搜档网
当前位置:搜档网 › 热电偶传感器测温系统论文

热电偶传感器测温系统论文

热电偶传感器测温系统论文
热电偶传感器测温系统论文

摘要

热电偶是将温度变化量转换为热电势大小的热电传感器,是一种广泛应用的间接测量温度的方法,即利用一些材料或元件的性能参数随温度而变化通过测量该性能参数,而得到被测温度的大小。本文中主要介绍利用热电偶传感器测温的原理及系统设计。在论述测温的同时,针对不足,提出了一种基于数值计算软件化测温方法,并给出了实现这种测温的4个步骤,给出了相关电路、拟合关系式和计算方法。为了是测温精度更高,在此分析了误差优化方法,探讨了误差时间常数分析、非线性补偿法及冷端温度补偿技术。

关键字:热电偶、软件化、时间常数、非线性补偿、冷端温度补偿

1.温度的基本概念(参考文献【1】)

温度是度量物体冷、热程度的物理量,在生产和科学中占有极其重要的地位,是国际单位制(SI)中7个基本物理量之一。从能量角度来看,温度是描述系统不同自由度间能量发布状态的物理量;从微观上看,温度标志着系统内部分子无规则运动的剧烈程度,温度高的物体,分子平均动能大,温度低的物体,分子平均动能小;从热平衡观点来看,温度是描述热平衡系统冷热程度的物理量。而用来度量物体温度数值的标尺叫温标,它规定了温度的读数起点(零点)和测量温度的基本单位。目前用的较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。温度测量方式有接触式和非接触式两大类。接触式测温法是将传感器置于与物体相同的热平衡状态中,使传感器与物体保持同一温度的测温方法。非接触式仪表测温的范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反映速度快;但受到物体的发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。

2.热电偶测温基本原理(参考文献【2】)

热电偶的测温原理基于热电效应,如图1所示。将两种不同材料的导体A和B串接成一个闭合回路,当两个接点电T和T0的温度不同时,如果T>T0在回路中就会产生热电动势,并在回路中有一定大小的电流,此种现象称为热电效应,记为EAB,导体A,B称为热电极。接点T通常是焊接在一起的,测量时将它置于测温场所感受被测温度,故称为测量端(或工作端、热端)。接点T要求温度恒定,称为参考端(或冷端)。热电动势是由两种导体的接触电势和单一导体的温差电势所组成,热电动势的大小与两种导体材料的性质及接点温度有关。

2.1接触热电动势

当两种电子密度不同的导体A 与B 接触时,接触面上就会发生电子扩散,电子从电子密度高的导体流向密度低的导体。电子扩散的速率与两导体的电子密度有关并和接触区的温度成正比。设导体A 和B 的自由电子密度为NA 和NB,且NA>NB,电子扩散的结果使导体A 失去电子而带正电,导体B 则获得电子而带负电,在接触面形成电场。这个电场阻碍了电子的扩散,达到动平衡时,在接触区形成一个稳定的电位差,即接触电势,其大小为:

AB A B e =(kT/e)ln(N /N ) (1)

式中k ———玻耳兹曼常数,k=1.38×10-23J/K; e ———电子电荷量,e=1.6×10-19C; T ———接触处的温度,

K;NA,NB ———分别为导体A 和B 的自由电子密度。 2.2温差电动势

因导体两端温度不同而产生的电动势称为温差电势。由于温度梯度的存在,改变了电子的能量分布,高温端(T)电子将向低温端(T0)扩散,致使高温端因失去电子带正电,低温端因获电子而带负电。因而在同一导体两端也产生电位差,并阻止电子从高温端向低温端扩散,于是电子扩散形成动平衡,此时所建立的电位差称为温差电势,它与温度的关系为:

(2) 式中σ为汤姆逊系数,表示温差1℃所产生的电动势值,其大小与材料性质及两端的温度有关。 2.3热电偶回路总电动势

导体A 和B 组成的热电偶闭合电路在两个接点处有两个接触电势eAB(T)与eAB(T0),又因为T>T0,在导体A 和B 中还各有一个温差电势。所以闭合回路总热电动势EAB(T,T0)应为接触电动势和温差电势的代数和,即:

(3)

T

T

e sdT =?0T

AB 0AB AB 0A B T E =(T,T )=e (T)-e (T )-(s -s )dT ?

对于已选定的热电偶,当参考温度恒定时,总热电动势就变成测量端温度T 的单值函数,即:

0(,)()AB E T T f T =

2.4有关热电偶测温的基本定律 2.4.1均质导体定律

由一种均质导体组成的闭合回路,不论导体的横截面积、长度以及温度分布如何均不产生热电动势。如果热电偶的两根热电极由两种均质导体组成,那么,热电偶的热电动势仅与两接点的温度有关,与热电偶的温度分布无关。 2.4.2中间导体定律

在热电偶回路中接入第三种材料的导体,只要其两端的温度相等,该导体的接入就不会影响热电偶回路的总热电动势。根据这一定则,若把连接导线和显示仪器看成第三种导体,只要他们的两端温度相同,则不影响总热电动势。 2.4.3中间温度定律

热电偶两结点的温度分别为T 、T0时所产生的热电动势0(,)AB E T T 等于该热电偶T,0T 以及n T 、0T 时的热电动势的代数和,即有下式:

000(,)(,)(,)AB AB AB n E T T E T T E T T =+ (4)

中间温度定律是制定热电偶分度表的理论基础。在一般工程测量中,自由端常常不是零度而是室温或其它温度,通过上式及热电偶分度表计算工作端的温度。 2.4.4参考电极定律

两种导体A,B 分别与参考电极C(或称标准电极)组成热电偶,如果他们所产生的热电动势为已知,A 和B 两极配对后的热电动势可用下式求得:

000(,)(,)(,)AB AC CB E T T E T T E T T =+ (5)

可见,只要知道两种导体分别与参考电极组成热电偶时的热电动势,就可以依据参考电极定律计算出两导体组成热电偶时的热电动势,从而简化了热电偶的选配工作。 2.5热电偶的选择

热电偶结构类型很多,其特性及应用环境不同,在选择热电偶测温时,应从温度变化、测量精度要求,安装及维护方便、价格高低等几个方面综合考虑,常用热电偶的特性及应用环境如表2所示。

为了适应需要。目前已研制出多种特殊性能热电偶,举例如下: 1. 钨铜系热电偶

钨铜系材料是目前较好的超高温材料,测温范围可达0°C -3000°C。例如钨铼5-钨铼20热电偶,一般测温范围为300°C -2400°C 时,精度可达到±1%,且热电势大,适用于高温测量;但尚未合适延长导线,测温时应采用0度恒温法或软件法实现冷端补偿。

表2常用热电偶工作特性及适应温度

2.镍铬—金铁热电偶

这类热电偶低温性能极好,在绝对温度1-300范围,热电势大且稳定,适用于超低温测量。

3.薄膜热电偶

这是由两种不同的金属材料蒸镀到绝缘薄片上而形成的薄片式热电偶,薄膜厚度一般为0.01-0.1mm,平面尺寸也很小,因而测温灵敏度高,反应快(毫秒级),适用于温度变化快的场合。

4.非金属电热级电偶

这类热电偶是用石墨和难以熔化的化合物做成热电级,用于测量2000°C以上的高温,其工作稳定性好,热电势大,价格不高,具有取代贵重金属高温热电偶的开发价值。但这种热电偶复制性差,机械强度小、脆性大,使用场合受到很大限制。

3.热电偶测温系统设计(参考文献【3】)

在这里对工业循环冷水系统设计,需要对管路内的水质进行温度测量要求测量速度小于1s,精度1°C,采用单片机系统控制测量。

在常规液体测温应用中,需要对传感器进行铠装保护,即将传感器封装到导热陶瓷或金属套管中,但铠装会增加敏感元件热容量,极大的降低传感器对温度的响应时间。普通凯装热电偶或热电阻的温度响应时间约为10s以上,特殊铠装的约为5s以上,这显然不满足此系统设计要求。

因而,在此采用热电偶导线自作传感器的封装。与热电阻相比。热电偶导线与工作的

焊点小,焊点直径约为1mm ,因此敏感元件质量非常小,最终测温的响应时间较小。通过标准仪器校验,对传感器输入一个50°C 的阶跃型号,其响应时间在1s 以下,且信号的传送利用热电偶丝完成,因此容易封装。 3.1放大电路

测温采用的是K 型热电偶,由于对水进行测温。其测量范围为0°C-100°C,对应的输出热电动势在5mv 以下,输入微弱信号,热电偶的工作端通过热电偶导线的保护套管接入水路,参考端直接连入测量电路。其工作端和参考端距离较远,容易引入共模干扰,因此采用仪表放大电路来设计测量电路。

AD620是美国AD 公司推出的单片机仪表放大器,采用标准8脚双列直插式封装和8脚贴片式封装,放大倍数有外接的精密电阻决定。

AD620的管脚功能和基本接法如图3所示,2脚和3脚是高阻输入端,6脚是输出端,7脚接正负电源,5脚接参考地,电压放大倍数f A 由1脚和8脚间外接的精密电阻G R 决定:

AD620是单片精密仪表放大器,非线性失真小,共模共模抑制比高,低漂移和低噪声,非常在适合恶劣条件下对采集的微弱信号进行放大。采用AD620仪表放大器对热电偶输出信号进行 放大的电路如图4所示,热电偶导线连接到AD620的两个输入端,其中3脚直接接地,为放大器的输入偏置电流提供直流返回通路;同时,单端接线方式使得热电偶导线上的共模信号在放大器输入端抵消,放大电路采用双极性±5V 电源供电,电阻RG 取51 Ω,得到放大倍数为970倍。

49.41out f in G

u k A u R Ω

=

=

+

3.2测量方法

图5是温度测量系统的整体原理框图,由热电偶传感器将温度信号转换为电动势信号,再将AD260组成放大电路,多路开关送至A/D转换器,最终将转换结果送到MCU。在放大电路输入端,配置一个集成温度传感器LM135,检测冷端环境温度,其输出信号经多路开关、A/D转换器至MCU,其测量结果作为参考温度对热电偶的测量结果进行冷端补偿。最终的补偿结果由MCU通过RS232接口送至监控计算机。

图5 温度测量系统整体原理框图

图中LM135是PN结反向运用状态的感温器件,可作为二端工作的齐纳二级管,其击穿电压正比于绝对温度,测温范围为(-55-150)°C,灵敏约为10mV/K,在25°C时输出电压为2.98V。由于冷端环境温度为常温,因此LM135输出电压无须放大,直接入A/D转换器。MCU根据LM135输出的冷端温度,结合K型热电偶的分度表,利用热电偶的中间温度定律进行冷端校正。参考端温度为0°C时,K型热电偶分度表如图5所示。

图5 K型热电偶分度表

当LM135输出的冷端温度为23°C 势,而热电偶输出的热电动势的测量值为1.200mv,根据中间

温度定律:(,0)(,23)(23,0)E T E T E =+,首先查表得(,23)E T =0.919mv,而(23,0)E 为 1.200mv ,则计算出(,0)E T 为2.119mv,在查表得实际温度为52.5°C 。

4.热电偶软件优化方法(参考文献【4】{5}) 4.1软件化测温原理

如前所述,由于让冷端保持为0℃的恒温比较困难,也使测量装置变得复杂,因此直接测量(,0)AB E t 是比较麻烦的,且也没有这个必要。根据公式(4)可得

00(,0)(,)(,0)AB AB AB E t E t t E t =+ (6)

如果已知0(,)AB E t t 和0(,0)AB E t ,则依据公式(6)就可计算得到(,0)AB E t ,、通过反求分度表即可得到待测的温度t 。由于这种方法不需要冷端恒温或温度补偿装置,可以大大简化硬件电路,但需要通过数值计算的方法来实现温度测量,故称为软件化测温。 事实证明,直接测量0(,)AB E t t 和0(,0)AB E t ,不仅是可能的,而且也十分方便,可以获得很高的精度。其中0(,)AB E t t 是热电偶的冷端(温度为to)不作任何处理时直接测量获得的热电势; 0(,0)AB E t 为热电偶工作端为0t 、冷端为0℃时的热电势,这可以通过先测量t 。再查分度表来获得。 4.2软件测温的步骤 4.2.10(,)AB E t t 的测量

由于热电势信号比较微弱(mV 级),检测时一般需要进行放大处理。在图1所示电路中,0(,0)AB E t 经过PGA 电路(可编程增益放大器)放大后,得到0(,)AB U t t ,其幅值范围是0-5. OV ,这样便于后续的A/D 转换和微处理器数据采集工作。其测量电路图如

下。

在这里采用了精密的增益可编程仪表放大器LTC6915,

可以获得0,1,2,4,8,16,32,64,128,256,512,1 024,2 048或4 096等14级增益,可以满足同类型的热电偶测温需要。比如 1 000℃时S 型热电偶输出热电势约9.5 mV ,而E 型的热电势可达75 mV 以上,因此前者的增益可设为512,后者的增益可设为64。LTC6915的增益可由软件通过D3-DO 来设置,且误差小于0.1%,能够保证热电势的检测精度。

根据A/D 转换的结果ADvalue 值(数字量),可以计算得到

0(,)AB E t t 的大小

(7)

式中:Gain —测量电路的增益值

N —A/D 转换的位数,A/D 转换的参考电压值为5.0V 4.2.2端温度0t 的测量及0(,0)AB E t 的计算

一般情况下,热电偶的冷端处于自然环境中,其温度范围为0-50C ,因此可采用基于恒流源的高精度集成温度传感器AD590来检测。其测量电路图如下。

根据AD590的特性及以上测量电路,有

09200100()U K R t t mV τ== (8 式中:输出电压,由A/D 转换电路检测

K τ— AD590的电流温度系数,为1.0/A C μ 0t —冷端所处的环境温度(℃)。

由于0U 与0t 具有简单而良好的线性关系,因此通过对0U 测量就可以得到0t 值。利用热电偶分度表,很容易求取与温度t 。对应的0(,0)AB E t 值,可以采用查表法或公

00(,) 5.0(,)(21)AB AB N

U t t ADvalue

E t t Gain Gain

?==-

?

式计算法。前者需要存储大量的数据表格,而且查表时也要进行分段的内插运算,过程比较繁琐;后者则可以利用拟合得到的分度表E-t 关系式直接计算得到,较 为简便。但需要注意的是,因E t -关系具有非线性,拟合时必须 保证足够的精度。

拟合得到的S 型热电偶在0一50℃区间的E-t 关系式为 1.83000(,0)0.003130.00427()AB E t t mV =+ (9) 4.2.3 (,0)AB E t 的计算

在以上步骤基础上结合公式(6)即可求出。 4.2.4 由(,0)AB E t 反求t

热电偶分度表给出的是()E mV t C -关系,且温度t 为输人量,热电势E 作为输出量,所以在此不能直接使用E t -关系式进行计算,必须求出其反函数。由于热电偶的E t -关系式是非线性的,是多项式函数,直接用数学变换的方法难以求取其反函数,因此可采用一元函数的最小二乘法,对分度表给定的()E t 数据进行多项式拟合,从而求出()t E 的关系式。

利用matlab 程序对图5中K 型热电偶分度进行多项式拟合,为了结果精确温度,这里我们采用分段拟合,结果见表6. 多项拟合公式如下

2345012345t a a E a E a E a E a E =+?+?+?+?+?

该测温方法可以用于不同类型的热电偶。在特定的测温区间内因各型热电偶的热电势大小不同,为防止信号超量程,需要设定不同的电路增益,并注意调用不同的拟合公式。这些拟合公式可以预先做好并存人程序代码中。 当然,由于软件化测温方法需要完成一定量的浮点运算,因此适合于具有较强浮点运算功能的处理器系统。

5热电偶测温误差时间常数分析(参考文献【6】)

5.1测温与误差

由于热电偶的热接点具有一定的热容量,热接点从介质中吸收热量后,加热自身提高温度到稳定值需要一定的时间,在时间上总是要滞后于被测介质温度的变化,即测量的指示温度总是滞后于被测介质的实际温度,引起温度偏差,从而产生动态误差。由牛顿冷却定律可知,热接点的热平衡方程为:

式中,τ为热电偶的动态指标,即时间常数; j T 为热接点温度;t 为时间;T 为介质真实温度。对于不同的结构、不同的热交换条件、不同的被测介质状态,其时间常数τ也不相同,它是热电偶测量温度产生误差的主要因素之一。 5.2测温误差的时间常数分析

热交换有三种基本方式:对流方式,辐射方式和传导方式。不同传热方式,具有不同的热平衡关系,导致不同的过渡过程。在对流传热方式下,测量气体介质温度,当测量点处于热平衡时,由牛顿冷却定律可知,热接点的热平衡方程为:

整理得:

式中, τ为时间常数,Tc 为传感器指示温度,t 为时间, q T 被测气体的瞬时真实温度。上式即为热电偶对被测介质温度变化的动态响应。它表明测量滞后量(q c T T -)与时间常数τ有关,与测热点温度变化速率有关,该测温系统为一阶系统。 对于测量恒定温度,则有:

式中, p T 为被测温度, 为动态误差。由此可见, τ值越大,到达稳定值的时间

就越长,动态误差就越大。

j j dT T T

dt

τ

+=c c q dT T T dt

τ+=c

q c dT T T dt

τ

=-c p p t

T T T e

τ

-=-p t T e τ

-

对于测量线性变化的温度,热接点的热平衡 方程表达式为:

式中, 0T 为被测温度的初始值,B 为被测温度的变化率。同理可以分析出, τ值越大,动态误差就越大。

对于测量以正弦函数变化的温度,当5t τ≥时,热电偶的温度与时间的关系式可近似表达为:

式中, A T 为正弦函数的幅值, ω为角频率。分析上式可知,由于滞后角

()arcg ωωτ=,τ值越大,ψ角就越大,幅值也就越小。

经过上述分析,可以看出要快速准确地测量温度,必须有效地减小动态测量误差,即减小时间常数τ值。 5.3综上可以知道:

对于任何测量,误差都是不可避免的。通过分析热电偶测温误差的原因,我们就可以有的放矢地去减小测量误差。对于减小动态测量误差,就必须有效地控制时间常数

τ值。因为时间常数τ

式中,C 为热接点的比热ρ为热接点材料的密度,V 为热接点的体积, α为传热系数, 1F 为热接点的表面积,所以,在进行高精度的温度检测时,热电偶的选择应选择比热C 小、密度ρ小和传热系数α大的热电极,以便减小时间常数τ值。随着电子技术的不断发展,还可采用RC 微分电路进行信号处理,校正热电偶的动态特性。总之,通过探讨时间常数对测温的影响,对指导工业生产提供了可靠的技术依据,具有一定的实用价值。

6 热电偶冷端补偿技术(参考文献【6】)

由热电偶测温原理知道,只有当热电偶冷端温度保持不变时,热电势才是被测温度的单值函数。在应用时热电偶热端与冷端距离很近,冷端又暴露于空间中,容易受到环境温度及设备或管道中介质温度的影响,故冷端温度难以保持恒定,为此必须进行补偿。 6.1补偿导线法

由于两种不同类型的金属结合在一起会产生电位差,所以热电偶与测量系统的连接也会产生电压。一般把连接点放在隔热块上以减小这一影响,使两个节点处于同一温

(1)c t T T Bt B e ττ

-=+-

-0)

c T T t ωψ=+

-1

C V F ρτα=

度下,从而降低误差。有时候也会测量隔热块的温度,以补偿温度的影响。由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,准确测量温度,必须设法使自由端延伸到远离被测对象且温度又比较稳定的地方。如果把热电偶做得很长,则安装使用不方便,因热电极多为贵金属,所以成本高。人们从实践中发现某些便宜金属组成的热电偶在0~100℃范围内其热电特性与已经标准化的热电偶的热电特性非常接近。因此,可以用这些导线来代替原有热电极将热电偶的自由端延伸出来,这种方法称为补偿导线法。不同的热电偶要求配用不同的补偿导线。使用补偿导线时,补偿导线的正、负 极必须与热电偶的正、负极同名端对应相接。正、负两极的接点温度0t 应保持相同,延伸后的自由端温度应当恒定,这样应用补偿导线才有意义。

对常用的铂铑-铂热电偶,补偿导线铜-镍铜;镍铬—镍硅热电偶,补偿导线铜-康铜;对镍铬-考铜、铜-康铜等廉价金属制成的热电偶,则可用本身材料做补偿导线将冷端延伸到温度恒定的地方。此外热电偶和补偿导线连接处温度不应超过100℃,同时所用补偿导线不应选错,否则会由于热电特性不同而带来新的误差。 6.2热电偶的自由端温度补偿

利用热电偶测温,其温度与热电势关系曲线是在自由端温度为0℃时分度的,我们利用补偿导线仅仅使自由端延伸到了温度较低或比较稳定的操作室,并没有保证自由端温度为0℃,因此,测量结果就会有误差存在。为了消除这种误差,必须进行自由端温度补偿。常采用以下几种补偿方法。 6.2.1自由端温度计算校正法

由于热电偶的分度表是在自由端温度保持0℃情况下得到,配套仪 表又是根据分度表刻度,尽管采用了补偿导线将自由端延伸到远离被 测对象且温度又比较稳定的地方,但只要自由端温度不为0℃,就必须 对仪表示值加以修正。若自由端温度不为0℃,而是某一恒定温度t0, 则测得的热电势(,0)AB E t ,由公式求得实际温度所对应的热电势为

00(,0)(,)(,0)AB AB AB E t E t t E t =+

6.2.2 0℃恒温法(冰浴法)

为避免校正的麻烦,可采用冰浴法使冷端保持0℃。将热电偶的自 由端放入盛有绝缘油的试管中,该试管则置于装有冰水混合物的恒温 器内,使自由端温度保持0℃,然后用铜导线引出。此法多用于科学实 验和实验室中。 6.2.3校正仪表零点法

一般仪表未工作时,指针指在零位上(机械零点)。在自由端温度 比较稳定的情况下,可预先将仪表的机械零点调整到相当于自由端温 度(一般是室温)的数值上来补偿测量时仪表指示值的偏低。由于室温

是变的,因此这种方法有一定的误差,但由于方法简单,故工业上常用。 6.2.4补偿电桥(自由端温度补偿器)法

它是利用不平衡电桥产生的不平衡电压来补偿热电偶因自由端温 度变化而引起的热电势变化值,线路如图7所示

00000000000000000000000(,)(

()()

(k /)ln(/)(k /)ln(/)(k /)ln(/)()()(,)()()(,)(,)=(ABC AB CA A C B BC CA BA AB ABC AB AB B A AB E T T E E T E T T e NBT NCT T e NCT NAT T e NBT NAT E T E T E T T E T E T E T T E T T E =+=+===-=-+-因为又

00a 0000,)(,)=(,)(,)(,)(,)(0,)

AB AB AB a AB AB AB T T E T T E T T E T T E T T E T T E T +=+

补偿电桥中的三个桥臂电阻1R 、2R 、3R 由锰铜丝制成,另一桥臂电阻CU R 由铜丝制成。一般用补偿导线将热电偶的自由端延伸至补偿电桥处,使补偿电桥与热电偶自由端具有相同温度。电桥通常在20℃时平衡12320CU R R R R ===。此时0ab U =,电桥对仪表的读数无影响。

当周围环境温度大于20℃时,热电偶因自由端温度升高使热电势减少电桥由于Rcu 阻值的增加而使b 点电位高于a 点电位,在b 、a 对角线间有一不平衡电压0ba U >输出,它与热电偶的热电势叠加送入测量仪表。若选择的桥臂电阻和电流的数值适当,可使电桥产生的不平衡电压ba U 正好补偿由于自由端温度变化而引起的热电势的变化值,使仪表指示出正确的温度。由于电桥是在20℃时平衡的,所以采用此法需把仪表的机械零点调到20℃处。测量仪表为动圈表时应使用补偿电桥,若测量仪表为电位差计则不需补偿电桥。 6.3总结

实际热电偶测温回路还可采用冷端补偿器件,冷端补偿器件的选择标准与精度、价格、线性度、温度范围等因素有关,铂RTD 精度最高,但价格也最高。电热调节器

价格低、可工作在较宽的温度范围,但其线性度较差。硅温度传感器检测IC工作温度范围较窄,但具有较高精度和线性度,价格也比较低,因此能够满足多数场合下热电偶应用的需求。另外在热电偶测温回路中也常常是将多种补偿方式结合使用,最大程度地减小冷端温度波动给测量带来的影响。

7.热电偶测温系统缺点

热电偶损耗比较大,增大了维护量,备件费用消耗大;热响应有一定滞后。

参考文献

[1] 张明春.热电偶测温原理及应用.中国知网

[2] 刘金华.热电偶传感器的温度测试.中国知网

[3] 戴焯.传感器原理与应用.北京理工大学出版社,2013,229-232

[4] _吴来杰.一种热电偶测温的软件化方法.中国知网

[5] 俞阿龙.热电偶传感器的一种非线性补偿方法.中国知网

[6] _彭俊珍.热电偶传感器冷端温度补偿技术.中国知网

热电偶测温不准解决方案总结

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。 ◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级 信号,因此很容易在传到中控时受到干扰,此类故障极容易造成电 荷在信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释:

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

热电偶测温不准解决方案总结

热电偶测温不准解决方案 总结 Prepared on 22 November 2020

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。

◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级信 号,因此很容易在传到中控时受到干扰,此类故障极容易造成电荷在 信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释: 要了解热电偶的温度补偿问题,就要从热电偶的原理作手,对于已选定的热电偶,当参比端温度恒定时,则总的热电动势就成测量端温度的单值函数。即一定的热电势对应着一定的温度,而热电偶的分度表中,参比端温度均为0度。但在应用现场,参比端温度千差万别,不可能都恒定在0度,这就会产生测量误差,这就是热电偶要进行温度补偿的原因。由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。 热电偶测温使用补偿线时,必须注意以下几点: 1.补偿导线必须与相应型号的热电偶配用;

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

基于热电偶传感器的电炉温度检测系统

传感器与检测技术 大作业

基于热电偶传感器的电炉温度检测系统 一、测温传感器的选择 目前,市场上温度传感器的种类有许多,按照用途分可分为基准温度计和工业温度计;按照测量方法可分为接触的与非接触的等。根据成本、准确度及测温范围不同,选择不同的传感器。下面是一些温度传感器的比较: 种类热电偶传感器热敏电阻传感器PN结电压传感器传感器材质两种不同的金属一种热敏金属硅半导体二极管测量温度0~2400℃-200~900℃-50~150℃ 信号类型热电偶则是随着 温度的不同,其产 生感应电压也不 同。热敏电阻本身是 电阻,阻值随着温 度的变化而产生 变化 半导体集成温度 传感器,根据电压 变化,来确定温度 特点热电势比较小,测 量精度低,而且使 用过程中需要冷 端补偿标准化程度高,但 需要接入桥路才 能得到输出 体积小,线性好, 但是测量温度范 围小 在工业化中电炉的温度一般在1000℃以上,而且长时间高温,温度测量的相应程度与准确度要好,因此这对温度传感器提出很高的要求。热电偶传感器具有装配简单,抗震性好,精确度高,相应时间快,使用寿命长,最重要的是耐高温。故择热电偶测量电炉温度的原因有以下4点: 1)属于自发电型传感器,因此测量时可以不需要外加电源,可直接驱动动圈式 仪表。 2)结构简单,使用方便,热电偶的电极不受大小和形状的限制,可按照需求选 择。

3)测量范围广,高温热电偶可达1800摄氏度以上,低温热电偶可达-260摄氏 度 4)测量准确度较高,各温区中的误差均符合国际计量委员会的标准。 热电偶的工作原理的热电效应,两种不同成份的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电势。如果热电偶的测量端与补偿端端存有温差时,显示仪表将会显示出热电偶产生的热电势所对应的温度值。 热电偶的特性: 1)中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插 入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 2)热电偶的热电势将随着测量端温度的升高而增加,热电势的大小只和热电偶 导体材质和两端的温度有关,与热电极的长度、直径无关。 二、电炉测温方案论证 你本测温系统根据单片机为微控制器,对系统有2种设计方案: 方案一:系统由热电偶和集成温度传感器AD590测量热端和冷端温度,采用数据采集卡实现信号采集并传输给计算机。根据热电偶中间温度定律,利用计算机采用查表和曲线拟合进行非线性校正及冷端补偿。本系统将滤波、非线性和冷端补偿等功能由软件实现,简化了电路设计,提高了系统的

热电偶的检定方法

K分度号铠装热电偶校验方法: 1、经外观检查合格的新制热电偶,在检定示值前,应在最高检定点温度下,退火2 h 后,随炉冷却至250℃以下,使用中的热电偶不退火。 2、热电偶的测量端应处于检验炉最高温区中心;标准热电偶应与管式炉轴线位置一致。 3、检验炉炉口沿热电偶束周围,用绝缘耐火材料堵好。 4、检定顺序,由低温向高温逐步升温检定,炉温偏离检定点温度不应超过±5℃。 5、当炉温升到检定点温度,炉温变化小于0.2℃/min时,可以开始读取数据和测量信号。 6、读数应迅速准确,时间间隔应相近,测量读数不应小于4次,测量炉炉温度变化不大于±0.25℃。 7、测量时将所有测量数据填写在工作用热电偶检定记录表上(见附表) 8、详细请参见《JJG351--96工作用廉金属热电偶检验规程》。 在线取出热电偶操作方法 1、常温下直接取出热电偶即可。 2、高温下不能直接取出热电偶,高温下每取出10cm等待5分钟直至全部取出。 3、将取出的热电偶拿到校验炉进行校验,并把校验结果填入工作用热电偶检定记录表。 网带表面温度测量方法: 测量时网带上需无产品 1、把铠装热电偶端头用扎丝固定在网带中间,开动网带以正常速度前进。 2、向前行进2.5m后停止网带,在离铠装热电偶端头2m的位置再加扎丝固定后继续开启网 带前进。在后面可以视铠装热电偶行进情况在适当位置加扎丝固定。 3、当网带行进到氧化第一区位置时,停止网带5分钟待仪表显示数稳定后读出数据记录到 表格上,同时也读出该温区仪表显示值记录到表格。 4、按上面方法测量其它区温度并记录表格中。 5、测量完毕后抽出铠装热电偶和除去网带上残留的扎丝。

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

毕业论文 基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

智能热电偶测温系统设计

摘要 温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。 本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。 设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。 关键词:热电偶A/D转换模糊控制 ABSTRACT Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high. This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls. The technical index of design satisfied by system: Measure warm scope is 500 —

热电偶测温原理及其焊接

热电偶测温原理及其焊接 2008-12-05 09:19:27 安规与电磁兼容网来源:作者: 前言 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 热电偶测温基本原理 首先,介绍一下热电偶, 热电偶是温度测量中应用最广泛的温度器件, 他的主要特点就是测吻范围宽, 性比较稳定, 同时结构简单, 动态响应好, 更能够远传4-20mA电信号, 便于自动控制和集中控制。热电偶的测温原理是基于热电效应。当两种不同的导体或半导体A和B的两端相接成闭合回路,就组成热电偶,如图6.1所示。 如果A和B的两个接点温度不同(假定),则在该回路中就会产生电流,这表明了该回路中存在电动势,这个物理现象称为热电效应或塞贝克效应,相应的电动势称为塞贝克电势。显然,回路中产生的热电势大小仅与组成回路的两种导体或半导体A、B的材料性质及两个接点的温度有关,热电势用符号表示。闭合回路中产生的热电势有两种电势组成; 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势, 不同的导体具有不同的电子密度, 所以他们产生的电势也不相同, 而接触电势顾名思义就是指两种不同的导体相接触时, 因为他们的电子密度不同所以产生一定的电子扩散, 当他们达到一定的平衡后所形成的电势, 接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范, 国际上规定热电偶分为八个不同的分度, 分别为R, S, K, N, E, J 和T, 其测量温度的最低可测零下270摄氏度, 最高可达1800摄氏度, 其中B, R, S属于铂系列的热电偶, 由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种, 普通型和铠装型如图6.2。普通性热电偶一般由热电极, 绝缘管, 保护套管和接线盒等部分组成, 而铠装型热电偶则是将热电偶丝, 绝缘材料和金属保 护套管三者组合装配后

热电偶传感器的应用与发展.

热电偶传感器的应用与发展 一、引文 1.工作原理 在大量的热工仪器中,热电偶作为温度传感器,得到了广泛使用。它是利用热电效应来进行工作的,其热电势率一般为几十到几μV/℃。所谓的热电效应,是指当受热物体中的电子(洞),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。热电偶是将两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端),接线端子端叫冷端。当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值。电动势随温度升高而增长。 由于热电偶直接和被测对象接触,不受中间介质的影响,因而测量精度高,并且可以在-200~+1600℃范围内进行连续测量,甚至有些特殊热电偶,如钨-铼,可测量高达+2800℃的高温,且构造简单,使用方便。但是,热电偶只产生毫伏(mV)级输出,且需冷接点补偿(CJC)技术,延长时需补偿导线。 2.补偿原理 利用热电偶传感器测量温度时,冷端温度的影响是不可忽略的,且热电偶冷端暴露于作业环境中,可以认为冷端温度与作业环境温度一致。作业环境温度随季节气候变化而变化,因此冷端温度的测定是动态测定,冷端电势补偿是动态补偿。 在热电偶冷热端电势关系中,有如下公式存在: E AB(t,0)=E AB(t,t n)+E AB(t n,0) 其中,t为实测温度;t n为冷端温度;E AB(t,0)为冷端温度为0℃时,热电偶电势输出; E AB(t,t n)为冷端温度为t n℃时,热电偶电势输出;E AB(t n,0)为冷端补偿电势。上式中,E AB(t,t n)可直接从热电偶输出中检测到,只要获取冷端温度t n,就可以由分度表换算出E AB(t n,0),进而求出E AB(t,0)。于是完成了冷端电势补偿,并可换算出实测温度t 。

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

热电偶测温系统设计说明

任务书 课程传感器课程设计 题目热电偶测温系统设计 主要容: 本系统以单片机为核心,硬件设计使用高精度模/数转换器和高精度数/模转换器,分别实现对热电偶电动势的采样、放大、AD 转换和对线性化处理的数据转换,并在程序中采用修正后的数据,实现热电偶的线性化处理。 基本要求: 1、按照技术要求,提出自己的设计方案(多种)并进行比较; 2、利用热电偶和单片机等设计一种热电偶测温系统电路。 3、说明所用传感器的基本工作原理、画出应用电路电路图、写明电路工作原理、注明元器件选取参数、进行方案比较。 主要参考资料: [1]志尚.温度计量与测试[M].:中国计量,1998. [2]茂泰.智能仪器原理及应用[M].: 电子工业,2007. [3]杰,黄鸿.传感器与检测技术[M].: 高等教育,2006. [4]华东.单片机原理与应用[M].: 电子工业,2006. 完成期限 指导教师 专业负责人 2016年5 月7 日

摘要 在现代化的工业现场, 常用热电偶测试高温,测试结果送至主控机。热电偶是工程上应用最广泛的温度传感器之一,它具有构造简单、使用方便、准确度、热惯性小、稳定性及复现性好、温度测量围宽等优点,适用于信号的远传、自动纪录和集中控制,在温度测量中占有重要地位。但由于热电偶的热电势与温度呈非线性关系, 所以必须对热电偶进行线性化处理以保持测试精度。该测温系统通过高精度模/数转换器AD7705对热电偶电动势进行采样、放大, 并在单片机采用一定算法实现对热电偶的线性化处理, 再通过数/模转换器AD421进行数/模转换产生4 mA~ 20mA的电流, 送入主控中心。 关键词:热电偶;线性化;AD转换;DA转换;单片机

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

基于单片机的热电偶测温系统方案

基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

相关主题