搜档网
当前位置:搜档网 › 复合材料的成型工艺

复合材料的成型工艺

复合材料的成型工艺
复合材料的成型工艺

复合材料的成型工艺

图1:热固性复合材料最基本的制备方法是手糊,通常包括将干层或半固化片层用手铺设到

模具上,

形成一个积层。图中展示的是自由宇航公司的技术员(佛罗里达州墨尔本)正在通过手糊工

加工一个碳/环氧预浸料,将用于制造通用航空飞机部件。资料来源:自由宇航公司

在复合材料的加工成型过程中会使用一系列模具,用来给未成形的树脂及其纤维增强材料提供一个成型的平台。手糊(hand layup)成型是热固性复合材料最基本的制备方法,即通过人工将干层或半固化片层铺设到模具上,形成一个积层。铺层方式分为两种:一种称为干法铺层,是先铺层后将树脂浸润(例如,通过树脂渗透方式)到干铺层上的方式,另一种方式是湿法铺层,即先浸润树脂后铺层的顺序。

现在普遍使用的固化方式可以分为以下几种:最基本的是室温固化。不过,如果提高固化温度的话,固化进程也会相应加快。比如通过烤箱固化,或使用真空袋(vacuum bag)通过高压釜固化。如果采用高压釜固化的话,真空袋内通常会包含透气膜,被放置在经手糊的半成型制品上,再连接到高压釜上,等最终固化完成后再将真空袋撤去。在固化过程中,真空袋的作用是将产品密封在模具和真空袋之间,通过抽真空对产品均匀加压,将产品中汇总的气体排出,从而使产品更加密实、力学性能更好。

图2:热压釜独有的高温和高压条件使其成为完成热固性树脂零部件的固化的重要工具。控制软件的改进则能够帮助经营者提高35-40%的生产量。同时,一些新的树脂配方正在开发当中,将通过低压固化处理。图中是Helicomb国际公司(俄克拉荷马州塔尔萨)的一名操作人员正在使用高压釜进行固化处理。来源:Helicomb国际公司

许多高性能热固性零件都需要在高热高压的条件下完成固化。但是高压釜(Autoclave s)的设备成本和操作成本都较昂贵。采购高压釜设备的制造商通常会一次性固化一定数量的部件。对于高压釜的温度,压力,真空和惰性气体(inert atmosphere)等一系列参数,计算机系统能帮助实现远程甚至无人监控和检测,并最大限度地提高该技术的利用效率。

在加温固化的时候,温度首先由局部升起,再逐渐达到整体均匀的效果,然后按照设定值保持一定的时间直至初步固化完成。但是,不能忽视的一步是冷却,温度必须缓缓下降至室温,这是为了避免由于不均匀的热胀冷缩而导致部件的失真或变形。当固化完成之后,部件要进行脱模处理,另外还有一些部件还要经过二级独立后固化(postcure)处理,在此期间的温度通常比初始固化的温度高,目的是为了提高树脂材料的交联密度(crosslink density),从而获得更好的材料性能。

电子束(Electron-beam)固化是一种适用于薄层板的有效的固化技术。电子束固化是通过电子流对手糊成型的复合材料产生电离辐射,在辐射敏感型树脂中产生聚合和交联反应(crosslinking reaction)。 X射线和微波固化技术的工作方式与此类似。此外,还有紫外线(UV)固化,该程序是利用紫外线辐射来激活热固性树脂中的光引发剂(photoinitia tor),从而引发交联反应。紫外线固化需要光渗透树脂和增强材料。紫外线(UV)或电子束(E-beam)是辐射固化的一种先进手段,能够引发具有化学活性的液体配方,在基体表面实现快速反应的固化过程,这正是区别于传统热固化技术的最大特点。紫外线与电子束虽然

都属于辐射固化,但两者不尽相同,紫外线是一种电磁辐射,而电子束却是经加速的高能电子流。

目前正在兴起的一种技术是对固化本身的监测。介电固化监测器(Dielectric cure m onitors)是通过测量树脂中离子的传导性能(小,极化,相对较少杂质)来监测材料的固化程度。离子通常倾向于向电极相反的一极移动,但移动的速度受限于树脂粘度——即粘度越高,速度越慢。正如在固化过程中,随着交联反应的进行,树脂粘度也随之增加。其他方法还包括树脂偶极监测(dipole monitoring),由交联反应产生的微伏监测,用以对聚合物在固化过程中的放热反应(exothermic reaction)的监测;此外,还有一种方式是通过光纤技术(fiber-optic technology)进行红外线监测(infrared monitoring)。

另外一个值得注意的技术是高性能复合材料部件的低压固化(OOA,out-of-autoclave)。热压釜系统昂贵的成本让不少材料制造商望而却步,特别在航空航天领域对低压固化(OOA)的呼声越来越高,因为低压固化只需要烤箱,甚至在室温下就能完成热固化,这就意味着较少的资本投入,和与热压釜相比而言较低的运行成本,尤其是对制造大规模的部件而言。先进复合材料集团(ACG,位于英国希诺)推出了世上第一款树脂低压固化设备,是为航空应用的环氧树脂而开发设计的。低压固化的环氧树脂和粘合剂将在不久的未来成为市场上炙手可热的产品。

1. 开模工艺技术

开模成型技术(open molding)是制造玻璃纤维复合材料产品被最普遍采用的低成本成型技术。该技术通常用于船体和甲板、房车零部件、卡车驾驶室和挡泥板、温泉、浴缸、淋浴间、和其他规模较大并且形状不复杂的部件的制造。手糊(hand layup)和一些半机械化技术,如喷射(sprayup)都属于开模成型技术。

通常,在一个开放的模具中进行喷射成型时,首先要对模具进行脱模处理。喷涂胶衣通常在模具脱膜处理后再进行。待胶衣固化后,才能在模具上进行喷射。在此过程中,连续玻璃纤维通过切割器按照规定的长度切成较短的纤维纱,与喷枪中喷出的催化树脂(粘度在5 00到1000 cps之间)混合成短纤维树脂流一起喷入模具中。为了减少有毒性有机化合物(V OCs)的挥发量,各设备制造商近年开发了许多新的技术,例如,采用低压喷射技术或非雾化喷射技术(non-atomizing spray),即采用液态喷头在低于喷射产生雾化的压力的条件下使喷头喷出的胶衣和树脂成液态流的扇面,也就是非雾化状态。另一种方式是滚筒浸渍技术(roller impregnator),是将树脂泵入一个类似于油漆滚筒的设备中,待充分混合后再由喷枪喷出。

喷射成形的最后一步是先用手工和滚筒辊压积层直至层间紧凑,之后,再在积层之间加入木材,泡沫或其他夹芯材料进行固化,待冷却后,将成形的产品从可重复使用的模具上移出。

在开模成形过程中,手糊和喷射方法都是被最普遍采用的成形技术,用以达到降低劳力的目的。例如,织物可能首先被置于压力较高的位置,然后用切割器切成短切纤维,再用喷枪将短切纤维和树脂混合喷到积层上成形。随后,在初步成形的积层中加入软木或泡沫夹芯材料。典型的喷射成形制品的玻璃纤维量在百分之十五左右,而手糊成形的约为百分之二十五。

喷射成形技术虽然曾经是最普遍使用的生产方法,近年来一直走下坡路,渐渐失宠于各大制造商。主要是由于美国联邦以及欧盟纷纷出台法规规定对工人接触的限制,以及限制挥发性有机化合物(VOCs)和有害空气污染物(HAPS)在喷射作业环境中的排放量等。苯乙烯(Styrene),这种最常见的热固性树脂稀释剂,无论在挥发性有机化合物,还是有害空气污染物的名单上都“榜上有名”。考虑到工人接触产生的身体伤害,以及控制喷射过程中排放的苯乙烯的困难程度和昂贵的成本,许多制造商在渐渐向闭模工艺靠拢,例如采用树脂渗透工艺加工能将苯乙烯包裹起来,更好的处理苯乙烯挥发的问题。

虽然开模成形工艺正在逐渐被效率更高,和技术更精确的工艺逐渐取代,但目前仍广泛应用于如复合材料零件的修复等领域。

树脂渗透工艺:

随着行业发展对生产速度提出更高的需求,单依靠传统的手糊成型工艺已经难以满足日益增长的市场需求,因此,加工工艺的自动化是顺应这一潮流的必然趋势。

最常见的自动化成型工艺是树脂传递模塑工艺(RTM-Resin Transfer Molding),有时也被称为液体成型工艺(Liquid Molding)。树脂传递模塑工艺是一种十分简单的成型工艺:其原理是首先在金属或复合材料制成的闭合模具中铺放干增强材料预成型体(preform),然后将树脂和催化剂按照一定比例计量并充分混合,再采用注射设备通过注射口(injecti on ports)利用压力注入到模具中,使树脂按照预先设计的路径浸润到增强材料上的过程。树脂传递模塑工艺要求极低粘度的树脂,特别是当预成型体较厚时,较好的树脂的流动性能够确保更及时和更充分的浸润效果。如有需要,模具和树脂可以进行加热,但是RTM成型工艺的固化无需使用热压釜。但是,一部分应用于高温的制品通常在脱模后还要进行后固化(p ostcure)。大多数RTM的应用程序都采用双组分环氧树脂配方(two-part epoxy formula tion):双马来酰亚胺(Bismaleimide resin)和聚酰亚胺树脂(polyimide resin)。组分的配方过程不会提前太早,通常在注射前进行。

轻型树脂传递模塑工艺(Light RTM)是近年来发展较快的低成本成型工艺,是树脂传递模塑工艺(RTM)的变体工艺。轻型树脂传递模塑工艺不仅具备RTM工艺的所有特点,还降低了成型工艺对一系列指标的要求,例如,注射压力,真空耦合(coupled with vacuum),和模具的造价和刚性指标。

树脂传递模塑工艺(RTM)具有许多显著的优点。一般来说,在树脂传递模塑工艺过程中所使用的干预成型体和树脂材料的价格都比预浸料便宜,而且还可以在室温下存放。利用这种工艺可以生产较厚的净成形零件,同时免去许多后续加工程序。该工艺还能帮助生产尺寸精确,表面工艺精湛的复杂零件。树脂传递模塑工艺还有一个特点是,能够允许闭模前在预成型体中放入芯模填充材料,避免预成型体在合模过程中被挤压。芯模在整个预成型体中所占的比重较低,大约在0-2%之间。简而言之,树脂传递模塑工艺(RTM)可以作为一种高效可重复的自动化制造工艺大幅降低加工成型时间,将传统手糊成型的几天时间缩短为几小时,甚至几分钟。

不同于树脂传递模塑工艺(RTM)预先将树脂和催化剂混合注入模具的顺序,反应注射成型工艺(RIM)的原理是将快速固化树脂和催化剂分别注入模具中。混合和化学反应过程都在模具中进行,而非在混合头(dispensing head)中。许多汽车制造商利用结构反应注射成型工艺(structural RIM -SRIM)和快速预成型方法相结合的制备方式来制造汽车结构件,生产的产品不需要再进行表面优质感处理(Class A finish)。可编程机器人已发展成为一种常见的喷射手段,它可以将短切玻璃纤维和粘接剂的混合物喷到真空预成型体模具上。机器人喷射的最大特点是可控制纤维的方向。另外,还有一个与之相关的技术——干纤维铺设(dry fiber placement)技术,结合了编织预成型体和树脂传递模塑工艺。该技术制备的产品的纤维含量高达百分之六十八,由于全程采取自动化控制工艺,确保低气泡含量和稳定的复制成形效果,所制备的产品无需进行修剪。

真空辅助树脂传递模塑成型工艺(VARTM)是近年来发展速度最快的新成型技术。真空辅助树脂传递模塑成型工艺(VARTM)和标准树脂传递模塑成型工艺(RTM)的主要区别是,VARTM是一种利用真空吸注树脂进入模具的方法,而RTM是利用压力将混合体泵入模具的方式。真空辅助树脂传递模塑成型工艺(VARTM)不需要高温或高压。出于这个原因,VARTM 工艺不仅可以采用成本较低的工具,还能够一次性生产复杂的大型零部件。

在VARTM成型工艺过程中,纤维增强材料被放置在一个单面的模具中,上面覆盖着一层坚硬或有弹性的真空密封膜。通常树脂是通过设计好的注射口利用真空吸注原理进入模具,然后按照预先设定的路径有计划的渗透到增强材料上,大大简化了纤维的浸润处理(wetou t)。利用该工艺制备的产品的纤维含量高达百分之七十。目前该技术主要应用于海洋,地面交通和基础设施等领域。

树脂膜渗透(RFI)工艺是一种混合成型工艺,是将干预成型体放置在模具中,覆盖着下面的一层高粘度(高分子量)树脂薄膜层,或者当铺层较厚时,预成型体与树脂呈交错夹层,再通过加热模具和抽真空使模内的高分子量树脂融化,均匀而充分的浸润预成型体的过程。该成型工艺的一大特点是树脂渗透的流程短,而且树脂分布均匀,并且可以采用高分子量的树脂。

图3:这款喷气涡扇发动机机匣是北部海岸复合材料公司(North Coast Composites,位于美国俄亥俄州克里夫兰市)为喷气发动机原始设备制造商威廉姆斯国际(Williams Intern ational)制造的。该机匣是一款由三轴编织机制备的碳纤维预制单件,采用树脂传递模塑(RTM)成型工艺。来源:Chris Red

图4:这款自动纤维铺放(AFP)机是由英格索尔机床(Ingersoll Machine Tools,伊利诺伊州罗克福德)开发,古德里奇航空结构公司(Goodrich Aerostructures,加利福尼亚州丘拉维斯塔)使用这款设备生产用于新型GEnx飞机发动机的内部固定结构,GEnx飞机发动机将用于波音787客机。该设备将取代传统手动密集手糊工艺。来源:古德里奇航空结构公司

大批量成型工艺

模压成型(Compression molding)是一种大批量的热固性塑料成型工艺,所采用的金属对模(metal dies)经久耐用,但是造价较高。对于生产数量超过一万件,甚至在生产多达二十万件片状模塑料(SMC)时,模压成型工艺无疑是一个合适的选择。片状模塑料(SM C)是一种由复合材料制成的薄片材料,结构类似三明治,由树脂糊厚层夹短切玻璃纤维组成。片状模塑料的制备原理是,先将经计量并混合好的树脂糊输送到承载薄膜上,再经传动装置移向短切玻璃纤维,使其均匀的沉降到树脂糊上,然后再和涂有树脂糊的第二层承载薄膜相叠加。最后通过辊压作用使树脂完全浸润到玻璃纤维上,同时赶走多余的气泡。该树脂糊最初的状态类似糖蜜糊,粘度在20,000和40,000 cps之间;大致经过三至五天的固化,其粘度会增加到250万cps,此时的片状模塑料变得跟皮革的感觉很相似,非常利于加工处理。

片状模塑料(SMC)的模压是将它们剪切成小片,放入模具中加热(温度在121 ° C

至262 ° C,或250 ° F到325 ° F之间)和加压(24.5至172.4 bar,或500至2,50 0 psi之间)。随着粘度逐渐下降,液态片状模塑料流入模腔将其填满。经固化后,模压成型的SMC部件可以通过手工或利用起模杆(ejector pins)进行脱模处理。

用于表面优质感处理(Class A finish)的低收缩(﹤0.05%)SMC配方的构成比例大致是:聚酯树脂占25%,短切玻璃纤维占25%,填料45%和5%的助剂。热固性SMC的固化时间大致需要30至150秒,总周期不高于60秒。此外,SMC产品的技术参数还包括低密度,柔性以及色素配方等。目前在市场上已经有低压SMC配方销售,它的出现不仅为开模工艺向闭模工艺的低成本过渡铺平了道路,还实现了挥发性有机化合物(VOC)近零排放的目标和高品质的产品表面光洁度。

汽车制造商们都在纷纷探索碳纤维增强SMC,希望利用碳纤维的高强度对重量比(stre ngth -to-weight)以及高刚度对重量比(stiffness-to-weight)的性能优势,制造车身外壳和其他部件。新款增强SMC配方有助于防止微裂纹的产生,造成这种现象的原因是当材料放进烤箱进行加热固化时,材料表面会产生微裂纹同时聚集了一些气体,随着气体释放会在材料表面形成一个个的小坑,也就是在最后的喷涂过程中经常遇到的气泡爆破的现象。

不过,许多复合材料制造商已经开始自行制定SMC配方,以满足不同的应用目的,比方抗紫外线配方、或抗冲击力、防潮、或者对表面质量有要求的特殊配方。市场需求的发展走势是对材料性能提出越来越具体的要求,这是推动定制材料发展的主要动力。

注射成型(Injection molding)是一种快速大流量的低压闭模成型工艺,填料以热塑性塑料为主,如短切玻璃纤维尼龙。然而,随着BMC自动化注射成型工艺在过去的20年中不断发展和壮大,已经逐渐改变了从前由热塑性塑料和金属铸件制造商一统天下的市场格局。例如,由TetraDUR公司(德国汉堡)制造的BMC定制配方电子节气门(ETC- electronic throttle control)阀门首次应用于宝马迷你(BMW Mini)和标致(Peugeot )207发动机,就展现出良好的尺寸稳定性,以前这两款车型所配备的电子节气门阀门是由印模压铸铝制造而成的。TetraDUR公司是Bulk Molding Compounds公司(BMCI,伊利诺伊州西芝加哥)的子公司。

在BMC注射成型过程中,由冲压式活塞(ram- type plunger)或螺旋式活塞(screw-type plunger)将计量好的材料以5,000到12,000 psi的压强先注射到一个加热好的模中。进入热模以后,BMC由于受到加热融化成液态,因此会轻松地沿着倒流渠道流入闭模中。再经固化和脱模程序后,部件只需要稍稍打磨就基本成型了。注射完成一件产品通常只耗费1到5秒的时间,照此类推,只要使用多型腔模具(multiple-cavity molds)就可以在一小时内成型2,000个小零件。

如果生产厚截面BMC部件,则可采用模压成型或树脂传递模塑成型工艺。树脂传递模塑成型工艺通常是先将计量好的BMC放入一个带导流装置的罐中,再通过活塞施压将材料引入闭模腔中,最后材料在高温高压下完成固化的过程。

缠绕成型(Filament winding)是一种连续性的成型工艺,以高度自动化和可重复性为特点,其原材料成本相对较低。缠绕机是该成型工艺的主要设备,主要由一根圆柱形的芯棒,

沿缠绕机水平方向被两端固定器夹持在中心;还有“绕丝头”,它随着主轴的转动作往复运动,按照预先设计好的形式将纤维缠绕到芯棒上。一般的数控纤维缠绕机可以配备2至12个运动心轴。

在大多数热固性塑料的缠绕加工过程中,纤维要先经过胶槽浸胶,然后才被缠绕到芯棒上。这就是所谓的湿法缠绕(wet winding)。然而,还有一种方法是将预浸渍树脂的连续纤维(预浸料)缠绕到芯棒上的方式,这种方法叫做干法缠绕(dry winding),可以帮助省去现场浸胶的程序。预浸料还经常在RTM成型工艺中使用。

芯棒经过烤箱或热压釜固化后,一般有两种用途,一是继续缠绕成其他部件;二是从设备上退下来。形状较简单的单件圆柱或圆锥芯棒,是通过一个芯棒萃取设备提取的。而对于那些形状比较复杂的芯棒零件,则需要通过溶剂提取。很多制造商在进行缠绕成型工艺时,经常自行调整或修改树脂配方,以满足具体的应用需求。现在,不少复合材料零件制造商都在开发自己的树脂配方。

不过,热塑性塑料的缠绕工艺一般使用的是预浸料,所以纤维不需要再经过胶槽浸胶。只要对缠绕好的芯棒形状进行加热固化,就能即时生成产品。预浸料的加热,压实,加固和冷却是一个单向连续的加工过程。不仅如此,热塑性预浸料还免去了热压釜固化的必要,因此降低了加工成本和对规模的限制,而且对已成型部件可以进行再加工,以纠正成型过程中的缺陷。

缠绕成型工艺加工的零件,具有较强的“环向”的强度。大部分高尔夫球杆就是利用缠绕成型工艺制造的。此外,该工艺制造的其他产品还包括钓鱼竿,管道,压力容器和用于其他领域的圆柱形部件。

拉挤工艺(Pultrusion),如RTM工艺,在过去的几十年里已成为制造玻璃纤维和聚酯树脂的主要生产方式之一,但在最近10年里,拉挤工艺也逐渐应用于先进复合材料的制造领域中。与其他工艺相比,拉挤是一种工艺过程相对简单,成本较低,而且可以持续不断的成型过程:纤维增强材料(如粗纱,丝束或者连续垫)首先进行胶槽浸胶,然后再通过一个或多个成形轴套被制成特定的形状。最后通过加热模具固化制成净成形产品。待冷却后,将成型产品根据需要的长度裁剪成型。利用拉挤成型的产品具有良好的表面效果,通常不需要后处理。拉挤工艺被广泛用于制造各种实心和空心型材,整个加工过程可以按照特定的用途量身定制。

轧管成型(Tube rolling)是一种连续式的缠管成型工艺,比较适用于小口径(≤6 i nches/152 mm)的圆柱或圆锥管道的生产,长度一般小于20 ft/6.2m。根据不同的部件成型要求,轧管成型工艺通常使用预浸布或单向预浸带。为了方便搭建成纤维层结构,预浸布会根据设计预先切成所需的形状,然后被叠放在一个平面上,通过心轴施加压力将材料压实。

当轧制一个锥形芯棒结构时,例如一个钓鱼杆,只有纵向的第一行纤维真正落在0 °轴上。因此,必须通过定时的重新配置层的结构,不断重新调整纤维的方向。

自动纤维铺放(AFP- Automated fiber placement)是一种高效的数控纤维铺放技术,是利用机器人将预浸丝束缠绕或铺放到心轴上的成型工艺。由于全程采用自动数控,该技术能同时实现32个丝束的自动分丝,夹紧,切断和重新启动。最小切割长度(即铺放的丝束的最短长度)是层型的决定性因素。纤维铺放头(fiber placement heads)可以连接一个

5轴龙门,并加装到绕丝机上。如果想提高生产效率,还可以将芯棒的数量增加到两个。自动纤维铺放技术的主要优点包括:高铺放速度,材料浪费少,和低劳动力成本,所生产的零部件更加紧实,而且产品具有更稳定的一致性等。该技术通常用于生产形状复杂的大型热固性部件。

自动铺带技术(ATL- Automated tape laying)是一种更快捷的自动化预浸带铺放技术,不同于单一丝束的铺放,该技术可以连续不断的形成部件。它通常用于制造具有高度复杂曲面的制件。纤维带的铺放方式可以很灵活,不论是热固性和热塑性材料,该技术都允许铺放过程的中断,或者能够轻松的改变铺放方向。铺放头的设备组成包括线轴,绕丝机,绕丝导向设备,压实装置,还有一个位置传感器和切割器。在铺放过程中,先将纤维带拉直,然后将铺头加装到一个多坐标的机器人上,通过机器人在心轴之间的移动,让铺放头的移动路径与心轴或者纤维带的铺放路径相协调。此外,由于纤维铺放机的压头装置,可以使纤维带在模具上压实,避免缠绕过程中的纤维分层现象。

虽然自动铺带技术(ATL)的速度比自动铺丝技术(AFP)更快,而且还能实现更长的铺放长度,但总体来讲,自动铺丝技术(AFP)更适合于较短的,高曲面的纤维铺放。这些技术是伴随机床行业的发展而兴起的,现在已经广泛应用于机翼板,翼盒,机尾等部件的制造,并且已经在波音787梦想飞机和空中客车A350宽体飞机的其他结构的制造上得到了更广泛的应用。同时,自动铺带技术(ATL)和自动铺丝技术(AFP)还被广泛用于生产F - 35闪电II 战斗机,V - 22鱼鹰倾转旋翼运输机(V-22 Osprey tiltrotor troop transport)以及其他各种飞机的部件。

离心浇铸法(Centrifugal casting)在复合材料制造过程中主要用于制造管材(直径从1 英寸/25毫米至14 英寸/356毫米不等),是缠绕成型的替代工艺,其制品以更高的性能和更耐腐蚀为特点。浇铸所采用的0 ° / 90 °轴向的玻璃纤维布不仅能够同时提高管

道的纵向和环向强度,而且浇铸工艺制造的管比同等壁厚的多轴玻璃纤维缠绕管的强度更高。在浇铸成型过程中,将环氧树脂或乙烯基酯树脂按照一定的比例注入到一个旋转的150克离心模腔中,依靠高速旋转产生的离心作用让树脂均匀的渗透到围绕模具的内表面包裹着的织物中。离心力的作用(centrifugal force),不仅推动树脂渗透到织物层中,其管道制品的外表面还非常光滑。同时,残余的树脂还在模腔内形成了一层耐腐耐磨的内衬。

挤出成型工艺(extrusion molding)也是纤维增强热塑性塑料成型的重要方法之一。

该工艺的主要成型原理是利用挤出设备对材料进行加热和加压,使材料成为熔融液态,然后从模具中将其连续挤出而成型。挤塑成型广泛应用于制造管、筒、棒、异型材、和电线等产品。材料和加工工艺的升级换代使得复合材料(如长玻璃纤维增强热塑性塑料)在激烈的市场竞争中显示出不可比拟的成本和性能优势,日渐成为办公家具,电器,拖车及运动货品所使用的木材,金属和注塑塑料零件的替代材料。其实,挤出热塑性塑料/木粉(或其他添加剂,如韧皮纤维或粉煤灰)复合材料早已在近十年里逐渐占据了巨大的市场份额。这些木塑复合材料(WPCs -wood plastic composites)常用于木甲板,壁板,门窗框架和栅栏等用途。

安全生产与环境保护

复合材料制造商在加工过程中必须十分注意卫生,安全生产和环境问题。一个安全的工作场所应该包含诸多因素,如定期的培训,遵守每一条操作章程,了解并具备必要的防毒措施,以及防护设备的使用(包括手套,围裙,防尘口罩和呼吸器等),以及全公司上下的监管政策的制定和不断修缮。每一位制造商都必须致力于通过各种途径减少高挥发性有机化合物(VOCs)的挥发量,例如现在很多制造商就采取调整树脂和预浸料的配方,或者改用水分散性清洁剂(water-dispersible cleaning agents)等措施来降低有害空气污染物的排放。

据了解,自1990年美国国会通过空气洁净法令(Clean Air Act Amendments)以来,美国环境保护署(The U.S. Environmental Protection Agency)就一直致力于减少有害空气污染物(HAPS- hazardous air pollutants)的排放,在一份清单上详细列举了约180例被共认对健康造成威胁的挥发性化学物质。其中一些化合物是含在树脂中的,在高温固化过程中释放含有毒气的污染物。在2003年初,美国环境保护署就专门针对复合材料行业制定了相关法规,要求使用最大可达到的控制技术(maximum achievable control technolo gy, or MACT)来实现对有害污染物的排放控制。该条例是在2006年初生效。

复合材料加工工艺综述

复合材料加工工艺综述 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

先进复合材料主要制造工艺和专用设备

先进复合材料主要制造工艺和专用设备 中国航空工业第一集团公司科技发展部 郝建伟 中国航空工业发展研究中心 陈亚莉 先进复合材料具有轻质、高强度、高模量、抗疲劳、耐腐蚀、可设计、成型工艺性好和成本低等特点,是理想的航空结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。本文旨在介绍在复合材料制造过程中所涉及到的主要工艺和先进专用设备。 复合材料在飞机上的应用 随着复合材料制造技术的发展,复合材料在飞机上的用量和应用部位已经成为衡量飞机结构先进性的重要标志之一。复合材料在飞机上的应用趋势有如下几点: (1)复合材料在飞机上的用量日益增多。 复合材料的用量通常用其所占飞机机体结构重量的百分比来表示,世界上各大航空制造公司在复合材料用量方面都呈现增长的趋势。最有代表性的是空客公司的A380客机和后续的A350飞机以及波音公司的B787飞机。A380上复合材料用量约30t。B787复合材料用量达到50%。而A350飞机复合材料用量更是达到了创纪录的52%。复合材料在军机和直升机上的用量也有同样的增长趋势,近几年得到迅速发展的无人机更是将复合材料用量推向更高水平。 (2)应用部位由次承力结构向主承力结构发展。 最初采用复合材料制造的是飞机的舱门、整流罩、安定面等次承力结构。目前,复合材料已经广泛应用于机身、机翼等主承力结构。主承载部位大量应用复合材料使飞机的性能得到大幅度提升,由此带来的经济效益非常显著,也推动了复合材料的发展。 (3)在复杂外形结构上的应用愈来愈广泛。 飞机上用复合材料制造的复杂曲面制件也越来越多,如A380和B787飞机上的机身段,球面后压力隔框等,均采用纤维铺放技术和树脂膜渗透(RFI)工艺制造。 (4)复合材料构件的复杂性大幅度增加,大型整体、共固化成型成为主流。 在飞机上大量采用复合材料的最直接的效果是减重,复合材料制件

复合材料整体成型关键技术现状分析研究

复合材料整体成型关键技术现状分析研究 摘要:复合材料具有减轻结构重量,适合整体成型,提升结构安全性,降低生产成本等诸多优势,目前复合材料已经成为航空工业的研究热点,未来航空市场的竞争,很大一部分也是先进复合材料应用的竞争,目前在这块市场上,我国的基础实力较为薄弱,而发达国家对于先进的复合材料技术对我国高度保密,因此充分利用专利信息,研究复合材料整体成型技术的发展现状具有非常重要的意义。本文从专利的角度对航空复合材料整体成型技术的应用进行了分析,并从几个关键技术点上进行重点专利分析,以期能给复合材料的研发应用提供指导。 关键词:复合材料自动铺放液态成型热压罐真空袋挤压成型 中图分类号:tb33 文献标识码:a 文章编号: 1674-098x(2011)12(a)-0000-00 复合材料整体成型技术正广泛的应用在航空航天及其他技术领域,由于复合材料的整体成型具有降低制造成本,减轻结构重量,提升航天器的经济环保性等诸多优点。飞机上的复合材料使用量已经成为衡量其先进性的重要标准[1]。 飞机设计领域向来有为减轻每1g重量而奋斗的原则,因此发展复合材料成型技术的符合民机技术发展的趋势,也反映了目前低碳节能,绿色环保的飞机设计理念的要求。

目前如空客公司的a350,波音公司的b787的复合材料的用量已经达到了50%。当前各国都将先进复合材料制造技术作为研发重点,而从“产品未动,专利先行”的角度出发,大量复合材料技术都可以在专利文献中找到,因此积极利用专利信息开展现状分析,挖掘具有借鉴价值的专利具有十分积极的意义。 1复材整体成型技术发展概况 现代先进复合材料起源于20世纪60年代,70年代复合材料开始应用在飞机结构上,复合材料的加入对飞机结构轻质化、模块化起着中重要的作用。近年来先进复合材料在现代飞机上的用量不断扩大,已经成为铝,钢、钛之外的第四大航空结构材料[2]。复合材料整体成型技术经过了几个阶段的发展,已经逐渐从次承力件过度到主承力件,波音空客两大民机巨头在民机市场竞争 日趋激烈,在复合材料方面也不断抢占技术制高点,推出的机型中无一不把提高复合材料用量作为经济性,先进性的象征性指标。从专利领域来看,近几年两大航空企业的复合材料相关专利的申请量也在不断剧增,波音公司凭借其一直以来在复合材料应用领域的雄厚基础,申请了大量极具技术价值的基础专利,同时针对这些基础专利不断进行改进形成新的专利申请。空客公司作为后起竞争者凭借欧洲航空工业在复材领域的雄厚基础,不断进行大胆创新,在该领域申请的大量的专利也大有后来居上的态势。可见现代民机企业都在不遗余力的提升复合材料的研发力度。 当前复合材料的成型技术主要包括真空袋-热压罐成型技术,自

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

热塑性复合材料成型工艺

热塑性复合材料成型工艺 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP (Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 (4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳

复合材料的预浸料模压成型工艺

复合材料的预浸料模压成型工艺 模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有油酸、石蜡、硬脂酸、硬脂酸锌、有机硅油、硅脂和硅橡胶等。所涂刷的脱模剂在满足脱模要求的前提下,用量尽量少些,涂刷要均匀。一般情况下,酚醛型模压料多用有机油、油酸、硬脂酸等脱模剂,环氧或环氧酚醛型模压料多用硅脂和有机硅油脱模剂,聚酯型模压料多用硬脂酸锌、硅脂等脱模剂。 (3)预压 将松散的粉状或纤维状的模压料预先用冷压法压成重量一定、形状规整的密实体。采用预压作业可提高生产效率、改善劳动条件,有利于产品质量的提高。 (4)预热 在压制前将模压料加热,去除水分和其它挥发份,可以提高固化速率,缩短压制周期;增进制品固化的均匀性,提高制品的物理机械性能,提高模压料的流动性。

(5)表压值的计算 在模压工艺中,首先要根据制品所要求的成型压力,计算出压机的表压值。成型压力是指制品水平投影面上单位面积所承受的压力。它和表压值之间存在的函数关系: 复合材料的预浸料模压成型工艺 在模压成型工艺中,成型压力的大小决定于模压料的品种和制品结构的复杂程度,成型压力是选择压机吨位的依据。 2、压制工艺 (1)装料和装模 往模具中加入制品所需用的模压料过程称为装料,装料量按估算结果,经试压后确定。装模应遵循下列原则:物料流动路程最短:物料铺设应均匀;对于狭小流道和死角,应预先进行料的铺设。 (2)模压温度制度 模压温度制度主要包括装模温度、升温速率、成型温度和保温时间的选择。 ①装模温度 装模温度是指将物料放入模腔时模具的温度,它主要取决于物料的品种和模压料的质量指标。一般地,模压料挥发份含量高,不溶性树脂含量低时,装模温度较低。反之,要适当提高装模温度。制品结构复杂及大型制品装模温度一般宜在室温-90℃范围内。 ②升温速率 指由装模温度到最高压制温度地升温速率。对快速模压工艺,装模温度即为压制温度,不存在升温速率问题。而慢速模压工艺,应依据模压料树脂的类型、制品的厚度选择适当的升温速率。 ③成型温度

复合材料的手糊成型工艺

毕业设计报告(论文) 报告(论文)题目:聚合物基复合材料手糊成型工艺 作者所在系部:材料工程系 作者所在专业:高分子材料应用技术 作者所在班级: 07841 作者姓名:赵向男 作者学号: 20073084128 指导教师姓名:彭燕 完成时间: 2010年5月25日 北华航天工业学院教务处制

随着社会科技与经济的飞速发展,复合材料在国内外有很大的应用与发展,并且在各个领域占据了越来越重要的地位。复合材料的成型工艺方法很多,本文着重介绍手糊成型工艺方法的特点、工艺流程以及成型过程中遇到的问题和解决方法等。 关键字:复合材料手糊成型工艺流程。

Along with the social economy and the rapid development of science and technology, composite materials at home and abroad, has great development and application in different fields and occupy a more and more important role. Composites forming process, this paper introduces many methods to hand lay-up molding method, process and molding process problems and solving methods. Key words: composite materials molding paste hand process.

复合材料工艺与设备复习材料

复合材料工艺与设备 增强纤维(CF,GF)的生产工艺与设备(表面处理工艺与设备) 玻璃纤维在生产过程中辅助材料的作用:浸润剂的种类,作用 种类:增强型浸润剂和纺织型浸润剂; 作用:1、润滑-保护作用;2、粘结-集束作用; 3、防止玻璃纤维表面静电荷的积累;4、为玻璃纤维提供进一步加工和应用所需要的特性;5、使玻璃纤维获得与基材有良好的相容性及界面化学结合或化学吸附等性能 C纤维生产工艺中,惰性气体和张力的作用 惰性气体作用:①保护新生产的纤维不受氧化②作为传热介质③排除裂解产物(非C元素)。张力的作用:①使分子取向②使分子结构规整③产生轴向拉伸应力 增强纤维在表面处理工艺中的影响因素 玻璃纤维表面处理的影响因素:①处理剂的种类;②偶联剂的用量1~%;③处理方法(前处理法、后处理法、迁移法);④烘焙温度与时间(偶联剂与GF的硅层结构的最佳结合程度); ⑤偶联剂溶液的配制(PH值的调节,一般用5%的氨水)。 手糊成型工艺与设备 手糊工艺的特点:优点:1、守护成型不受产品尺寸和形状的限制,适宜尺寸大、批量小、形状复杂产品的生产;2、设备简单、投资少、设备折旧费低;3、工艺简单;4、易于满足产品设计要求,可以在产品不同部位任意增补增强材料;5、制品树脂含量高,耐腐蚀性好;缺点:1、生产效率低,劳动强度大,劳动卫生条件差;2、产品质量不易控制,性能稳定性不高;3、产品力学性能较低。 原材料选择原则:1、产品设计的性能要求;2、手糊成型工艺要求;3、价格便宜,材料容易取得。聚合物基体的选择原则:1、能在室温下凝胶、固化。并在固化过程中无低分子物得产生。2、能配制成粘度适当的胶液,适宜手糊成型的胶液粘度为。3、无毒或低毒;4、价格便宜。增强纤维的选择原则:以玻璃纤维为例,工艺特点:1、很好的疏松性;2、铺覆的变形性;3、纤维的均匀性。 先进手糊法的种类:喷射成型、热压釜、树脂传递模塑与反应注射模塑。 RTM(树脂传递模塑)基本工艺过程:将液态热固性树脂及固化剂,由计量设备分别从储桶

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

复合材料成型工艺及设备

无机非金属复合材料的成型工艺—纤维增强水泥基复合材料 【摘要】纤维增强水泥基复合材料作为新型工程材料已在土木工程多领域中得到广泛地应用。目前在水泥复合材料中掺加一定量的纤维,可以改善并且提高水泥复合材料的物理、力学等性能指标。 【关键词】纤维增强复合材料水泥 1、发展及应用 自60年代开始,纤维增强水泥基复合材料的研究和开发有较大进展。1964年,丹麦科学家应用复合材料理论探讨纤维增强无机与有机凝胶材料的机理。1967年英国人试制成功抗碱玻璃纤维增强波特兰水泥砂浆。随后美、日等国也相继投产。我国进入80年代用抗碱玻璃纤维增强低碱铝硅酸盐水泥,现已取得一定成效。目前广泛用于各种建筑物中以及工程装备中。 2、特点 纤维增强水泥基复合材料与普通混土相比,其显著特点是轻质高强,具有良好的断裂韧性。其拉压比一般可达1/4~1/6(普通混凝土为1/10)。 3、复合材料的组成 1、纤维增强水泥原材料 3.1.增强材料 纤维加入脆性的水泥基体中,其作用是提高水泥集体的抗拉强度和韧性,改善其冲击强度和疲劳性能。增强水泥所用纤维按其化学组成可分为金属纤维,无机纤维和有机纤维三大类。 用于增强水泥的纤维可分为短切纤维、连续纤维或纤维织物等。目前国内外使用最多的为短切纤维。 2.水泥基体材料 硅酸盐水泥、氯氧镁水泥、高铝矿渣水泥等 4、成型工艺及设备 GRC的成型方法有喷射法、预拌法、注射法、铺网法、缠绕法等多种方法。其中玻璃纤维增强水泥复合材料使用最多的方法是喷射成型法。 1、成型工艺 A:直接喷射法 用人工手动或通过机械移动装置使切割喷射机在模型上方作往复移动,将纤维水泥砂浆喷在模型表面。

复合材料制造工艺

复合材料制造工艺 第一章概述 材料是人类赖以生存和发展的物质基础。20世纪70年代人们把材料、信息、能源作为社会文明的支柱;80年代以高技术群为代表的新技术革命,又把新材料与信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料是国民经济建设、国防建设与人民生活所不可须臾缺少的重要组成部分。复合材料作为材料科学中一枝独立的新的科学分支,已经得到了广泛的重视,正日益发展并在许多工业部门中得到广泛运用,成为当今高科技发展中新材料开发的一个重要方面。 鉴于材料的重要的基础地位和作用,每一次科学技术的突飞猛进,都对材料的性能提出了越来越高、越来越严和越来越多的要求。现如今在许多方面,传统的单一材料已经不能满足实际需要,在这种情况下,人们以其充满智慧的头脑将材料的新的发展方向伸向一个更加广阔的领域——复合材料。 本文就将对复合材料的基本概念、加工中的理论问题、制备工艺与方法和典型的应用加以阐述,希望能够比较全面的对复合材料做一个介绍。 首先我们来给复合材料下一个明确的定义。根据国际标准化组织(International Organization for Standardization, ISO)为复合材料下的定义,复合材料(Compose Material)是由两种或者两种以上物理和

化学性质不同的物质组合而成的一种多相固体材料。复合材料的组份材料虽然保持其相对独立性,但是复合材料的性能却不是组份材料性能的简单加和,而是有着重要的改进。在复合材料中通常有一相为连续相(称为基体),而另一相为分散相(增强材料)。分散相是以独立的形态分布在整个连续相中的。两相之间存在着相界面,分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 复合材料的出现和发展,是现代科学技术不断进步的结果,也是材料设计方面的一个突破。它综合了各种材料如纤维、树脂、橡胶、金属、陶瓷等的优点,按照需要设计,复合成为综合性能优异的新型材料。可以预见,如果用材料作为历史分期的依据,那么,继石器、青铜、铁器、钢铁时代之后,在21世纪,将是复合材料的时代。 在概述的余下一些篇幅中,我们来大致了解一下关于复合材料的一些基本内容。 一、复合材料的命名和分类 复合材料可根据增强材料与基体材料的名称来命名。将增强材料的名称放在前面,基体材料的名称放在后面,再加上“复合材料”即为材料名。为书写简便,也可仅写增强材料和基体材料的缩写名称,中间加一条斜线隔开,后面再加“复合材料”。有时为了突出增强材料或者基体材料,视强调的组份不同也可将不需强调的部分加以省略或简写。 复合材料的分类方法很多,常见的分类方法有以下几种:

国内外先进复合材料低成本制造技术的发展现状

国内外先进复合材料低成本制造技术的发展现状 从低成本成型的研发现状看,大致可分为以下5方面的内容:(1)对热固性复合材料一直沿用的方法进行改进和提高效率,如Filament Winding(FW,纤维缠绕)、Pultrusion(拉挤)、 Braiding(编织)、 Tow placement(丝束排布)、自动成套裁剪、预浸材料激光样板切割(Laser template)等自动化技术。(2)湿法工艺技术:RTM、RFI等在纤维增强体的预型件上再注入浸渍树脂。(3)热塑性复合材料的易成型新材料开发及IN-SITU(原位)成型方法:D irect consolidate(直接固结)、Commingled yarn(搀混纱线)、Powder co ated towpreg(粉末涂覆丝束预浸)等新成型方法。(4)不用热压罐的新固化技术,用微波、电子束、超声波、X线等高效率能量的新固化方法。(6)CAD/C AM模拟技术:铺层、浸渍、成型、固化等工序的模型化/模拟技术,有助于保证产品质量,提高生产效率。 低成本成型技术当前发展的主流是湿法成型技术,也称液体模塑成型技术(简称LCM),主要有树脂传递模塑、真空辅助树脂传递模塑(VARTM)、树脂渗透成型工艺(SCRIMP)和结构反应注射模塑等。其中最重要的是树脂传递模塑技术(RTM)以及由此而发展起来的VARTM。RTM免除了将纤维制成预浸料,再切割成层片然后再铺叠成预型件的过程,摆脱了大投资的热压罐,工艺易于实现自动化,具有生产周期短、劳动力成本低、环境污染少、制造尺寸精确、外形光滑、可制造复杂产品等优点。是目前国际上发展应用最快,并在航空工业应用最多的低成本技术之一。 从国际上看,美国在湿法成型技术上处于领先地位,特别是在航空航天领域内,在过去十年里,美国应用RTM技术的增长率为20-25%。据美国塑料工程学会预测,在今后五年里美国应用RTM技术的增长率将提高到30-32%。美国基本形成了RTM有关的材料体系、制造工艺、技术装备和验证系统,并在武器装备上得

复合材料成型工艺

树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC等品种。 1、原材料 (1)合成树脂复合材料模压制品所用的模压料要求合成树脂具有:①对增强材料有良好的浸润性能,以便在合成树脂和增强材料界面上形成良好的粘结;②有适当的粘度和良好的流动性,在压制条件下能够和增强材料一道均匀地充满整个模腔;③在压制条件下具有适宜的固化速度,并且固化过程中不产生副产物或副产物少,体积收缩率小;④能够满足模压制品特定的性能要求。按以上的选材要求,常用的合成树脂有:不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基树脂、呋喃树脂、有机硅树脂、聚丁二烯树脂、烯丙基酯、三聚氰胺树脂、聚酰亚胺树脂等。为使模压制品达到特定的性能指标,在选定树脂品种和牌号后,还应选择相应的辅助材料、填料和颜料。 (2)增强材料模压料中常用的增强材料主要有玻璃纤维开刀丝、无捻粗纱、有捻粗纱、连续玻璃纤维束、玻璃纤维布、玻璃纤维毡等,也有少量特种制品选用石棉毡、石棉织物(布)和石棉纸以及高硅氧纤维、碳纤维、有机纤维(如芳纶纤维、尼龙纤维等)和天然纤维(如亚麻布、棉布、煮炼布、不煮炼布等)等品种。有时也采用两种或两种以上纤维混杂料作增

复合材料原理与工艺课程习题 答案

复合材料原理与工艺课程习题 1、 增强体和功能体在复合材料中起的主导作用? 答:1)填充:用廉价的增强体,特别是颗粒状填料可降低成本。 2)增强:(a )功能体可赋予聚合物基体本身所没有的特殊功能。功能体 的这种作用主要取决于它的化学组成和结构。(b)纤维状或 片状增强体可提高聚合物基复合材料的力学性能和热性能。 其效果在很大程度上取决于增强体本身的力学性能和形态 等。 2、复合材料区别于单一材料的主要特点? 答:1)不仅保持其原组分的部分优点,而且具有原组分不具备的特性; 2)材料的可设计性 ; 3)材料与结构的一致性。 3、材料复合效应的分类? 答:(1)线性效应:线性指量与量之间成正比关系。平行效应、平均效应、相 补效应、相抵效应。 (2)非线性效应:非线性指量与量之间成曲线关系。相乘效应、诱导效应、 共振效应、系统效应。 4、建立材料的微观模型包含的内容? 答:1)材料的几何结构模型,2)材料的物理模型,即计算场量的理论和方法。 5、推导并联传递方式中,复合材料的阻力系数 答:设外作用场强度为I 入,经均质材料响应后,传递输出场强度为I 出,则 材料总传递动力为:ΔI=I 入—I 出。(1) 材料传递时的阻力系数为α时,则传递通量q 为:q= -1/α×ΔI/Δl (2) 对于并联型复相结构,相间无能量交换,则系统的总通量q c 为各组分相同量之和:q c =Σq i (l ×V i ) (3) 式(2)代入式(3),得:qc= -Σ1/αi ×V i ×ΔI i /Δl i 由于组分相传递推动力梯度相等,故有: q c = —(Σ1/αi ×V i )×ΔI/Δl= —1/α0×ΔI/Δl 则αc 为:1/αc =Σ1/αi ×V i 6、复合材料的界面层,除了在性能和结构上不同于相邻两组分相外,还具有哪些特点; 答: (1) 具有一定的厚度; (2) 性能在厚度方向上有一定的梯度变化; (3) 随环境条件变化而改变 。 i i c V ?=∑αα11

浅谈先进复合材料构件成型模具和工装技术发展趋势

浅谈先进复合材料构件成型模具和工装 技术发展趋势 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 复合材料已成为与钛合金、铝合金、合金钢并驾齐驱的四大航空结构材料之一(在B787结构上的用量达总重的50%,A350XWB结构上的用量达总重的52%),其中应用最为广泛的仍然是玻璃纤维、碳纤维、芳纶纤维、硼纤维等高性能纤维增强的先进树脂基复合材料(以下简称先进复合材料)。基于先进复合材料的反应特性和满足先进复合材料构件内部质量的特定需求,在先进复合材料构件成型过程中,需要加热、加压和抽真空等外在工艺条件。先进复合材料特别突出的成型特点就是材料成型和构件成型最终同时完成,这就决定了先进复合材料构件的形位精度主要依靠模具工装来保证,而且模具材料和模具结构必须满足易于传热、传压和真空完整性好等要求。 1基于成型工艺条件的模具发展趋势 成型压力 无论是先进热固性树脂基复合材料,还是先进热塑性树脂基复合材料,其成型过程都需要施加外界压

力的压实过程,以排出构件中的空气、压实空隙并实现增强纤维的均匀分布。施加外界压力有几种工艺方式:(1)构件的一面为刚性模具,另一面为依赖气体或液体传压的弹性模具(例如传统热压罐工艺)或依赖机械传压的刚性模具(例如传统模压工艺),这是最常用的方式;(2)以热胀材料为芯模,刚性材料为阴模,构件置于芯模和阴模之间,这种方式用于DC-10飞机方向舵后上段和海豚直升机的水平尾翼;(3)以热膨胀系数高的材料为芯模,热膨胀系数低的材料为阴模,构件置于热膨胀系数差异比较大的芯模和阴模之间;(4)以刚性材料为芯模,热收缩材料为包覆袋,构件置于热膨胀系数差异比较大的芯模和包覆袋之间。 成型温度 不管是热固性树脂基复合材料固化,还是热塑性树脂基复合材料熔化,都需要加热以达到合适的成型温度。复合材料构件的成型模具应当满足加热构件的升温效率和构件温度场分布的均匀性,这种模具按加热方式来划分有几种结构形式:(1)以加热的空气或者惰性气体为传热载体,对“蛋框式”模具加热(以对流换热方式为主,温度较高时热辐射占的份额也比较大);(2)把热电阻和循环水管直接埋入成型模具中,传热方式以热传导为主。

先进复合材料成型工艺过程中的质量控制 李贺

先进复合材料成型工艺过程中的质量控制李贺 发表时间:2018-09-29T11:14:29.220Z 来源:《防护工程》2018年第10期作者:李贺 [导读] 复合材料的工艺技术的基础就是复合材料成型工艺方法。本文首先对相关内容做了概述,分析了先进复合材料的特点,然后在探讨先进复合材料成型工艺过程中原料供给的基础上,研究了复合材料成型工艺发展现状。 李贺 航空工业哈尔滨飞机工业集团有限责任公司黑龙江哈尔滨 150066 摘要:科技的迅速发展使得传统材料的工艺技术满足不了人们的生活需求,而人们的生活发展又离不开材料的使用,所以,人们慢慢的开始转向了复合材料的工艺技术发展领域。复合材料的工艺技术的基础就是复合材料成型工艺方法。本文首先对相关内容做了概述,分析了先进复合材料的特点,然后在探讨先进复合材料成型工艺过程中原料供给的基础上,研究了复合材料成型工艺发展现状。 关键词:先进复合材料;成型工艺;过程;质量控制 1 前言 作为一项具有较强特殊性的工作,先进复合材料成型工艺得到了长足的发展和进步。研究该项工作过程中的质量控制,能够更好地提升先进复合材料成型的最终效果。 2 复合材料的特点 复合材料一般是由多种成分的材料组合而成,这样做,可以将多种材料不同的功能进行性组合,优化材料的使用功能。各种材料既能保持住个体的独立性,又能相互补充、扬长避短,一举两得。复合材料的成型方法现已有几十种,虽然它比传统的材料有技术上的优点,但也正由于这些复杂的技术,使得复合材料的成本过高,其生产有很大的技术困难。所以我们就需要改进复合材料的成型工艺方法。 复合材料会根据材料的不用组成而造成性能上的差异,但其也有一些共性的特点,如: 复合材料的配比都是需要人工完成的;复合材料可以将各种普通材料的性能进行重组,可以使其具有多种优良性能;可以根据需要制作成各式各样的形状的产品,也避免了多次的复杂工序;可以有针对性的对材料根据需要对材料进行设计和加工等等。 3 先进复合材料成型工艺过程中的原料供给 在先进复合材料的成型过程中必须始终保持均匀稳定原料补充,这样才能更好的使之定型,形成复合材料的原材料中的天然纤维的结构以及特性对成品有着关键性的影响,如果天然纤维中的水分含量在8%以上,则会对材料的成型造成一定的影响,因此,在生产过程中需要特别注意含水比例尽量控制在8%以下。 3.1 天然纤维粉粒进料以及粒料供给方式分析 在进料之前需要将天然纤维粉进行造粒处理,提高其自身的体积比重,然后混合合成树脂、添加剂等材料分别装入挤出机中。比例少的合成树脂在这种锥形双螺杆挤出机中能够做到快速熔融,最后分散在天然纤维之中,这种操作手段能够比较简便的实现混合比率的改变,该方式辅助设施简单容易操作。 粒料的供给是通过使用单螺杆或双螺杆挤出机等方式来实现的,具体的操作内容就是将天然纤维、合成树脂、添加剂三种材料进行造粒处理,然后加入挤出机进行成型。这种生产方式的优势在于现有设备比较齐全,但是,天然纤维需要干燥之后才能进入造粒挤出机。 3.2 积聚(集成体)进料方式与冷搅拌方式 积聚进料的方式是通过使用高速搅拌器来工作的,天然纤维、合成树脂以及添加剂需要进行预处理,形成豆粒大块状体,然后将其加入挤出机中进行成型处理,这种方式能够在一定程度上脱除水分、气体。冷搅拌方式是将木粉中存有的粉状树脂、添加剂等进行集中搅拌,而天然纤维则通过喂料器向挤出机中提供原料。这一过程天然纤维、合成树脂、添加剂等材料不用单独制作,但是必须保持粉状形态,而且需要保持天然纤维的充分干燥。 4 复合材料成型工艺发展现状 目前,世界各国已经形成了原材料、成型工艺、机械设备、产品种类及性能检验等一系列较完整的工业体系,与其他工业相比,发展速度比较快。树脂基复合材料的成型工艺也从最初的手工操作工艺逐步向技术密集、高度自动化、高生产率、高稳定性的成型工艺上发展,并随着应用领域的广泛开拓,出现了多种成型工艺并存的现象,而且还在不断衍生出新的工艺类型。 4.1 手糊成型工艺 手糊成型工艺又称低压接触成型工艺,是树脂基复合材料工业中使用最早的一种工艺方法,操作方法简单,几乎可适用于所有的复合材料制品的生产,且投入小,但对操作人员技术熟练程度的依赖性较大,生产出的制品单面光洁,产品质量不够稳定。随着各种新工艺形式的不断涌现,手糊成型工艺所占比例逐渐降低,但手糊工艺因具有独特的其他工艺不可替代的尤其是在生产大型制品方面特点,所以仍然在行业内占据着重要的地位。 主要应用领域:建筑雕塑领域如采光顶、活动房屋等;交通设施领域如游艇、汽车壳体、发动机罩等;环境与能源领域如风力发电机用机舱罩、叶片、沼气池等;体育游乐设备领域如游乐车、水滑梯等。 4.2 喷射成型工艺 喷射成型工艺是利用喷射设备将树脂雾化,并与切断的纤维在空间混合后落在模具上面,然后压实排出气泡固化,它是在手糊工艺基础上发展而来的,是将手糊操作中的纤维铺覆和浸胶工作转变为了机械化来完成,是一种相对效率较高的工艺,其生产效率是手糊工艺的2~4倍。喷射工艺同样对操作人员的技术水平依赖较大,且由于增强纤维以断切的形式存在,树脂含量高,制品的强度较低,同时由于喷射设备的原因,其采用阳模成型方便,而采用阴模成型困难较大,且大型制品比小型制品更适合于喷射成型工艺。 主要应用领域:喷射成型工艺主要应用于大型产品的制作及建筑物补强等,代表性的产品有玻璃钢浴缸、整体卫生间、卡车导流罩、净化槽、船身等。 5 复合材料工艺方法的特性 5.1复合材料可设计性强 通过配置不同比例和铺层形式的基体材料与增强体材料,可以设计出各种满足用户需求的功能的复合材料。设计出的复合材料可以减

相关主题