搜档网
当前位置:搜档网 › 背包问题的多种解法201226630407

背包问题的多种解法201226630407

背包问题的多种解法201226630407
背包问题的多种解法201226630407

0-1背包问题的多种解法

【摘要】本文主要从动态规划经典背包问题的设计思路出发,结合具体实

例,给出了多种解决思路。

【关键字】动态规划贪心算法穷举法 0/1背包问题

一.原型问题

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi ,背包容量为c.求使物品价值最高的选取方法。(每个物品要么不取,要么取一次)

二.解决方法

1.穷举法:用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。由于程序较简单,在这里就不再给出,用实例说明求解过程。下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

2.贪心法:

贪心准则1:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2, w=[100,10,10], p =[20,15,15], c =105。当利用价值贪婪准则时,获得的解为x= [1,0,0],这种方案的总价值为20。而最优解为[0,1,1],其总价值为30。

贪心准则2:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n= 2,w=[10,20] p=[5,100],c= 2 5。当利用重量贪婪策略时,获得的解为x =[1,0], 比最优解[ 0 , 1 ]要差。

贪心准则3:价值密度pi /wi 贪婪算法,这种选择准则为:从剩余物品中选择可装入包的pi /wi 值最大的物品,但是这种策略也不能保证得到最优解。利用此策略解

n=3 ,w=[20,15,15], p=[40,25,25], c=30 时的得到的就不是最优解。

3.动态规划法:

在0/1背包问题中,物体或者被装入背包,或者不被装入背包,只有两种选择。

循环变量i,j意义:前i个物品能够装入载重量为j的背包中(n+1)*(m+1)

数组value意义:value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值若w[i]>j,第i个物品不装入背包否则,若w[i]<=j且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值(替换为第i个物品装入背包后的价值)

计算最大价值的动态规划算法如下:

即该段程序完成以下n个阶段:

1:只装入1个物品,确定在各种不同载重量的背包下,能够得到的最大价值

2:装入2个物品,确定在各种不同载重量的背包下,能够得到的最大价值

...n...

以此类推,装入n个物品,确定在各种不同载重量的背包下,能够得到的最大价值

接下来确定装入背包的具体物品,从value[n][m]向前逆推:若value[n][m]>value[n-1][m] ,则第n个物品被装入背包,且前n-1个物品被装入载重量为m-w[n]的背包中。否则,第n个物品没有装入背包,且前n-1个物品被装入载重量为m的背包中

以此类推,直到确定第一个物品是否被装入背包为止。逆推代码如下:

三.算法效率分析

1.穷举法

对于一个有n个元素的集合,其子集数量为2的n次个,所以,不论生成子集的算法效率有多高,穷举法都会导致一个O(2的n次)的算法。

2.贪心法

虽然能以较快的速度得出一个相对较好的解,由于不能准确提供最优解,故此方法并不提倡。3动态规划法

最理想状态下,计算时间复杂性为O(nc)。

四.小结

同一个问题会有多种解法,不同的解法会有不同的效率,利用最少的资源实现尽可能好的程序效果,正是算法的魅力所在。

软工1024 吕佳盛

201226630407

01背包问题不同算法设计、分析与对比报告

实验三01背包问题不同算法设计、分析与对比一.问题描述 给定n种物品和一背包。物品i的重量是w i ,其价值为v i ,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 ^ 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: ^ 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。 回溯法:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) : 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。 5.需要提交不同算法的实现代码和总结报告。 动态规划方法: public class Knapsack {

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

0-1背包问题四种不同算法的实现要点

兰州交通大学数理与软件工程学院 题目0-1背包问题算法实现 院系数理院 专业班级信计09 学生姓名雷雪艳 学号200905130 指导教师李秦 二O一二年六月五日

一、问题描述: 1、0—1背包问题:给定n 种物品和一个背包,背包最大容量为M ,物 品i 的重量是w i ,其价值是平P i ,问应当如何选择装入背包的物品,似的装入背包的物品的总价值最大? 背包问题的数学描述如下: 2、要求找到一个n 元向量(x1,x2…xn),在满足约束条件: ????? ≤≤≤∑1 0i i i x M w x 情况下,使得目标函数 p x i i ∑max ,其中,1≤i ≤n ;M>0; wi>0;pi>0。满足约束条件的任何向量都是一个可行解,而使得目标函数 达到最大的那个可行解则为最优解[1]。 给定n 种物品和1个背包。物品i 的重量是wi ,其价值为pi ,背包的容量为M 。问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。不能将物品i 装人背包多次,也不能只装入部分的物品i 。该问题称为0-1背包问题。 0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得 M w x i i ≤∑ ,而且 p x i i ∑达到最大[2]。 二、解决方案: 方案一:贪心算法 1、贪心算法的基本原理与分析 贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广的许多问题它能产生整体最优解。在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好近似解。 贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 2、0-1背包问题的实现 对于0-1背包问题,设A 是能装入容量为c 的背包的具有最大价值的物品集合,则Aj=A-{j}是n-1个物品1,2,...,j-1,j+1,...,n 可装入容量为c-wj 的背包的具有最大价值的物品集合。 用贪心算法求解0-1背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi ;然后,将物品进行排序,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c ,则选择单位重量价值次高的物品并尽可能多地装入背包。

回溯法和分支限界法解决背包题

0-1背包问题 计科1班朱润华 32 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至

装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例, n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。由此得一个解为[1,,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int);

背包问题九讲(很详细)

P01: 01背包问题 题目 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。 基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是: f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。 优化空间复杂度 以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-c[i]]+w[i]}; 其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程 f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

生活中的实际问题

课题六生活中的实际问题 教学内容 教材第46页。 教材分析 本课是运用前面所学的知识解决生活中实际问题的应用课,教学时要注意引导学生认真读题,弄清题意,找出题里有用的数学信息和问题,然后再合作探究、交流出解决问题的方法。 学情分析 学生在生活中有时会遇到像穿珠子这样的实际问题,解决这类问题时,要引导学生找出有用的数学信息和问题,然后组织学生合作探究,动手操作,利用学生所掌握的数的组成等知识来解决问题,在提升学生解决问题能力的同时感受数学与生活的密切关系。 教学目标 1、初步培养学生从具体的生活情境中收集数学信息,提出问题并解决问题的能力。 2、让学生经历探究过程,通过合作、交流,找到解决问题的有效方法。 3、培养学生与人合作、交流的意愿和初步的能力。 教学重难点 重点:灵活运用所学知识解决生活中的简单的实际问题。 难点:运用恰当的方法和策略解决简单的实际问题。 教学具准备 小棒

教学课时 1课时 教学过程 一、复习引入 1、复习数的组成。 45里面有()个十和()个一。 3个十和8个一组成的数是()。 2、尝试自主解决问题。 有10颗纽扣,每件上衣要钉5颗纽扣,可以钉几件上衣? 学生尝试自主解决后交流。 3、引入。其实,在生活中我们经常会遇到这类问题,今天我们共同来学习解决这类问题的方法。(板书课题) 二、探究新知 (一)示题,引导学生观察主题图 (二)图文结合,引导学生找出数学信息和问题 1、提问:结合图,你能从题里找出什么数学信息? 学生思考后交流: 数学信息①有58个珠子 数学信息②每10个珠子穿一串 2、指名学生答:要解决的问题是什么? (学生:能穿几串?) 师:你能将信息和问题用自己的话表述一遍吗? (学生口述:------) (三)探究解决问题的方法 引导学生动手操作,找寻解决问题的有效方法。

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

用数学解决生活中的实际问题

用数学解决生活中的实际问题学生在学习知识后,不考虑所学数学知识的作用,不应用数学知识去解决现实生活中的实际问题,那么,这样的教学培养出来的学生,只是适应考试的解题能手。学生掌握了某项数学知识后,让他们应用这些知识去解决我们身边的某些实际问题,他们是十分乐意的,这也是我们教学所必须达到的目标。 如:学生在学习了长方形和正方形的周长以后,让学生在自己的照片装饰上精美的边框;学习了长方形和正方形的面积后,让学生回家去帮助父母并计算房间地面面积、计算铺地板砖的数量及购买钱数。这样,既培养了学生的动手能力、预算能力、社会能力,又十分有效地巩固了所学的数学知识。再如在一级数学活动课上我讲了这样一个故事:有两位小青年来到卖螃蟹的李大爷跟前问:"螃蟹多少钱一斤?"李大爷说:"30元一斤。"甲青年说:"我喜欢吃身子,只有一半应按15元一斤算。"乙青年说:"我喜欢吃爪子,也应按15元一斤算。"于是李大爷就把螃蟹分下来卖给了他们,回家的路上,李大爷仔细一算才发觉上了当,请你们用学过的数学知识来解释一下李大爷为什么上当了?学生被这一情境引发了好奇心,由好奇引发需要,因需要而进行了积极思考,这样学生不但加深了对乘法分配率的理解,同时也让学生体会到数学离不开生活,生活离不开数学,用学到的数学知识解决生活中的实际问题,是学习数学的真正意义。 可见,如果我们能在教学中高度重视数学知识的生活化,那么,

一定会使数学更贴近生活。同时也会越来越让人感到生活离不开数学,数学也会变得有活力,学生才会更有兴致地喜欢数学,更加主动地学习数学,巩固数学甚至发展数学。数学生活化是教育现代化对数学教学提出的新的要求,教师要充分发掘来源于现代生活实际的内容,将其转化为数学模型问题,并运用所学知识解决实际问题,培养学生学习数学知识、应用数学知识的意志和兴趣,提高学生的数学素质。让学生真正体会到数学学习的趣味性和实用性, 使学生发现生活数学,喜欢数学, 让数学课堂教学适应社会生活实际,才能培养出一批真正适应未来社会需要的人才。

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

0-1背包问题研究及算法策略比较分析

数学与物理科学学院 《算法分析与设计》课程考查论文 题目0-1背包问题研究及算法策略比较分析 专业 班级 学号 姓名 任课教师 完成日期2011/5/24

背包问题是一个在运筹学领域里常见的典型NP-C难题,也是算法设计分析中的经典问题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有重要意义。对这个问题的求解已经研究出了不少的经典方法,对该问题的探索和应用研究一直在进行。在先进理论指导下,求解0-1背包问题具有科学、高效、经济、灵活、方便等显著特点。 那么要解决背包问题,首要的前提就是设计出好的算法,想求得背包问题的解,就要先设计出算法,本文采用回溯法对背包问题、0-1背包问题及简单0-1背包问题进行算法设计和时间复杂度分析,给出具体算法设计和实现过程。并以具体实例详细描述不同方法求解问题解时算法基本思想,然后就解决0-1背包问题对这四种算法进行详细的比较,总结这种方法实现的优缺点并得出结论。如何将背包问题应用于实际问题中,有针对性地设计适合求解实际0-1背包问题的算法,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。

摘要 (2) 一、绪论 (4) 1.1问题的研究及意义 (4) 1.20-1背包问题的算法研究与分析 (4) 1.3课题的主要研究内容 (4) 二、0-1背包问题在动态规划中的实现 (5) 2.1动态规划的基本原理与分析 (5) 2.20-1背包问题的实现 (5) 三、0-1背包问题在分枝-限界法中的实现 (7) 3.1分枝-限界法的基本原理与分析 (7) 3.20-1背包问题的实现 (7) 四、0-1背包问题在遗传算法中的实现 (9) 4.1遗传算法的基本原理与分析 (9) 4.20-1背包问题的实现 (10) 五、0-1背包问题在回溯法中的实现 (11) 5.1回溯法的基本原理与分析 (11) 5.20-1背包问题的实现 (11) 5.30-1背包问题在回溯法中的算法描述 (12) 5.4算法效率 (14) 5.5运行结果 (15) 六、四种算法的比较与分析 (15) 七、附录 (17)

背包问题题目及含义

背包 它是在1978年由Merkel和He llman提出的。它的主要思路是假定某人拥有大量物品,重量各不同。此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。 DD牛的背包九讲 P01: 01背包问题 题目 有N件物品和一个容量为V的背包。第i件物品的费用是c,价值是w。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[v]=max{f[v],f[v-c]+w}。 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i 件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f [v-c]再加上通过放入第i件物品获得的价值w。 注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。 优化空间复杂度 以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f [v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-c]+w}; 其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 总结 01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,

算法 0-1背包问题

一、实验目的与要求 掌握回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对回溯法、分支限界法的理解。 1.要求分别用回溯法和分支限界法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验方案 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、实验结果和数据处理 1.用回溯法解决0-1背包问题: 代码: import java.util.*; public class Knapsack { private double[] p,w;//分别代表价值和重量 private int n; private double c,bestp,cp,cw; private int x[]; //记录可选的物品 private int[] cx; public Knapsack (double pp[],double ww[],double cc) { this.p=pp;this.w=ww;this.n=pp.length-1; this.c=cc;this.cp=0;this.cw=0; this.bestp=0; x=new int[ww.length]; cx=new int[pp.length]; } void Knapsack() { backtrack(0); } void backtrack(int i) { if(i>n) { //判断是否到达了叶子节点 if(cp>bestp) { for(int j=0;j

贴近生活实际 解决数学问题

张俊陈福满贴近生活实际解决数学问题万方3000 摘要: 数学作为一门自然科学,数学的学习的过程和现实生活有着广泛密切的联系,新课程标准的背景下,已经提出了数学学习要做到从生活经验和数学知识的角度出发,让学生们能够结合自身的生活实际,将实际问题抽象成数学模型并进行解释与应用。这样才能把枯燥、抽象的数学知识和现实生活相联系。这样才能充分激发学生的学习兴趣,提高数学学习的效果。 关键字:数学学习;生活实际;抽象;问题 正文: 新课程标准对于当前我国数学学习提出了新的要求,要求数学教学,应从学生已有的知识经验出发,让学生亲身经历参与特定的教学活动,将实际问题抽象成数学模型,并对此进行解释和应用。”这就要求当前在数学教学过程中,教师能够结合学生生活的实际,做好学生学习空间的扩展工作。对于数学教学中存在的问题进行优化,让学生们能够做到运用自身所学知识去解决现实生活中的实际问题。另一方面通过现实的生活场景、活动场景等形式来实现学习素材,为教师组织教学提供丰富的教学资源,为学生提供足够的探索知识的空间。 一、从生活中积累素材,培养学生的应用意识 教学中,我们要关注学生的生活经验和学生体验,捕捉贴近学生的生活素材,选择学生熟悉的例子。因此,课堂教学中必须开放小教室,把生活中的鲜活题材引入学习数学的大课堂,吸引并引进具有时

代性、地方性的数学信息资料来处理教材内容。例如,我们学校举行公开课“列方程解应用题”时,老师根据生活中经常做的买菜呀、做饭、打扫卫生等具体情况,设计了一系列方程应用题:如何统筹女排买菜做饭的时间、买菜的时候用同样的钱可以买哪些小同的菜……这样把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,使学生积极主动地投入学习生活中。再例如在教学“两步加减应用题”时,可首先播放一段生活录象:一辆公交车上有28人,到了第一站下来15人,又上来9人,车上共有几个人?然后再引导学生分析、理解。这样的学习活动使学生感到生活中处处有数学,处处离小开数学,从而培养学生的数学应用意识。 二、结合当前生活的实际解决问题,使数学问题生活化、具体化。 解决数学问题是数学教学的根本目的,也是数学教学的归宿,通过数学知识的掌握,数学技能的训练,数学方法的练习,归根结底是要解决数学问题,数学计算、数学推理、数学思维方法等都为解决问题服务,而问题的解决不是独立于生活之上的,而是融入生活实际当中,在实际应用的过程中总结方法,提升能力。例如小学数学教学中的追及问题和相遇问题,面对相对、相向等许多名词,学生很难一下找准对策,我们可以把课堂搬到运动场上,采取比赛、演示等方式,让学生在亲身实践中理解相关问题,找出解决此类问题的一般方法,化解难点。 三、结合生活实际进行问题分析,简化数学问题 分析问题是解决数学问题的关键所在,有效的分析能帮助学生找准

相关主题