磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 ◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆感应电势有效值:每相感应电势的有效值为 ◆感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: ◆要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。

同步电机练习题及标准答案

第六章 同步电机 一、填空 1. ★在同步电机中,只有存在 电枢反应才能实现机电能量转换。 答 交轴 2. 同步发电机并网的条件是:(1) ;(2) ;(3)。 答 发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致 3. ★同步发电机在过励时从电网吸收 ,产生 电枢反应;同步电动机在过励时向电网输出,产生 电枢反应。 答 超前无功功率,直轴去磁,滞后无功功率,直轴增磁 4. ★同步电机的功角δ有双重含义,一是和之间的夹角;二是 和 空间夹角。 答 主极轴线,气隙合成磁场轴线,励磁电动势,电压 5. 凸极同步电机转子励磁匝数增加使q X 和d X 将 。 答 增加 6. 凸极同步电机气隙增加使q X 和d X 将 。 答 减小 7. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为 。 答 δs i n 2)X 1 X 1( mU d q 2 - 二、选择 1. 同步发电机的额定功率指( )。 A 转轴上输入的机械功率; B 转轴上输出的机械功率; C 电枢端口输入的电功率; D 电枢端口输出的电功率。 答 D 2. ★同步发电机稳态运行时,若所带负载为感性8.0cos =?,则其电枢反应的性质为( )。 A 交轴电枢反应; B 直轴去磁电枢反应; C 直轴去磁与交轴电枢反应; D 直轴增磁与交轴电枢反应。 答 C 3. 同步发电机稳定短路电流不很大的原因是( )。 A 漏阻抗较大; B 短路电流产生去磁作用较强; C 电枢反应产生增磁作用; D 同步电抗较大。 答 B 4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为( )。 A q aq d ad X X X X X >>>>σ; B σX X X X X q aq d ad >>>>;

实验五 三相同步电动机

实验实训报告 院系:机电工程学院 班级:电气工程及其自动化1班 姓名:郑栋梁 学号:2018014846 课程:电机与拖动 实验室名称:

图 6-1 同步电动机实验接线原理图 合 分 直流机励磁电源 a b c 合 分 + - W W V2 A4 A2 M ~ G — 外接电阻盒 320Ω/400W V3 V1 直流接触器 A3 A1 + - 合 分 + - 实验负荷箱 同步机励磁电源 实验实训老师: 张岩 实验实训地点: 实验实训日期: 2020年6月4日 实验实训题目: 三相同步电动机 一、实验目的 掌握三相同步电动机的异步起动方法,测取三相同步电动机的V 型曲线及工作特性。 二、主要仪器设备 三相调压器、实验工作台、三相同步电动机、直流发电机、实验负荷箱。 三、 实验内容与步骤 1. 实验内容 (1)同步电动机的异步起动; (2)同步电动机的V 型曲线,即在U =U N ,f =f N ,输出功率 P 2=常数的条件下, 测取定子电流与励磁电流的关系曲线I =f (I f )。 2. 实验步骤 1) 同步电机异步起动 (1) 参照实验图 6-1正确接线。 (2) 同步电机异步起动前,先检查同步电动机励磁绕组是否已与外接 调压器

的电阻盒(400W/320 欧)连接好(合上直流接触器)。 (3)将三相调压器置输出电压为零的位置,然后按下三相调压器的“合闸”按钮,慢慢增加调压器的输出电压,电机转动时注意观察电机的转向是否符合电机规定的旋转方向。随着三相电压的升高,电机转速增加,定子电流也会上升,当外加电压升高到一定值时,电机定子电流在达到最大值后会回落,在电机转速升到额定转速附近时(此时外加电压约为250V),定子电流已从较大值减小到很小。按下同步机励磁电源“合闸”按钮。 (4)断开励磁绕组的外接电阻盒(断开直流接触器),再按下DL-II 微机型电机励磁电源机箱面板上的“启动”按下,面板上的“合闸”指示灯将会点亮,点击“增加电压”按钮给转转子绕组加入励磁电流,电机牵入同步。 (5)调节电源电压至额定值(即调节调压器的输出电压到380V),同时调节同步机励磁电流,使定子电流达到最小值。这时同步电机异步起动即告结束。 2)V形曲线测定 (1)测量P2=0时的V形曲线 同步电动机运行在空载状态下,U=UN,f=fN,P2=0(直流发电机空载运行,且不加励磁),增大同步电动机励磁电流,使定子电流增加到额定值(3.5A)为止记录数据,然后慢慢减小励磁电流,直到定子电流达到其最小值(此点数据必须记录),再继续减小励磁电流,定子电流又上升,但必须注意定子电流不要超过其额定值。在过励与欠励情况下各测取5~6 组数据,记录在表6-1 中。 (2)测量P2=0.5P N时的V形曲线 接着上述实验,接通实验负荷箱中的四组负荷,通过调节直流发电机的励磁电流来改变直流发电机的负荷大小,使同步电动机输出功率P2=0.5PN,保持此功率不变,将测量数据记录在表格6-2中。 增大同步电动机励磁电流,使定子电流增加到额定值(3.5A)为止,记录数据,然后慢慢减小励磁电流,直到定子电流达到其最小值(此点数据必须记录)再继续减小励磁电流,定子电流又上升,但必须注意定子电流不变超过其额定值。 在过励与它励情况下各测取5~6组数据,记录在表6-2中。

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

同步电动机原理

同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步。

三相同步电机起动实验

三相同步电动机 一、实验目的 1、掌握三相同步电动机的异步起动方法。 2、掌握三相同步电动机的异步起动控制线路。 二、预习要点 1、三相同步电动机异步起动的原理及操作步骤。 2、三相异步电动机控制线路的设计 三、实验项目 1、三相同步电动机的异步起动。 2、三相同步电机励磁绕组电阻的选择。 四、实验方法 1、实验设备 2、屏上挂件排列顺序 D31、D42、D33、D32、D34-3、D41、D52、D51、D31 1、三相同步电动机的异步起动

图1-1 三相同步电动机实验接线图

1)按图1-1接线。其中R的阻值为同步电动机MS励磁绕组电阻的10倍(约 选用D41上90Ω串联90Ω加上90Ω并联90Ω),选用D41上90Ω固定电阻。R f 90Ω共225Ω阻值。MS为DJ16(Y接法,额定电压U N=220V)。 2)用导线把功率表电流线圈短接,开关S闭合于励磁电源一侧(图5-5中为上端),励磁电源为15V直流。 3)把开关S闭合于R电阻一侧(图5-5中为下端)。 4)选择接触器控制开关S先闭合电阻R,延时一秒后,闭合励磁电源。 5)当转速接近同步转速1500r/min时,把开关S迅速从下端切换到上端让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机的整个起动过程完毕。 6) 把功率表、交流电流表短接线拆掉,使仪表正常工作。 五、实验报告 1、绘出三相同步电机起动控制线路图。 六、思考题 同步电动机异步起动时先把同步电动机的励磁绕组经一可调电阻R 构成回路,这可调电阻的阻值调节在同步电动机的励磁绕组电阻值的10倍,这电阻在起动过程中的作用是什么?

无刷交流同步发电机原理与构造

无刷交流同步发电机原理与构造 国民经济建设和人民生活时刻离不开电能,同步发电机由原动机驱动而旋转,把机械能转换成电能,向用电设备提供交流电源。 无刷同步发电机由于其无线电干扰小,无电刷,维护工作量少,运行可靠,性能优越,又便于实现无人值守,当今国内外己普遍推广应用。 第一节无刷同步发电机工作原理 一、电与磁的关系 (一)通电导体周围有磁场 在导体中通入电流之后,导体周围便产生磁场,而且沿导体全部长度上都存在着,该磁场的强弱决定于电流的大小,电流越大,磁场强度越强,磁场的方向按右手定则决定,如图8-1所示,将右手姆指伸直表示电流方向,将其余四指卷曲,这时四指所指的方向,就是磁场方向。 通电线圈 或螺线管周围 也产生磁场。 磁场的强度与

线圈匝数及电流大小成正比 , 磁场方向也以右手定则决定 , 如 图 8一2 所示 , 伸出右手姆指,其余四指卷曲,使四指的方向符 合线圈中电流方向 , 那么伸直的姆指所指的方向就是磁场方向。 发电机的磁场就是在磁极铁心外套上线图通以直流电而形成南、北磁极。当线圈断电后,磁极铁心仍有一定的磁性,俗 称“剩磁”,这是发电机自建电压的必不可少的条件。 (二)电磁感应 当导体(线)在磁场中运动或磁场在导体周围运动,两者互相切割时,在导体(线)中便感应电动势,这种现象称为电磁感 应。 感应电动势的方向与导体运动方向和磁场方向有关,可用“右手定则”来判定。伸右手于磁场内,手心对着N极,四指与 大姆指互相垂直,让大姆指指向导体运动方向,那么四指所指 方向就是感应电动势方向。发电机就是根据这个原理工作的。 如图8-3所示。 感应电动势的大小e与磁 感应强度B,导体切割磁力线的速度 v和导体长度l成正比。 e=B1v 要增大感应电动势,可采用下列办法: 1、增加被切割的磁力线数目,即增强磁场强度,磁场越强,感应电动势越大。

大型高压同步电动机

大型高压同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,改善电网质量,在各行各业得到广泛应用。我公司球磨机用同步电动机曾在一段时期内频繁损坏,直接影响到我公司的生产和设备的安全运行。因此正确分析判断同步电机的故障原因,并提出相应对策,就成了我们的当务之急。 一、事故征象 我公司现有16台1300KW/6KV同步电动机。在2000年以前平均每年要出现2~3次电机烧损的事故。其事故主要征象为:定子绕组端部绑线崩断,电机定子绕组过热,起动绕组笼条开焊、断裂,电机起动及运行中出现异常声响,经常启动失败等现象。 尤其是在1999年1月12日我公司7#同步电动机运行过程中突然放炮,造成7#同步电动机定子线圈局部严重烧坏,高压电缆接头烧损,电流互感器崩坏,由于7#同步机脱扣装置拒动,保护不能正常动作,持续大电流引起密地变电所密27选Ⅱ线保护动作跳闸,影响到选Ⅱ所带其它用电设备停机。 二、事故原因的基本判断分析 1、电机质量分析: 电机的正常使用寿命一般应在20年左右。统计我公司所损坏的同步电动机,运行寿命大多在10年以下,尤其是这台7#同步电动机大修后,投运仅4个月便出现了这次放炮烧损事故。 在事故分析中,部分电气技术人员将事故的主要原因归结到电机的大修上。这种大面积的电机损害事故,将事故原因归结到电机质量上,我对此提出异议。建议将视线转移到对励磁系统的分析上;事实证明,电机修理厂在电机返修中对其重点部位进行了种种加强措施,甚至于提高了绝缘等级,但效果并不显著。损坏事故仍不断出现。 2、励磁系统原因分析: 针对同步电动机起动运行过程中发生异常声响、电机定子绕组过热、起动绕组笼条开焊、断裂等诸多现象,在排除电机质量原因引起事故的条件下,有必要对现行的励磁系统进行合理的分析,从而找出电机频繁损坏的真正原因:励磁系统设计不合理。 三、励磁系统存在的主要问题与电机故障原因的内在联系 1、励磁装置起动回路设计不合理,使同步电机经常处在脉振情形下起动。 原主电路为桥式半控励磁装置,其原理图如图1所示。 电机在起动过程中,在转子线圈内将感应一交变电势,其正半波通过ZQ形成回路,产生+if;而其负半波则通过KQ及RF形成回路,产生-if。由于负载电路不对称,形成+if与-if 电流不对称,if曲线如图2所示。电机定子电流因此也产生强烈脉振,其曲线如图3。电机因而遭受到脉振转矩的强烈振动。造成整个厂房大厅内都可以听到电机起动过程发出的强烈振动声。这种声音一直持续到电机起动结束才消失。

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

交流电动机的工作原理

交流电动机的工作原理 目前较常用的交流电动机有两种:1、三相异步电动机。2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。 一、三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。图中分四个时刻来描述旋转磁场的产生过程。电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。旋转磁场的转速为:n=60f/P 式中f为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我们知道,电动机的转速与磁极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:1、改变磁极法;2、变频法。以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。 观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C 相绕组中,C相电流通入B相绕组中,则相序变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。??? 定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。一般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 三.同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子如图1所示,从图中可看出来,它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并

永磁同步电机双闭环矢量控制系统仿真实验指导书.doc

题目 1:永磁同步电机双闭环矢量控制系统仿真 一.实验目的 1.加深理解永磁同步电机矢量控制系统的工作原理 2.掌握永磁同步电机驱动系统仿真分析方法 二.实验要求: 1.永磁同步电机双闭环控制系统建模 2.电流控制器设计 3.电流环动态跟随性能仿真实验 4.转速控制器设计 5.转速环抗负载扰动性能仿真实验 6.给出仿真实验结果与理论分析结果的对比及结论 三.预习内容 注:以下所有找不到的器件均可以通过搜索框搜索 Simulink的启动在MATLAB中键入>>Simulink,进入Simulink library,2014 版本的可直接点击MATLAB界面上的 Simulink library,在Simulink界面上选择 File->New->Model 。如图 1 所示: 图 1 Simulink界面 在 Simulink一级标题下点击source 将 step( 阶跃函数 ) 拖入空白文件作为

转速给定,也可用两个ramp 函数相减,使转速缓慢达到预定转速,如图2: 图2 转速给定 在 Simulink一级标题下点击Ports & Subsystems 选择Subsystem 放入空白文件并双击,删除In1 和 Out1 的连线,如图 3: 图3 子函数模块 选择 Simulink>Continuous下的integrator、Simulink>discontinuous下的 Saturation、Simulink>math operation下的gain和Add,连好线后保存并返回,作为 PI 调节器,其中 saturation可设置上下限为100和-100,如图4:

同步电机课后习题参考答案

14- 1 水轮发电机和汽轮发电机结构上有什么不同,各有什么特点? 14- 2 为什么同步电机的气隙比同容量的异步电机要大一些? 14-3 同步电机和异步电机在结构上有哪些异同之处? 14-4 同步发电机的转速为什么必须是常数?接在频率是50Hz 电网上,转速为150r/min 的水轮发电机的极数为多少? 14-5 一台三相同步发电机S N=10kVA,cosφN=0.8(滞后),U N=400V,试求其额定电流I N 和额定运行时的发出的有功功率P N 和无功功率Q N。 14-6 同步电机在对称负载下稳定运行时,电枢电流产生的磁场是否与励磁绕组匝链?它会在励磁绕组中感应电势吗? 14-7 同步发电机的气隙磁场在空载状态是如何激励的,在负载状态是如何激励的? 14-8 隐极同步电机的电枢反应电抗与与异步电机的什么电抗具有相同的物理意义? 14-9 同步发电机的电枢反应的性质取决于什么,交轴和直轴电枢反应对同步发电机的磁场有何影响? 答案: 14-3 2p=40 14-4 I N =14.43A ,P N =8kW ,Q N=6 kvar 1 / 9

2 / 9 15- 1 同步电抗的物理意义是什么?为什么说同步电抗是与三相有关的电抗,而它的值又是每 相 的值? 15- 2 分析下面几种情况对同步电抗有何影响: (1)铁心饱和程度增加; (2)气隙增大; (3) 电枢绕组匝数增加; ( 4)励磁绕组匝数增加。 15-9 (1) E 0 =2.236 , (2) I =0.78 ( 补充条件: X*S 非=1.8) 15-10 (1) E 0 =1.771, E 0 =10.74kV , 18.4 15-11 E 0 2.2846 , E 0 13.85kv , 32.63 15-12 E 0 12534.88v , 57.42 , I d 387.61A , I q 247.7A 16- 1 为什么同步发电机的稳态短路电流不大,短路特性为何是一直线?如果将电机的转速降 到 0.5n 1 则短路特性,测量结果有何变化? 16- 2 什么叫短路比,它与什么因素有关? 16- 3 已知同步发电机的空载和短路特性,试画图说明求取X d 非 和 Kc 的方法。 16-4 有一台两极三相汽轮同步发电机,电枢绕组 Y 接法,额定容量 S N =7500kV A ,额定 电压 U N N 短路实验测得 k N 时, fk ,零功率因数实验 I=I N ,U=U N 时测得 fN0 试求:(1)通过空载特性和短路特性求出 X d 非和短路比;(2)通过空载特性和零功率因数特性 求出 X σ和 I fa ;(3)额定运行情况下的 I fN 和 u 。 16-5 一台 15000kVA 的 2 极三相 Y 联接汽轮发电机, U N 10.5kV ,cos N 0.8(滞 * *d p a 1(2)额定负载时的励磁电流标么值。

(完整)同步电动机

(完整)同步电动机 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)同步电动机)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)同步电动机的全部内容。

同步电动机的起动方法设计 摘要:虽然同步电机大部分情况用作发电机。但是在工业生产中有一些大功率的空气压缩机、大型鼓风机、电动发电机组等,这些生产机械本身也没有调节速度的要求。如果用同步电动机去拖动可能更合适。这是因为同步电动机与同容量的异步电动机相比,同步电动机的功率因数髙,还可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。本文先介绍了同步电机及同步电动机的工作原理,而后分析了调节同步电动机的励磁电流以提高电网功率因数以及异步起动和变频起动. 关键字:同步电机,同步电动机,电网功率因数,励磁电流,异步起动,变频起 动 1 同步电机的基本原理 同步电机和感应电机一样是一种常用的交流电机。特点是稳态运行时,转子的 转速和电网频率之间有不变的关系n=n s=60f/p,n s称为同步转速.若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关. 同步电机分为同步发电机和同步电动机。现代发电厂中的交流电机以同步电机 为主。 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立 起主磁场. 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的 载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场 随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场). 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将 会感应出大小和方向按周期性变化的三相对称交变电势.通过引出线,即可提供交流 电源。 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。

上海交大电机学实验+三相同步发电机并网运行

。 + 。- I f 。 。 + - . 电机学实验报告 实验五 三相同步发电机并网运行 班级: 姓名: 学号: 同组成员: 实验时间: 实验地点: 一、实验目的 1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 二、实验内容 1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时无功功率调节。 (1) 测取输出功率等于零时三相同步发电机的 V 形曲线。 (2) 测取输出功率等于 0.5 倍额定功率时三相同步发电机的 V 形曲线。 三、实验接线图 1.图 5-1 三相同步发电机与电网并联运行接线图 电 枢 电 源 S1 V A M ˉ A1 A2 G ~ B1 B2 A A B C . V . * * * W . W * A A A A B1 R f1 B2 励磁电源 并车开关 1 3 2 T 三 相 交 流 电 源 . V A 0 B 0 断 开 C 0 A g B g 闭 C g 合 四、实验设备 1. T 三相感应调压器 2. G 同步发电机 P N =2kW U N =400V I N = 3.61A I fN =3.6A n N =1500r/min 3. M 直流电动机 P N =2.2kW U N =220V I N =12.4A U fN =220V n N =1500r/min

4.变阻器励磁变阻器Rf10/500Ω1A 5.并车开关 6.直流电流表30A(电枢) 7.直流电流表4A(励磁) 8.直流电压表400V 9.交流电压表500V 10.交流电流表10A 11.功率表 五、实验数据记录 1.P2≈0时无功功率调节实验数据 2.P2=0.5PN时无功功率调节实验数据 六、计算及问题分析 1.根据实验操作过程,简要说明发电机与电网并联运行时无功功率调节的方法。 在保持同步发电机的有功功率不变的情况下,调节同步发电机的励磁电流 I f,改变了功率因数角,调节电机的无功功率输出。在励磁电流变化的过程中,在励磁电流取某一值的时候,定子电流会出现一个最小值,这时功率因数角为

昆明理工大学电气工程及其自动化 发电机同步实验报告

实验二:同步发电机综合实验 三相同步发电机并网运行 一、 实验目的 1、学习三相同步发电机投入并网运行的方法。 2、测试三相同步发电机并网运行条件不满足时的冲击电流。 3、研究三相同步发电机并网运行时的静态稳定性。 4、测试三相同步发电机突然短路时的短路电流。 二、 实验原理 1. 同步发电机的并网运行 发电机与电网是否符合下列条件: a 、双方应有相同的相序; b 、双方应有相同的电压; c 、双方应有相同或接近相同的频率; d 、双方应有相同的电压初相位。 在实际并网中,这些条件并不要求完全达到,只要在一定的 误差范围之内就可以进行并网,比如转速(频率)相差约??(2%~5%)。 总之,在并车的时候必须避免产生巨大的冲击电流,以防止同步电机损坏,避免电力系统受到严重的干扰。 2. 同步发电机的静态稳定性 发电机输出的电磁功率与功角的关系为: 静态稳定的条件用数学表达为0>??δM P ,我们称δ ??M P 为比整步功率,又称为整补功率系数,其大小可以说明发电机维护同步运行的能力,既说明静态稳定的程度,用P ss 表示。

δ角越小,P ss 数值越大,发电机越稳定。由δ d dP E 和P E 可知,当δ小于90°时,δ d dP E 为正值,在这个范围内发电机的运行是稳定的,但当δ愈接近90°,其值愈小,稳定的程度越低。当δ等于90°时,是稳定和不稳定的分界点,称为静态稳定极限。在所讨论的简单系统情况下,静态稳定极限所对应的功角正好与最大功率或称功率极限的功角一致。对应的o 90=δ时达到静态稳定功率极限。为了安全可靠,极限功率应该比额定功率大一定的倍数,即发电机的额定运行点都远低于稳定极限,以保持有足够的静稳定储备。P em 与P en 之比称为静过载能力K m ,即: 一般要求K m >1.7,也可以说发电机带额定有功负荷运行时静态稳定储备应该在70% 以上,因此额定功角n δ一般应该是30°左右。 三、 实验线路 四、 实验结果及分析 a 、 在短路器断开的情况下,测出电网和发电机的电压波形,找到并联条件满 足的点,确定并网的时间,进行并网实验,测试并网时的冲击电流; 实验参数: 图1:励磁电流图2:相位 实验结果: 图3:电网与发电机的电压波形图4:调整后的电网与发电机电压波形 图5:并网时间图6:冲击电流波形 b 、 调整发电机的运行条件,分别在初相位不同和电压幅值不同时,进行并网 实验,测试并网时的冲击电流 实验参数: 图7:相位不同,幅值相同图8:并网时间 实验结果:

同步发电机试验方法

同步发电机试验方法

同步发电机试验方法 1 基本概念 同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系: p f 60n (转/分) (1.1) 同步发电机按其磁极的结构又可分为隐极式和凸极式。此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢(定子水内冷、转子氢内冷、铁心氢冷)等。 2 发电机的绝缘 2.1 定子绝缘 对于用户来说,主要关心其主绝缘即对地及相间绝缘。发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘。我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系。定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待。 为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带。端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕。 2.2 转子绝缘 转子绝缘包括对地绝缘和绕组的匝间绝缘。 3 发电机的绝缘试验项目 3.1 发电机常规试验项目(电气部分) 1)定子绕组的绝缘电阻、吸收比或极化指数测量 2)定子绕组的直流电阻测量 3)定子绕组泄漏电流测量和直流耐压试验 4)定子绕组交流耐压试验 5)转子绕组绝缘电阻测量 6)转子绕组直流电阻测量 7)转子绕组交流耐压试验 8)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量 9)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的交流耐压试验 10)发电机组和励磁机轴承的绝缘电阻

大型同步电动机安装使用维护说明书

TK系列大型同步电动机 安装使用维护说明书 0JS.461.387 编制: 审核: 批准: 山东济南发电设备厂

编 号 0JS.461.387 山 东 济 南 发 电 设 备 厂 TK 系列同步电动机 安装使用维护说明书 共 26 页 第 1 页 目 录 1. 电机的安装说明 (1) 2. 电机的拆装说明 (2) 3. 电机的干燥 (3) 4. 电机运转前的准备工作 (7) 5. 同步电动机的起动与停机 (9) 6. 电机的维护和检修 (10) 7. 电机存放时的保养 (15) 8. 运转中故障分析 (15) 9. 同步电动机接线图 (17)

1.电机的安装说明 1.1安装环境及件 电机应安装在干燥的地方,且不受灰尘、污垢和有腐蚀性气体及昆虫或爬虫的侵害,并不得在阳光直接照射下使用。 在考虑防潮和防尘的同时,应顾及电机的通风问题,保证电机有足够的风量,进风的温度不低于0℃,不高于40℃,电机使用的地点海拔不得超过1000m,周围环境的相对湿度,一般电机不能大于75%,湿热带型电机不能大于95%。 此外应考虑到电机的位置与四周设备的位置相适应,保证修理和检查的方便。 1.2基础的铺设 基础的设计由用户根据具体的条件和电机外形图的要求进行设计,设计时应遵循以下几个原则。 1.2.1基础应铺在坚固的土壤上(由混凝土或钢筋混凝土筑成),有足够的承重能力,以便能承受静的和动的负载,也就是说基础能尽量防止下沉、移动和振动,保持不变的位置。 1.2.2电机的基础应与和它连接的机器的基础做成整体,以免分开时各自基础的不均匀下沉、骨架变形等引起机组中心线改变而使电机受到损坏。 1.2.3基础浇好后应先加重物进行预压。 1.2.4放底脚螺栓孔的位置,必须准确按图样开好,孔的大小应比螺栓大5~7cm,以便安装时校正,校正后在螺栓四周的空隙内填以混凝土。 1.2.5从混凝土收缩终了时起,到电机安装的日期,一般不得少于2~3个星期。 1.2.6管道通风或半管道通风的电机,若安装地点的地下水位很高,进风管道不能放在地平面下面,最好采用双层建筑基础。 1.3电机的安装程序 1.3.1进行基础的检查:外部观察时,须没有裂纹、气泡、外露钢骨以及其他外

同步电机实验指导书【修订】

同步电机实验指导书 实验一三相同步发电机的运行特性一.实验目的 1.用实验方法测量同步发电机在对称负载下的运行特性。 2.由实验数据计算同步发电机在对称运行时的稳态参数。 二.预习要点 1.同步发电机在对称负载下有哪些基本特性? 2.这些基本特性各在什么情况下测得? 3.怎样用实验数据计算对称运行时的稳态参数? 三.实验项目 1.测定电枢绕组实际冷态直流电阻。 2.空载试验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3.三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4.纯电感负载特性:在n=n N、I=I N、cos?≈0的条件下,测取纯电感负载特性曲线。 5.外特性:在n=n N、I f=常数、cos?=1和cos?=0.8(滞后)的条件下,测取外特性曲线U=f(I)。 6.调节特性:在n=n N、U=U N、cos?=1的条件下,测取调节特性曲线I f=f(I)。 四.实验设备及仪器 1.MEL系列电机系统教学实验台主控制屏。 2.电机导轨及测功机,转矩转速测量(MEL-13、MEL-14)。 3.功率、功率因数表(或在主控制屏,或采用单独的组件MEL-20、MEL-24)。 4.同步电机励磁电源(含在主控制屏右下方)。 5.三相可调电阻器900Ω(MEL-03)。 6.三相可调电阻器90Ω(MEL-04)。 7.波形测试及开关板(MEL-05)。 8.自耦调压器、电抗器(MEL-08)。 9.三相同步电机M08。 10.直流并励电动机M03。

五.实验方法及步骤 1.测定电枢绕组实际冷态直流电阻。 被试电机采用三相凸极式同步电机M08。 测量与计算方法参见实验3-1。记录室温,测量数据记录于表4-1中。 同步电机励磁电源为0~2.5A可调的恒流源,按装在主控制屏的右下部。须注意,切不

同步电动机的工作原理

同步电动机的工作原理 同步电动机 转子转速与定子旋转磁场的转速相同的交流电动机。其转子转速n 与磁极对数p、电源频率f之间满足n=f/p。转速n决定于电源频率f,故电源频率一定时,转速不变,且与负载无关。具有运行稳定性高和过载能力大等特点。常用于多机同步传动系统、精密调速稳速系统和大型设备(如轧钢机)等。 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁

场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步 同步电动机的起动方法: 同步电动机只有在定子旋转磁场与转子励磁磁场相对静止时,才能得到平均电磁转矩。如将静止的同步电动机励磁后直接投入电网,这时定子旋转磁场与转子磁场间以同步转速n1作相对运动,转子受到交变的脉动转矩,其平均值为零,电机不能起动。所以必须借助其他方式来起动。

相关主题