搜档网
当前位置:搜档网 › 01 GMV多联空调机组能力修正及选型

01 GMV多联空调机组能力修正及选型

01 GMV多联空调机组能力修正及选型
01 GMV多联空调机组能力修正及选型

第三篇 GMV多联空调机组工程选型设计及安装

第一章GMV多联机组能力修正及选型

一、能力修正

1. 容量代码

室内机容量代码=室内机额定制冷量的数值(以W为单位)×0.01

室外机容量代码=室外机额定制冷量的数值(以W为单位)×0.01

例:GMV-R300W2/B-N2室外机额定制冷量为30000W,其容量代码为300;

GMV-R25P/H风管室内机额定制冷量为2500W,其容量代码为25。

2. 室内机和室外机能力修正的方法

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

R22室外机能力=室外机额定工况能力×室内、外界温度条件的修正系数×(配管距离的修正系数—室内外机高低差的修正系数)

R410A室外机能力=室外机额定工况能力×室内、外界温度条件的修正系数×配管距离、室内外机高落差的修正系数

2.1 同时运行的室内机总容量决定室外机额定工况能力

室内机容量代码之和小于等于室外机容量代码时,室外机额定工况能力等于室内机容量代码之和室内机容量代码之和大于室外机容量代码时,室外机额定工况能力等于其额定制冷量

2.2 室内、外界温度条件修正系数

a. 与温度条件有关的制冷能力修正系数

b. GR 、GRm 、GP 、GPd 、GPdm 、GPJ 系列多联机组与温度条件有关的制热能力修正系数

修正系数

272624

22201618室内空气干球温度(℃)

12

-15 -10 -5 0 5 10 15 16 室外空气湿球温度(℃)

14

c. GRe 系列低温热泵数码多联机组与温度条件有关的制热能力修正系数

2.3 配管距离的修正系数(R22机型)

a. 相当的配管长度计算方法

相当的配管长度 = 最远端室内机至室外机气体配管长度

+最远端室内机至室外机气体配管上的弯头数 × 弯头相当的配管长度(查下表) +最远端室内机至室外机气体配管上对应的的分歧管数×分歧管对应的配管长度

b. 90o 弯头相当的配管长度计算方法 90o 弯头相当的配管长度

c. 分歧管的相当长度按Y

型分歧管0.5m 一个。 2.4 室内机、室外机高低差的修正系数(R22机型)

当室内机与室外机存在落差时,配管距离的修正系数应减去下列值。

2.5 连接管长度、落差的修正(R410A 机型)

● 符号说明:

Hp :室内机在室外机下方时,二机之间的高低差(m ); Hm :室内机在室外机上方时,二机之间的高低差(m ); L :单程等效配管长度 ●

以下图表是在标准工况下(温控器制冷设为16℃,制热设为30℃)100%负荷时的能力变化率。 2.5.1、数码多联和变频多联侧出风室外机

(1)制冷量的变化率 (2) 制热量的变化率

70

20

10

Hm(m)

10

10

Hp(m)

202520

30

50

40

60

90

80

100

L(m)

1.0

0.97

0.92

0.9

250.97

Hm(m)

20

10Hp(m)

1.0

10

10

20

40203050

60L(m)

807090

100

0.95

0.92

0.90

0.85

0.87

2.5.2、数码多联和变频多联上出风室外机。

(1)制冷量的变化率 (2)制热量的变化率

40

301500.95

300.9

7

20

101020

1.0

201040

30

50804050607090100110120

0.90

0.87

0.92

0.82

0.85

L(m)

Hp(m)Hm(m)0.80

3. 制热时结霜将导致制热性能下降

在制热运行时,当室外热交换器上有积雪或室外温度降到6℃以下时,可能会出现结霜现象,这将导致整机制热性能下降。

二、室内外机组容量搭配范围

室外机(单机型或者室外基础模块)可搭配室内机数量范围如下表,模块化多联机组可搭配的室内机数量为各室外基础模块可搭配的室内机数量之和。

注:① 实际工程中室外机搭配的室内机容量之和必须在室外机容量的50%~135%之间。

② 对于智能变频多联室外机搭配的变频系统室内机容量之和必须在室外机变频系统容量的50%~135%之间。

Hm(m)40

20

3010

Hp(m)

20

1010

2030304050604050708011090100120150

1.0

0.95

0.97

0.87

0.90

0.92

0.85

L(m)

130140

三、机组选型举例

1. GR数码多联空调机组(R22)选型举例(制冷、制热选择步骤相同)

1.1 基础条件

a、温度条件

外界温度:35℃DB;室内温度:21℃WB

b、制冷负荷

c、管道相当长度:85m

d、室内、外机高度差:25m(室外机在下面)

1.2 选择室内机

由于管道距离较长以及室内外机高度差较大,可以考虑选择名义制冷量较大于房间负荷的室内机,选择结果如下:

1.3 选择室外机

室内机容量代码之和应在被选择的室外机容量代码的50%~135%之间。在用户使用时,同时运行的室内机总容量不得大于室外机容量。否则可能会导致各室内机制冷(制热)量不足,因此推荐选择容量代码等于或稍大于室内机容量代码之和的室外机。

室内机的容量代码之和为22×1+28×1+35×1+45×2+71×1 = 246,选择容量代码为260,名义制冷量为26kW的室外机组。

室内外机容量代码之比为246/260×100%=94.6%,这个数值在50%~135%之间,符合选型标准。

1.4 室外机能力修正

a、假设室内机和室外机组合情况如下

室外机:GMV-R260W2/B-N2

室内机:GMV-R22P/H×1,GMV-R28P/H×1,GMV-R36P/H×1,

GMV-R45P/H×2,GMV-R71P/H×1

室内机容量代码之和小于等于室外机容量代码时,室内机容量代码之和等于室外机额定工况能力,得室外机额定工况能力为24.6kW。

b、查阅与温度条件有关的制冷能力修正系数图,在外界温度35℃DB,室内温度21℃WB的温度条件下,制冷能力修正系数为1.06,则室外机根据温度条件的能力修正为24.6×1.06 = 26.1kW

c、查阅配管相当长度为85m的修正系数和室内外机高低差为25m(室外机在下面)的修正系数,分别为0.84和0.05,则室外机根据配管相当长度和室内外机高低差的能力修正为26.1×(0.84-0.05)=20.6kW 1.5 室内机能力修正

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMV-R22P/H:20.6×22/246 =1.8kW

GMV-R28P/H:20.6×28/246 = 2.3kW

GMV-R36P/H:20.6×36/246 = 3.0kW

GMV-R45P/H:20.6×45/246 = 3.8kW

GMV-R71P/H:20.6×71/246 = 5.9kW

2. GRe超低温热泵数码多联空调机组选型举例

按照采暖通风设计规范中的要求得出室内、外环境计算温度,根据室内、外环境计算温度来计算室内所需热负荷。按照室内计算的热负荷再根据连接管长度、室内外机的落差、环境温度进行修正后来选择室内机容量,根据室内机的总热负荷选择室外机容量。

是否需要环境温度修正的说明:

●若选择的室内机为纯热泵(不带辅助电加热),室内机全开的机率很大时(例如商用办公场所)

需要环境温度修正,室内机全开的机率不大,经常处于部分负荷状态时(例如家庭),可不考虑环境温度修正;

●若选择的室内机带辅助电加热,选择室内机的容量时可不考虑环境温度修正。

公式1:不需要环境温度修正的室内机容量计算=计算负荷/(连接管长度修正系数—室内外机的落差的修正系数)

公式2:需要环境温度修正的室内机容量计算=计算负荷/[(连接管长度修正系数—室内外机的落差的修正系数)×环境温度修正系数]

公式3:室外机容量计算=室内机容量计算值的总和*机组配置率。

机组配置率说明:

●机组配置率一般范围50~135%。

●低于100%的配置率一般是考虑空调预留时,当没有预留而低于100%无疑是增加设备投资成本。

●室内机全开的机率很大时(例如商用办公场所)时最佳配置率为100%,当配置率大于100%时可

能导致冷(热)量不足。室内机全开的机率不大,经常处于部分负荷状态时(例如家庭),配置率可达135%,节省设备投资成本。

2.1基础条件

a. 温度条件

室外环境计算温度:-15℃WB

室内环境计算温度:15℃DB

b. 根据温度条件计算的制热负荷

c. 管道相当长度:30m

d. 室内、外机高度差:10m(室外机在室内机上方)

2.2 选择室内机

连接管长度、室内外机的落差的修正系数,查表分别为0.995和0.02。环境温度修正系数,查表0.77

a.假设房间A,B,C,D是商用办公场所,室内机经常全开。用户选择的是纯热泵(不带辅助电加热)风管式室内机,我们可这样选择室内机的容量:房间A,选择GMVR-R36P/H;房间B,选择GMVR-R36P/H;房间C,选择GMVR-R45P/H;房间D,选择GMVR-R50P/H。

b.假设房间A,B,C,D是家庭场所,常处于开部分负荷。用户选择的是带辅助电加热风管式和挂壁式室内机,我们可这样选择室内机的容量:房间A,选择GMV-R25G/H;房间B,选择GMV-R25G/H;房间C,选择GMV-R36G/H;房间D,选择GMV-R45P/H。

2.3 选择室外机

室内机容量代码之和应在被选择的室外机容量代码的50%~135%之间。在用户使用时,同时运行的室内机总容量不得大于室外机容量。否则可能会导致各室内机制热(制冷)量不足,因此推荐选择容量代码等于或稍大于室内机容量代码之和的室外机。

a.假设房间A,B,C,D是商用办公场所,室内机经常全开。室内机总热负荷为167,根据机组配置率的原则,选择制热量17.0kW的机组GMV-Re160W/S-N5(制热量为17kW),配置率为98%。

b.假设房间A,B,C,D是家庭场所,常处于开部分负荷。室内机总热负荷为131,根据机组配置率的原则,选择制热量11.0KW的机组GMV-Re100W/A-N5(制热量为11kW),配置率为119%。注:GMV-Re100W/A-N5暂未开发。

2.4 校核

1)假设房间A,B,C,D是商用办公场所,室内机经常全开。

a.选型

室外机:GMV-Re160W/S-N5

室内机:GMVR-R36P/H×2,GMVR-R45P/H×1,GMVR-R50P/H×1

室外机额定制热能力为17kW。

b.能力修正

查阅与温度条件有关的制热能力修正系数图,在外界温度-15℃WB,室内温度15℃DB的温度条件下,制热能力修正系数为0.77,则室外机根据温度条件的能力修正为17×0.77 = 13.1kW 再查阅配管相当长度为30m的修正系数和室内外机高低差为10m(室外机在下面)的修正系数,分别为0.995和0.02,则室外机根据配管相当长度和室内外机高低差的能力修正为13.1×(0.995 - 0.02)=12.8kW。

c.室内机能力分配

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMVR—R36P/H:12.8×36/170 = 2.71kW

GMVR—R45P/H:12.8×45/170 =3.39kW

GMVR—R50P/H:12.8×50/170 =3.76kW

校核的结果:与室内计算负荷相符,选型合适。

2)假设房间A,B,C,D是家庭场所,常处于开部分负荷。

a.选型

室外机:GMV-Re100W/A-N5

室内机:GMV-R25G/H×2,GMV-R36G/H×1,GMV-R45P/H×1

室外机额定制热能力为11kW。

b.能力修正

查阅配管相当长度为30m的修正系数和室内外机高低差为10m(室外机在下面)的修正系数,分别为0.995和0.02,则室外机根据配管相当长度和室内外机高低差的能力修正为11×(0.995-0.02)=10.7kW。

不需要环境温度修正。

c.室内机能力分配

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMV-R25G/H:10.7×25/110 = 2.43kW

GMV-R36G/H:10.7×36/110=3.50kW

GMV-R45P/H:10.7×45/110=4.37kW

校核的结果:与室内计算负荷基本一致,选型合适。

3. GRm模块化数码多联空调机组(R410A)选型举例(制冷、制热选择步骤相同)

3.1 基础条件

a. 温度条件

外界温度:35℃DB;室内湿球温度:21℃WB

b. 制冷负荷

c. 管道相当长度:100m

d. 室内、外机高度差:10m(室外机在上面)

3.2 选择室内机

由于管道距离较长以及室内外机有一定高度差,可以考虑选择额定制冷量较大于房间负荷的室内机,选择结果如下:

3.3 选择室外机

室内机容量代码之和应在被选择的室外机容量代码的50%~135%之间。在用户使用时,同时运行的室内机总容量不得大于室外机容量。否则可能会导致各室内机制冷(制热)量不足,因此推荐选择容量代码等于或稍大于室内机容量代码之和的室外机。

室内机的容量代码之和为25×2+36×4+50×6+56×2+71×1+112×2+90×2 = 1081,选择容量代码为1200,额定制冷量为120kW的室外机组。

室内外机容量代码之比为1081/1200×100%=90%,这个数值在50%~135%之间,符合选型标准。

3.4 室外机能力修正

a. 假设室内机和室外机组合情况如下

室外机:GMV-Rm1200W2/D-N1

室内机:GMV-R25P/H×2,GMV-R36P/H×4,GMV-R50P/H×6,GMV-R56P/H×2,GMV-R71P/H ×1,GMV-R112P/HS×2,GMV-R90P/HS×2

室内机容量代码之和小于等于室外机容量代码时,室内机容量代码之和等于室外机额定工况能力,得室外机额定工况能力为108.1kW。

b. 查阅与温度条件有关的制冷能力修正系数图,在外界温度35℃DB,室内温度21℃WB的温度条

件下,制冷能力修正系数为1.06,则室外机根据温度条件的能力修正为108.1×1.06 = 114.6kW

c. 再查阅配管相当长度为100m的修正系数和室内外机高低差为25m(室外机在下面)的修正系数,

分别为0.80和0.05,则室外机根据配管相当长度和室内外机高低差的能力修正为114.6×(0.80-0.02)=89.4kW

3.5 室内机能力修正

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMV-R25P/H:89.4×25/1081 = 2.1kW

GMV-R36P/H:89.4×36/1081 = 3.0kW

GMV-R50P/H:89.4×50/1081 = 4.1kW

GMV-R56P/H:89.4×56/1081 = 4.7kW

GMV-R71P/H:89.4×71/1081 = 5.9kW

GMV-R112P/HS:89.4×112/1081 = 9.3kW

GMV-R90P/HS:89.4×90/1081 = 7.5kW

4. GR数码多联空调机组(R410A)选型举例(制冷、制热选择步骤相同)

4.1 基础条件

a、温度条件

外界温度:35℃DB;室内温度:17℃WB

b、制冷负荷

c、管道相当长度:85m

d、室内、外机高度差:25m(室外机在下面)

4.2 选择室内机

然后根据室内机能力修正负荷来选择合适的室内机

室内机能力修正负荷=负荷/与温度条件有关的制冷能力修正系数

查阅与温度条件有关的制冷能力修正系数图,在外界温度35℃DB,室内温度17℃WB的温度条件下,制冷能力修正系数为0.94。

选择结果如下:

4.3 选择室外机

室内机的容量代码之和为247。根据室内机容量总和和修正情况来选择合适的室外机。

室外机容量=室内机容量总和/(与温度条件有关的制冷能力修正系数×连接管长度、落差的修正)计算出室外机容量后,根据室内外机容量比50%~135来选择合适的室外机。

本例中:室外机容量=247/(0.94×0.86)=305

选择容量代码为300,名义制冷量为30kW的室外机组。

室内外机容量代码之比为247/300×100%=82%,这个数值在50%~135%之间,符合选型标准。

4.4 室外机能力修正

a、假设室内机和室外机组合情况如下

室外机:GMV-R300W2/Na-N2

室内机:GMV-R22P/Na×1,GMV-R28P/Na×1,GMV-R36P/Na×1,GMV-R50P/Na×2,GMV-R71P/Na ×1

室内机容量代码之和小于等于室外机容量代码时,室内机容量代码之和等于室外机额定工况能力,得室外机额定工况能力为30kW。

b、查阅与温度条件有关的制冷能力修正系数图,在外界温度35℃DB,室内温度17℃WB的温度条件

下,制冷能力修正系数为0.94。

c、查阅配管相当长度为85m的修正系数和室内外机高低差为25m(室外机在下面)的修正系数,为

0.86。

室外机能力=30×0.94×0.86=24.25 kW

4.5 室内机能力修正

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMV-R22P/Na:24.25×22/247 = 2.16kW

GMV-R28P/Na:24.25×28/247 = 2.75kW

GMV-R36P/Na:24.25×36/247 = 3.53kW

GMV-R50P/Na:24.25×50/247 =4.9kW

GMV-R71P/Na:24.25×71/247=6.97 kW

5. GPJ智能变频多联空调机组选型举例(制冷、制热选择步骤相同)

5.1 基础条件

a. 温度条件

外界温度:35℃DB;室内湿球温度:21℃WB

b. 制冷负荷

c. 管道相当长度:20m

d. 室内、外机高度差:室内机、室外机同层安装

5.2 选择室内机

由于管道距离不是很长以及室内外机没有高度差,可以考虑选择额定制冷量等于于房间负荷的室内机,选择结果如下:

5.3 选择室外机

室内机容量代码之和应在被选择的室外机容量代码的50%~135%之间。在用户使用时,同时运行的室内机总容量不得大于室外机容量。否则可能会导致各室内机制冷(制热)量不足,因此推荐选择容量代码等于或稍大于室内机容量代码之和的室外机。

室内机的容量代码之和为25+36×2+56=153,选择容量代码为90+60,额定制冷量为15KW的室外机组。因为智能变频分为变频系统和定频系统,在这里变频系统容量为90

室内外机容量代码之比为153/150×100%=102%,这个数值在50%~135%之间,符合选型标准。

5.4 室外机能力修正

a. 假设室内机和室外机组合情况如下

室外机:GMV-P150W2/J

室内机:GMV-P25P/HL,GMV-P36P/HL×2,GMV-P56P/H室内机容量代码之和等于室外机容量代码时,室内机容量代码之和等于室外机额定工况能力,得室外机额定工况能力为15.3kW。

b. 查阅与温度条件有关的制冷能力修正系数图,在外界温度35℃DB,室内温度21℃WB的温度条件下,制冷能力修正系数为1.06,则室外机根据温度条件的能力修正为15×1.06 = 16.2kW

c. 再查阅配管相当长度为20m的修正系数和室内外机高低差为5m(室外机在下面)的修正系数,分别为0.97和0.01,则室外机根据配管相当长度和室内外机高低差的能力修正为16.2×(0.97-0.01)=15.55kW 5.5 室内机能力修正

各室内机能力=室外机能力×室内机容量/同时运行的室内机容量

GMV-P25P/H:15.55×25/153 = 2.54kW

GMV-P36P/H:15.55×36/153 = 3.66 kW

GMV-P56P/H:15.55×56/153 = 5.69kW

空调机组机外余压计算与选型

空调机组机外余压计算与选型 一、动压: 指空气流动时产生的压力,只要风管内空气流动就具有一定的动压,动压是单位体积气体所具有的动能,也是一种力,它的最直接的表现是使管内气体改变速度,动压只作用在气体的流动方向恒为正值,气体的动压与空气密度以及流动速度有关。 二、静压: 由于空气分子不规则运动而撞击于管壁上产生的压力称为静压。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压通常指相对静压;静压是单位体积气体所具有的势能,是一种力,它的表现将气体压缩、对管壁施压。管道内气体的绝对静压,可以是正压,高于周围的大气压(通常送风管是正压);也可以是负压,低于周围的大气压(通常回、排风是负压)。 三、全压: 全压是静压和动压的代数和:全压=静压+动压,全压代表单位气体所具有的总能量。若以大气压为计算的起点,它可以是正值,亦可以是负值。 四、机外余压: 机外余压是我们通风设计的一个重要参数,关系到整个系统能否满足使用功能,他的概念一般来自厂商样本,样本上所提供的机外余压一般是考虑机组本身的压力损失后所能提供的压力,

那么,关于机外余压到底是机外全压还是机外静压呢?可以理解为机外全压,写成机外静压是测试时通常把动压看为0。可见,机外余压的概念并非一个标准性概念,但必然是考虑机组本身的压力损失后所能提供的全压 五、静压是由于分子运动力产生的对壁面的压能,在流场内各点大小都一致;动压是因为流体动量形成的压能,仅在迎着来流方向存在。这是一对理论范畴。全压是静压和动压的总和,反应了流体的做功能力水平。理想状态下,流体的静压和动压之和是一个常数,单在流体实际流动过程中,扣除阻力损失后,静压和动压会相互转化,并不是不变的。 六、机外余压是风机克服自身阻力损失后的全压值,即进出口全压差。风机出口风速较高,动压也较大,静压相对较低;但像有的AHU出口马上就进入一个静压箱,则在静压箱内几乎所有的风机能都转化为静压了,有的厂家通过减小风机出口口径来提高“机外余压”,实际上提高的只是动压,静压降低了,其实减小风机出口口径反而会使阻力增大,对系统反而不利。所以我们一般说的风机压头都是说全压,反应的是这台风机的做功能力。说风机动压和静压都是相对场合的说法,有特定条件的。动压实际是由于流体的宏观流动所产生的能量。因此,如果没有流体的宏观流动也就不会产生动压。静压则是由于流体本身的分子热运动所形成的内在能量,不管流体在宏观上是运动的,还是静止的,它的分子都时刻在作热运动,静压能的存在只决定于分子的热运动,而与宏观流动与否没有关系。换言之,不论是静止的,

多联式空调(热泵)机组

多联式空调(热泵)机组 一、产品选用要点 1、多联式空调(热泵)机组的主要控制参数为制冷综合性能系数,额定制冷量,输入功率以及制冷剂类型等。 2、应优先选用符合下列条件的空调设备: (1) 采用环保型制冷剂。 (2) 机组能效比高。 3、选用多联式空调(热泵)机组时,首先应根据室内的冷负荷选用室内机。当机组用于供暖时,在寒冷地区选用设备应校核热负荷,以满足供暖要求。 4、采用多联式空调(热泵)机组时,应符合下列规定: (1) 同一空调系统的规模、制冷剂管道最大长度、设备之间的最大高差、运行工况范围等,应与所选用设备的性能相匹配。 (2) 空调系统制冷剂管道的管径、管材和管道配件应按生产厂技术要求选用,系统自控设备、制冷剂分配器等主要配件,均应由生产厂配套供应。 (3) 放置室外机的位置应空气流通,不应影响周边其他居住者。附近应无易燃气体泄漏的危险。 (4) 设计多联机系统时,室内、外机的容量配比(即一个系统的所有室内机额定制冷容量之和与室外机额定制冷容量之比),宜参照表1选择。 表1 5、设计多联式空调(热泵)机组时,室外机的总容量应作如下修正: (1) 配管长度的修正。一般产品样本的数据是室内干球温度27℃,湿球温度19.5℃,室外干球温度35℃时配管等效长度5m,高差为0m 时的制冷量。 (2) 安装位置的修正。室外机在上部与室外机在下部,在同样高差时修正值不同。 (3) 热泵制热时,积霜和除霜的修正以7℃时为1,0℃时为0.81,-7℃时为0.96。 6、多联式空调(热泵)机组噪声限值见表2。

二、施工安装要点 1. 室外机前侧与高大障碍物的距离应不小于1.5m,吸风侧与障碍物之间距离应不小于0.5m,检修操作宽度应不小于0.8m。 2. 室内机出风口强不应由障碍物,送风不宜直接吹向人体,卧室内气流宜使人体处于回流区。 3. 室内机应注意冷凝水排出。 4. 根据产品的要求注意冷冻机油能顺畅返回压缩机。 三、执行标准 《单元式空气调节机》GB/T 17758-1999 《单元式空气调节机能效限定值及能源效率等级》GB19576-2004 《制冷和供热用机械制冷系统安全要求》GB 9237-2001 《蒸汽压缩循环冷水(热泵)机组户用和类似用途的冷水(热泵)机组》GB/T 18430.2 -2001 传统中央空调变濒多联式中央空调的最大区别在什么? 其实说开来,这就是传统的水系统跟现在趋势明显的多联机氟系统的比较,个人认为为什么现在变频多联机的趋势很明显? 第一、大金在多联机这块的强势地位,高品质,品牌效应。 第二、安装方便,不用专门的机房,也不用冷却水塔和那么多阀门,主机可以安置在楼顶或者建筑背面, 第三、分付计费,这一点氟系统很有优势,按流量分别计量每个室内机的用电量是很普遍的,但是水系统的计费现在方法不多,造价太高 第四、节能性强,主机针对室内机做功,适合办公环境等部分负荷下的空调适用情况 第五、便于管理,这点不光有分付计费,氟系统的智能管理软件还可以控制各个室内机的开停,运行故障的报警,远程控制和技术支持等等。而且水系统的水垢是需要用一段时间就要清洗的。

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

ZK-J净化组合式空调机组简易样本

表1 -外形尺寸 机组外形尺寸(mm) 额定风量 宽度高度底座机组型号 m3/h W H h 表冷器 管径 加热器 管径 冷凝水 管径 ZK2-J(X)2000 750 720 80 DN40 ?48 DN25 ZK3-J(X)3000 850 820 80 DN40 ?48 DN25 ZK4-J(X)4000 1050 820 80 DN40 ?48 DN25 ZK5-J(X)5000 1150 870 80 DN40 ?48 DN25 ZK6-J(X)6000 1150 1070 80 DN40 ?48 DN25 ZK7-J(X)7000 1250 1070 80 DN40 ?48 DN25 ZK8-J(X)8000 1350 1070 80 DN50 ?60 DN32 ZK10-J(X)10000 1350 1270 80 DN50 ?60 DN32 ZK12-J(X)12000 1350 1470 80 DN50 ?60 DN32 ZK15-J(X)15000 1550 1470 80 DN50 ?60 DN32 ZK18-J(X)18000 1850 1520 80 DN50 ?60 DN32 ZK20-J(X)20000 1950 1570 80 DN50 ?60 DN32 ZK25-J(X)25000 2000 1900 100 2×DN65 2×?76 DN32 ZK30-J(X)30000 2000 2150 100 2×DN65 2×?76 DN32 ZK35-J(X)35000 2250 2250 100 2×DN65 2×?76 DN32 ZK40-J(X)40000 2250 2450 100 2×DN65 2×?76 DN32 ZK45-J(X)45000 2450 2450 100 2×DN65 2×?76 DN32 ZK50-J(X)50000 2650 2450 100 2×DN65 2×?76 DN32 ZK55-J(X)55000 2850 2450 100 2×DN80 2×?89 DN40 ZK60-J(X)60000 3150 2650 100 2×DN80 2×?89 DN40 ZK70-J(X)70000 3450 2650 100 2×DN80 2×?89 DN40 ZK80-J(X)80000 3850 2650 100 2×DN80 2×?89 DN40 ZK90-J(X)90000 4400 2650 100 2×DN80 2×?89 DN40 ZK100-J(X)100000 5000 2650 100 4×DN80 4×?89 DN40 ZK120-J(X)120000 5000 3050 100 4×DN80 4×?89 DN40 单口型

空调系统设备选型汇总

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等)2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容

量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比进行选择。 冷水机组机型冷量范围(kW)参考价格(元/kcal/h) 往复活塞式≤700 0.5~0.6 螺杆式116~1758 0.6~0.7 离心式≥1758 0.5~0.6 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规定。 水冷冷水机组机型额定制冷量(kW)性能系数(W/W)活塞式/涡旋式<528 3.8 528~1163 4.0 >1163 4.2 螺杆式<528 4.10 528~1163 4.30

多联式空调机设计及安装

专业资料分享

GB/T《多联式空调(热泵)机组应用设计与安装要求》(征求意见稿) 1范围 本标准规定了多联式空调(热泵)机组的工程应用设计原则、设计方法,以及安装、调试与试运行、工程验收的步骤及其技术要求。 本标准也适用于低环境温度空气源多联式热泵(空调)机组。 发动机驱动的多联式空调(热泵)机组及水源多联式空调(热泵)机组可参照本标准执行。 本标准适用于采用R22、R410A、R407C制冷剂的上述各类机组(简称:多联式机组)。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 50019采暖通风与空气调节设计规范 JGJ 174-2009多联机空调系统工程技术规程 GB 50243通风与空调工程施工质量验收规范 GB/T 18837多联式空调(热泵)机组 GB 21454多联式空调(热泵)机组能效限定值及能源效率等级 GB/T 1527铜及铜合金拉制管 GB/T 17791空调与制冷用无缝铜管 GB/T 15586 设备及管道保冷设计导则 GB 8175 设备及管道保温设计导则 GB 50303建筑电气工程施工质量验收规程 JGJ 16民用建筑电气设计规范 JGJ 141 通风管道技术规程 GB 50411 建筑节能工程施工质量验收规范 GB 50189 公共建筑节能设计标准 GB 50242 建筑给水排水及采暖工程施工质量验收规范 GB/T 17794柔性泡沫橡塑绝热制品 3术语 GB/T 18837《多联式空调(热泵)机组》、GB 21454《多联式空调(热泵)机组能效限定值及能源效率等级》和GB 50019《采暖通风与空气调节设计规范》确立的以及下列术语和定义适用于本标准。

多联机选型

二、空调系统的选型 1、多联机系统的分类 多联机式空调系统根据其制冷剂配管实际连接形式大体可分为室外直接分支方式和室外总管、室内分支的连接方式两大类。 1.1室内分支形式 采用室内分支形式的多联机式空调系统,其室外机组的所连接的制冷剂配管由一组气管和液管构成(一般称为主配管,对于部分品牌的热回收式系统则由两根气管和一根液管构成)。制冷剂主配管根据室内机组的分布情况,在合适的位置进行再分支,最终与各个室内机组相连接。 1.2室外分支形式 采用室外分支的多联机式空调系统,其室外机组连接复数组制冷剂配管,数量根据实际连接的室内机组的数量和形式来确定。 1.3本系统形式 相对而言,采用室内分支的系统,由于流量调节机构设置在各室内机组中,能较为迅速地对应室内负荷的变化,且可达到较长的配管长度以对应较为大的空调空间;而室外分支的多联机空调系统由于流量控制机构设置在室外机组,为减小管路的输送损耗,一般不宜安装较长的制冷剂配管,多用于三房至四房的家庭场合。本系统选用室内分支形式。 2、室内机的选型 2.1室内机的精确选型的几个修正

变频多联机系统的设计流程如下:首先是系统设计规划,进行空调分区的划分,拟定新风解决方案和控制解决方案。根据设计要求、气候条件、建筑状况、发热设备等进行负荷计算,由负荷计算结果初步确定室内机容量、形式、设计位置。因为在设计时有多个影响因素需要考虑,其中包括温度因素、连接率因素、管长因素等,综合考虑这些因素的修正系数可提高选型的准确性,同负荷计算更匹配,设计更完美,能有效减少设备的浪费。 2.1.1温度修正 能力修正的第一个要点是温度的修正。不同的温度条件下,机组的能力也不尽相同。可以根据具体设计条件,查询不同温度条件下机组的容量表来获得这一步的修正。 2.1.2连接率修正 室内机容量总和超过室外机所提供的实际能力时,室外机的能力不再同室内机容量总和呈线性变化,室内机的容量会有所衰减,连接率较大时必须考虑这个因素的影响。 2.1.3管长修正 变频多联机系统管长较长时会产生衰减,一般只需对制冷情况进行管长修正。首先配管的长度影响流体阻力,管长过长导致阻力加大。其次配管的长度影响系统性能,吸气管阻力增加,压缩机吸气压力降低,制冷能力下降。吸气压力下降、过热增加,系统EER相应下降。管长超过90m时可通过增加管径的方法降低管长衰减。 2.1.4室内机的实际能力 当所有室内机全开时,其实际能力是根据室外机能力按比例分配的,此时室内机能力按下式得出:室内机的实际能力=室内机总容量值∕单台室内机容量值

组合式空气处理机样本20121105

组合式空气处理机组 机组介绍 美意MAH组合式空调箱积累在公司多年的生产制造、工程应用和对市场需求的基础之上。我们最新一代的MAH组合式空调箱,采用先进的模块化箱体结构,高强度防冷桥铝合金型材框架,聚氨酯发泡隔热面板。该产品设计生产参照欧洲EN1886测试标准,机组具有高强度,无冷桥,低漏风率等特 点,产品性能达到国际先进水平。 组合式空气处理机组以冷(热)水或蒸汽作为冷、热源,以功能段为组合单元,由风 机导流室内空气,从而完成空气的输送、混合、加热、冷却、去湿、加湿、消声和空气洁 净等处理功能,以达到调节室内空气质量的目的。美意MAH组合式空调箱有29个规格(风 量从2000m3/h~120000m3/h),每种标准规格机型都可以针对客户需求,配置不同的功能 段。美意组合式空调箱机组具有功能齐全,选型组合灵活方便的特点。可以广泛应用于电 子、仪表、机械、交通、能源等工业领域的工艺性空调系统;也可用于高层建筑、宾馆、 酒店、影剧院、商场、体育馆等大型公共建筑的舒适性空调系统。 机组型号命名 MAH 06 08 H 50 L 1 2 3 4 5 6 第1位:组合式空调机组(Air Handling Unit) 第2位:高度模数 第3位:宽度模数 第4位: 机组布置形式H: 卧式,V:立式 第5位:面板厚度 30:30mm,50:50mm 第6位:机组方向 L-左向机组,R-右向机组 机组方向判断

机组左右方向判断: 顺气流面对进风端,接管在左为左向机组,接管在右为右向机组 机组特点 高强度,高隔热 铝型材外框铝型材外框 PVC PVC 铝型材内框铝型材内框 机组箱体由采用铝合金型材框架、面板及密封条组成,面板和框架为扣押连接方式。高强度铝合金型材框架由内框和外框构成,中间采用PVC隔热条挤压连接,型材表面阳极氧化处理,耐腐蚀。型材中空充注聚氨酯隔热材料。 内面板 聚氨酯隔热材料 外面板 箱体面为双层结构,外板为冷轧钢板经磷化、静电喷涂处理,内板为镀锌钢板,内、外面板间用优质绝热材料隔开,中间充注发泡聚氨脂内面板可根据产品用途不同采用彩钢板、不锈钢板或其他材料。 ■高强度的铝合金型材框架结构,使机组具有更高承压能力,保证长期运行不变形 ■链接内框和外框的PVC隔热条,型材中空充注聚氨酯隔热材料,杜绝冷桥发生 ■面板和框架压扣连接,机组密封效果好,低漏风率 ■无螺钉安装,现场可快速安装和拆卸,解决了组合空调因螺钉生锈而无法拆卸面板,大大简化了组合空调机组的现场安装和维护管理 ■阳极氧化处理的型材框架,优质的彩钢,使机组具有高效的防腐性能,并在彩钢面覆膜,

中央空调系统水泵选型、扬程计算及注意事项

水泵的分类与适用特性 基础知识概念 1.水泵的特性曲线:单台泵、多台同型号泵并联

2.管路特性曲线 3.水泵工作点 1)三台泵并联时的工作点 2)并联工作时每台泵的工作点 3)一台泵单独工作时的工作点 知识点:水泵的特性曲线与管路的特性曲线的相交点,就是水泵的工作点。因为水泵是与管路相联的,所以它必然要受管路的制约。如:泵每小时可供水二百立方米,但当它连接到一小口径的管路时,该泵的供水量就受此水口径管的制约,供水量就要改变。 流量G 1.冷冻泵 1.1一次泵系统 式中:Q:冷水机组冷量(kw) C:水比热,取为1.163(kw*h/T℃) △t:蒸发器进出水温差℃,一般舒适性空调△t=5℃

(7℃/12℃);大温差△t=7、8、10℃;热水△t=60℃/50℃; 若用公制单位则上式为 式中Q:Kcal/h C:1kcal/kg℃△t:℃ 台数:与冷水机组对应一对一设置,一般设一台备用泵 1.2二次泵系统 1.2.1第一次泵:按上式 1.2.2第二次泵:按所负责空调区域冷负荷综合最大值,计算出的流量 台数:应按系统分区一般不少于2台,设置备用泵。 2.2冷却系统流量:或按冷水机组冷凝器循环水量。 扬程H 1冷冻泵 1.1一次泵系统H=1.1~1.2[蒸发器水阻+最不利回路末端空调设备水阻+∑(RL+Z)](注:RL-沿程阻力;Z-局部阻力) 式中:R-单位长度摩阻,L-管长, 估算:∑RL一般取R为3~8m/100m 按此选管径 管路总阻力=1.6~1.8[(5/100)×回路管长] (注:100为沿程阻力平均值)1.2二次泵系统 1.2.1第一次泵扬程负责机房回路,扬程为一次管路管件阻力+蒸发器水阻力。一般约18~20m,实际运行23~25m。

多联机空调施工方案

[键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 2017

好空调,X X 造!

目录 一、编制依据____________________________________________________________________ 2 二、工程概况______________________________________________________________________ 2 三、工程范围______________________________________________________________________ 3 四、施工准备条件 ________________________________________________________________ 4 五、主要施工方法及技术要求 _______________________________________________ 5(一)、总程序 __________________________________________________________________________ 6(二)、安装要点及技术要求__________________________________________________________ 6十二、其他各项措施 ___________________________________________________________ 18 1、雨季施工措施 _____________________________________________________________________ 18 2、现场文明施工管理措施 __________________________________________________________ 18 3、成品及设备部件的保护措施_____________________________________________________ 18 4、现场材料供应和管理措施 _______________________________________________________ 19 5、降低成本技术措施________________________________________________________________ 19附表:施工工具一览表________________________________________________ 21

空气处理机组选择计算说明

空气处理机组选择计算 1 电算表格内容、适用范围和使用说明 1.1 空气状态点计算表 已知某空气状态点的任意2个常用参数,求其他参数: 1、已知干、湿球温度; 2、已知干球温度、相对湿度; 3、已知干球温度、含湿量; 4、已知干球温度、焓值; 5、已知含湿量、焓值。 1.2 一次回风空气处理机组的选择计算表 基本已知数据:冬夏季室内热湿负荷、人员所需新风量、冬夏季新风状态、冬季加湿方式(仅限于“等焓”或“等温”加湿) 注:冬季当室内热湿负荷低于设计工况时,空气处理机组则需要较大的加热和加湿量,因此冬季工况表中填入的热湿负荷值应适当考虑开机时室内较低负荷的数值。 1.2.1夏季工况计算表 1、表1:已知室内温湿度,求空气处理机组的送风量、送风参数、冷却量、冷凝水量等。适用于 允许采用最大送风温差的一般典型空气处理机组的选型计算。见图1.2.1-1处理过程1(实线)。 2、表2:已知室内温度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、冷凝水 量和室内相对湿度等。可用于要求较小送风温差、但又不采用二次加热或二次回风的空调系统 能否满足要求。见图1.2.1-1(例如下送风舒适性空调),可根据计算结果校核室内相对湿度 2 处理过程2(虚线)。 100% 图1.2.1-1 采用最大送风温差的一次回风系统夏季处理过程 3、表3:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、再热 量、冷凝水量等。适用于要求较小的送风温差,不再热不能满足室内湿度要求的情况,以及热湿比较小,采用再热才能将送风状态点处理至热湿比线上的情况等。见图1.2.1-2

100% 图1.2.1-2 带二次加热的夏季一次回风系统处理过程 4、表4:已知室内温度、空气处理机组送风量,求室内相对湿度、机组送风参数、冷却量、冷凝 水量等。适用于已按表1确定空气处理机组风量,但无室内湿度控制措施(二次加热等)的一般舒适性空调系统,在室内热湿负荷减小(部分负荷)时,进行室内湿度等校核计算。此外也适用于需全年送冷内区夏季空气处理机组送风参数的求解计算(对于需全年送冷的内区,冬夏负荷相差不大,但冬季室内设定温度较低,而送风温度不能过低,即冬季送风温差小于夏季送风温差,因此冬季送风量大于夏季,应按冬季工况确定空气处理机组送风量),见图1.2.1-1处理过程(虚线)。 1.2..2 冬季工况计算表 1、表1:已知室内温湿度、空气处理机组送风量,求送风参数、空气处理机组加热量、加湿量等。 适用于已经按夏季工况确定空气处理机组风量(对应上述1.2.1表1、2、3的计算结果),计算冬季加热量和加湿量的典型情况。见图1.2.2-1实线(等焓加湿)和虚线(等温加湿)2种处理过程。 100% W 图1.2.2-1一次回风系统冬季等温或等焓加湿处理过程(送热风) 2、表2:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、空气处理机组 加热量、加湿量等。一般用于需全年送冷的内区,且有最大送风温差的限制,按冬季工况选择

多联机与中央空调比较

多联机中央空调 多联机中央空调是户用中央空调的一个类型,俗称”一拖多”,指的是一台室外机通过配管连接两台或两台以上室内机,室外侧采用风冷换热形式、室内侧采用直接蒸发换热形式的一次制冷剂空调系统。多联机系统目前在中小型建筑和部分公共建筑中得到日益广泛的应用。 目录 产品特点 多联机空调与集中式中央空调方案设计比较 产品特点 多联机空调与集中式中央空调方案设计比较 展开 编辑本段产品特点 与传统的中央空凋系统相比,多联机中央空调具有以下特点: · 节约能源、运行费用低。 · 节省占用空问。 · 控制先进,运行可靠,维修方便。 · 机组适应性好,制冷制热温度范围宽。 · 设计自由度高,安装和计费方便。 多联机家用中央空调自面市以来受到了广大消费者的青睐。 多联机空调与传统空调相比,具有显著的优点:运用全新理念,集一拖多技术、智能控制技术、多重健康技术、节能技术和网络控制技术等多种高新技术于一身,满足了消费者对舒适性、方便性等方面的要求。 多联机空调与多台家用空调相比投资较少,只用一个室外机,安装方便美观,控制灵活方便。它可实现各室内机的集中管理,采用网络控制。可单独启动一台室内机运行,也可多台室内机同时启动,使得控制更加灵活和节能。 多联机空调占用空间少。仅一台室外机可放置于楼顶,其结构紧凑、美观、节省空间。 长配管、高落差。多联机空调可实现超长配管125米安装,室内机落差可达50米,两个室内机之间的落差可达到30米,因此多联机空调安装随意、方便。

多联机空调采用的室内机可选择各种规格,款式可自由搭配。它与一般中央空调相比,避免了一般中央空调一开俱开,且耗能大的问题,因此它更加节能。此外,自动化控制避免了一般中央空调需要专用的机房和专人看守的问题。 多联机中央空调的另一个最大的特点是智能网络中央空调,它可以一台室外机带动多台室内机,并且可以通过它的网络终端接口与计算机的网络相连,由计算机实行对空调运行的远程控制,满足了现代信息社会对网络家电的追求。 编辑本段多联机空调与集中式中央空调方案设计比较 原理比较 1.1 螺杆机组中央空调系统 螺杆机组的核心是采用螺杆式压缩机。该压缩机是一种回转式的容积式气体压缩机,能在低蒸发温度或高压缩比工况下可单级压缩,通过滑阀装置,使制冷量可在10~100%范围内进行调节。螺杆机组COP 值较高,但通过水载体输送到客户末端,有一定的冷量损失,而且只能实现单冷,制热还需另外配置锅炉等加热装置。 1.2 风冷热泵集中中央空调系统 风冷热泵机组的输送介质通常为水溶液。它通过室外主机产生空调冷/热水,由管路系统输送至室内的各末端装置;在末端装置处冷/热水与室内空气进行热量交换,产生出冷/热风,从而消除房间冷/热负荷。它是一种集中产生冷/热量,但分散处理各房间负荷的空调系统型式。 该系统的室内末端装置通常为风机盘管。风机盘管一般均可以调节其风机转速(或通过旁通阀调节经过盘管的水量),从而调节送入室内的冷/热量,因此该系统可以对每个空调房间进行单独调节,满足各个房间不同的空调需求,同时其节能性也较好。但冷热水输配系统所占有一定安装空间。 1.3 多联式空调机组 其工作原理是:由控制系统采集室内舒适性参数、室外环境参数和表征制冷系统运行状况的状态参数,根据系统运行优化准则和人体舒适性准则,通过变频等手段调节压缩机输气量,并控制空调系统的风扇、膨胀阀等一切可控部件,保证室内环境的舒适性,并使空调系统稳定工作在最佳工作状态。 多联机空调系统是在空调系统中,通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,适时地满足室内冷热负荷要求的高效率冷剂空调系统。多联机空调系统需采用变频压缩机、多极压缩机、卸载压缩机或多台压缩机组合来实现压缩机容量控制;在制冷系统中需设置电子膨

组合式空调机组知识及设计选型

组合式空调机组知识、设计选用、ZK型 目录 概述 第一章换热器(表冷器)如何设计 第二章风机和风机电机的设计选型 第三章加湿器的知识和设计选型 第四章风阀及电动执行器的设计选型 第五章过滤器的知识和设计选型 第六章消声器知识和设计选型 第七章减震器的知识和设计选型 第八章转轮热回收装置的知识和设计选型 第九章框架防冷桥原理介绍 第十章挡水板的设计选型方法和工作原理

概述 组合式空调机组的型号很多,不同公司的产品也不一样,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名(QMZ-J20.011-2007) 组合式空调机组的基本设计工况: 混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 第一章换热器设计计算方法

换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U 型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器 M*N*L ,M 表示换热器厚度方向铜管排数,N 表示换热器高度方向的铜管数,L 表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。 换热器的系列代号方法如下: 完整的换热器的表示方法如下: MK .HRQ3Z 换热器M ×N ×L (换热器系列部件图样代号及名称) MK .HRQ3Z 换热器8×24×2015 (换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数 为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm (L=2015)的左式换热器。 具体名称命名方式可参阅换热器命名 。 换热器的设计: 一、 基本参数的设计: M 一般尽量按客户要求选择,在客户没有要求的情况下,我们根据N 、L 的值,加上我们的经验公式(见后)进行计算。 N 、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二 、翅片和铜管的选择 目前我们公司有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管配套,开窗片、平片与φ9.52铜管配套。风机盘管主要采用φ9.52铜管套平片,空调箱按风量区 换热器基本代号,换热器汉语拼音缩写,用HRQ表示 空调末端产品基本代号,美的空调汉语拼音缩写,用MK表示MK ·HRQ 部件分隔符,用“·”表示 □换热管代号,φ16换热管缺省不表示,φ9.52用U表示 □换热器总水管代号,用1、2、3、4表示,分别代表通径 为DN40、DN50、DN65、DN80的总水管 □ 左、右式换热器区别代号,左式用Z表示、右式用Y表示。

空调机组技术要求模板

空调机组技术要求 一、招标内容 11台组合式空调机组, 编号: K-1—K-11, 风量: 除K-4为60000m3/h外, 其余均为100000m3/h。 二、招标范围: 11台组合式空调机组的设计、制造、设备供货、现场安装、调试及验收工作。 三、工程设计概况: 1、空调服务区域包括: 制丝车间、原烟堆放间、储梗柜、储叶柜、储梗 丝柜、掺兑加香间、储丝房、卷接包车间。 2、空调冷热源由新厂动力中心提供, 其中冷冻水供回水温度为7℃ /12℃。空调加热和加湿采用0.2MPa饱和蒸汽。 3、室内空调设计参数为: 四、技术标准与规范: 投标人所提供的设备和系统应依据如下标准和规范进行设计、制造、安装和检验:

·《组合式空调机组》( GB/T 14294-1993) ·《卷烟厂空调机组》( YC24-95) ·《卷烟厂设计规范》( YC0009- ) ·《采暖通风与空气调节设计规范》( GB50019- ) ·《空气处理机组安全要求》( GB10891-89) ·《组合式空气处理机组噪音限值》( GB13326-91) ·《通风与空调工程施工质量验收规范》( GB50243- ) 以上标准和规范如与投标人所执行的标准不一致时, 应执行较高标准。 五、组合式空调机组技术要求: 1、总体要求 1.1本次招标所述的11台组合空气处理机组性能参数要求: 备注: 1、空调机组送、回风机均带为变频调速风机。 2、空调机组的表冷器在满足表中供冷量的基础上统一按排数进

行选型。 ***1.2 中标人须仔细阅读设计图纸, 保证所有空调机组外形尺寸不能大于设计尺寸。 1.2 投标人必须严格遵照国家和烟草行业现行的设计、制造标准和规范要求, 采用国内同行业中近年内的先进制造工艺、新材料及新技术, 以保证所提供的设备质量和性能达到国内领先水平。 1.3 投标人应充分考虑到烟草行业存在的烟碱腐蚀特性, 所提供的空调机组 无论是箱体结构、还是内部部件( 风机、过滤器、换热盘管、挡风板、加湿器、风阀等) 以及零配件均应选择防腐材料或表面进行防腐工艺处理, 以保证空调设备有足够的使用寿命( 十五年以上) 。 1.4 空调机组的各部件质量必须具备很高的可靠性, 尽量减少日常频繁的维 护保养工作, 以保证整机能稳定连续地工作, 适应卷烟厂生产的不间断性( 部分月份可能24小时连续工作) 。 1.5 空调机组在结构设计和部件选型上应充分考虑节能运行效果, 其中风机 电机应能适应变频调节。 1.6 中标人必须按本技术规范的要求完成设备的设计、制造、工厂检验、包 装运输、现场组装、调试及试运行、最终验收、技术培训、售后服务等工作, 并按上述顺序向买方移交所需的资料。 1.7 空调机组组装之前以及试运行后, 中标人应根据时间段完成每台空调机 组的换热盘管( 表冷、加热) 现场打压试验、风量、风压、噪声及漏风量等一系列证明设备性能的测试, 测试结果显示的各项指标均应符合或优于本技术规范、国家相应标准和规范的要求, 并附全部测试报告及出厂检验合格证。

空调机组选型问

查样本选型号时,发现制冷量有两个情况,一个新风工况,一个回风工况,什么意思啊?我怎么选呢,是新风回风混合的啊? 1.楼主是选空调箱吧.用回风工况. 2.为什么用回风工况,是选组合式机组,新风,回风在机组内混合后并冷却到露点温度。 3.以下是引用zym2000_0在2006-01-09 20:19:0 4.0发表的内容:为什么用回风工况, 4.是选组合式机组,新风,回风在机组内混合后并冷却到露点温度。 对头,选回风工况,如果是用来做全新风机组,就选新风工况. 5.一般厂家的回风选型状态参数为干/湿球温度=27/19.5,在样本的后面会提供一个制冷/ 热量变化表,在那里你可以根据自己的状态参数进行校核。 6.如果厂家的样本中没有提供混合工况参数,你需要与厂家联系,并提供新风比。 选回风和新风工况都不准确。 7.那按回风工况不是更保险了吗?制冷量可以更大了,保险起见了,而且如果非要按送回 风混合的状态要厂家配合了 8.回风工况就是空调工况,即新风回风混合后工况,这里的工况是指盘管制冷/制热前的进 风工况 9.回风工况,指无新风:新风工况,指无回风:新/回风混合:什么工况也不是:厂家样本中 的参数,是在一定工况下测试的数据.实际选型时大多都不会一样,只是接近. 10.举个例子:我有一个大餐厅经负荷计算须要26Kw的空调制冷负荷。用户要求做直流式 全新风。查了样本在2000立方米/小时的风量下,回风工况,标出的冷量是13Kw。新风工况,标出的冷量是28Kw。请问这时我是按回风工况选二台2000风量的空气处理机组还是按新风工况选一台2000风量的空气处理机组。按新风工况选一台2000风量的空气处理机组能否满足负荷要求? 11.25楼的这个问题,其实不应该选择回风工况,因为室外还是有很多的新风补进来,所以 一般应该按照组合式空调箱来选,确定一个适当的新风比就可知道在,26KW的能量下需要多大的风量,这个新风的量选30%为合适,求出的风量才是要选定的机型,单又全回风的话可能风量会偏大,全新风的话风量会偏小,确定新回风比才能确定合适的机型12.回风工况就是空调工况,即新风回风混合后工况,这里的工况是指盘管制冷/制热前的进 风工况 13.只要知道风量、新回风比、新风状态点、回风状态点,就可以确定盘管的实际工况了。没有新回风比就可以按照回风工况设计;只有新风就按照新风工况设计! 14.选择一台空调箱,必须有以下几个参数: 1:回风的温/湿度 2:出风的温湿度 3:机组总风量 4:机组的余压 7:是否加湿或除湿 8:是否需要电加热 9:机组的冷量(显热和潜热) 10.是否进行空气过滤 15 . 我有个看法不知道对不对: 有些厂家设备的进风工况(回风)是干球26度,湿球20度,新风工况:进风干34度,湿28度(反正总会有对应的两个状态点),根据这两个状态点可查出两个焓值。 新风和回风按一定的比例混合后再进空调处理机组,那混合点的空气焓值也可求出来。

变频多联机

变频多联机系统是“变频一拖多可变冷媒流量中央空调系统”的简称,是由一台室外机和若干台室内机组成的一个冷媒循环系统。是变制冷剂流量(Varied Refrigerant Volume)空调系统的一种形式,是一种制冷剂式空调系统,它以制冷剂为输送介质,属空气—空气热泵系统。 变频多联机简介 该系统由制冷剂管路连接的室外机和室内机组成,室外机由室外侧换热器、压缩机和其它制冷附件组成;室内机由风机和直接蒸发器等组成。一台室外机通过管路能够向若干个室内机输送制冷剂液体,(一般由一台室外机和3-16台室内机组成)通过控制压缩机的制冷剂循环量和进入室内各个换热器的制冷剂流量,可以适时地满足室内冷热负荷要求。它是一种新型变流量中央空调技术(VRV技术),克服了传统的水系统中央空调的许多弊端,具有明显的先进性及独到之处,所以一经问世,立即得到了世界空调界的广泛认可。 过二十多年的应用及发展,该项技术日益完善与成熟,已成为当今世界上最先进的舒适性中央空调形式之一。海信日立、大金、三菱、海尔、美的等公司均有此产品。 变频多联机系统组成 (1)室内机是末端部分,它是一个带蒸发器和循环风机的机组,与目前我们常见到的分体空调的室内机原理上是完全相同的。从形式上看,为了满足各种建筑的要求,它做成了多种形式,如立式明装、立式暗装卧式明装、卧式暗装、吸顶式、壁挂式、吊顶嵌入式等等。 (2)外机是关键部分,从构造上来看,它主要是由风冷冷凝器和压缩机组成。当系统处于低负荷时,通过变频控制器控制压缩机转速,使系统内冷媒的循环流量得以改变,从而对制冷量进行自动控制以符合使用要求。对容量较小的机组,通常只设一台变速压缩机;而对于容量较大的机组,则一般采用一台变速压缩机与一台或多台定速压缩机联合工作的方式。 (3)冷媒管采用铜管,分气管和液管,通过灵活的布置使室外机与室内机相连接。为了施工方便及保证系统的正常作用,管接头制成了各种形式。 (4)控制系统:无线遥控器、有线遥控器、集中控制器、七日定时器、网络管理系统。 变频多联机的适用范围 目前多联机系统是应用于舒适性空调领域,特别适合于专业管理能力弱,如学校、医院;房间使用率低,如度假村、别墅、高档公寓;空调房

相关主题