搜档网
当前位置:搜档网 › 电气设备状态监测

电气设备状态监测

电气设备状态监测
电气设备状态监测

电气设备状态监测第1次作业

二、主观题(共14道小题)

8. abc环路线应该比较长

答:

电介质是指在电场作用下能建立极化的一切物质,广义上说来,电介质不仅包括绝缘材料,而且包括各种功能材料,如压电、热释电、光电、铁电等材料。

9.电介质有哪些类

答:

根据电荷在分子中的分布特性,可以把电介质分为非极性电介质、极性电介质、离子型电介质;电介质按照存在的形态分成几种基本类型:固体电介质、液体电介质、气体电介质和真空电介质。

10.说明固体电介质介质损耗的特点

答:

普通的无机晶体介质只有位移极化,其介质损耗主要来源于电导;玻璃的介质损耗可以认为主要由三部分组成:电导损耗、松弛损耗和结构损耗;非极性有机介质,既没有弱联系离子,也不含极性基团,因此在外电场作用下只有电子位移极化,其介质损耗主要是由杂质电导引起的;极性有机介质分子量一般较大,分子间相互联系的阻碍作用较强,因此除非在高温之下,整个极性分子的转向难以建立,转向极化只可能由极性基团的定向所引起。

11.什么是界面极化和损耗?

答:

不均匀介质的界面极化,不是由束缚电荷或弱联系离子的位移或转向引起的,而是由自由电荷的移动产生的。在电场作用下,介质中自由电荷移动,可以被介质中的缺陷或不同介质的分界面所捕获,形成空间电荷的局部积聚,使得介质中自由电荷分布不均匀从而产生宏观偶极矩的现象,称为界面极化或空间电荷极化。

12.说明介质损耗角正切的测量方法与特点

答:

电桥法:间接测量法,作为最传统的方法技术成熟,准确而可靠,但用于在线监测时把元件串入电路,降低了系统的可靠性;

谐振法:当测量频率增高至上kH z时,由于元件杂散电容、残余电感等的影响,一般电桥已不能用于绝缘材料的相对介电常数与介质损耗角正切的测量,在这种情况下广泛使用谐振法;

相位差法:直接测试介质损耗角,容易理解,用于在线监测非常方便,但对硬件要求很高,误差较大。

全数字法:采集信号后,所以计算均有微型计算机完成,方便、准确,对计算机计算要求较高

13.按导电载流子种类,电介质的电导可分为哪些类型?举例说明。

(1)电子电导(包括空穴电导):载流子是带负电荷的电子(或带正电荷的空穴)。

(2)离子电导:载流子是离解了的原子或原子团(离子),它们可以带正电荷,也可以带负电荷,如N a+、

Cl-、(OH)-等。离子导电时,伴随有电解现象发生。

(3)胶粒电导:载流子是带电的分子团即胶粒,如油中处于乳化状态的水等。

14.说明气体电介质的电导特性。

答:

常温、常压下的气体在较低电场强度下都是优良的绝缘体,能够通过气体的电流极其微弱,只有采用很高灵敏度的静电计才能检测出来(j < 10-14A/m2)。

气体中载流子的浓度与外界影响因素密切相关,如气体受到光、热、辐射等外因作用时,分子发生电离而产生正、负离子对;或由于光、热、辐射作用使阴极发射出电子。显然,气体中载流子浓度的大小主要取决于光、热、辐射等电离源的强弱。

15.列表说明运行中35kV、110kV、220kV、500kV油纸型高压套管在20℃时tanδ的规定值(%)答:

16.什么是GIS

答:

SF6封闭式组合电器(气体绝缘金属封闭开关设备)是将断路器、隔离开关、快速接地开关、电流互感器、避雷器、母线、套管和/或电缆终端等电气元件封闭组合在接地的金属外壳中,以SF6气体作为绝缘介质,简称GIS,其作用相当于一个开关站。

17.简述真空断路器的优点,及其主要应用场所。

答:

不爆炸,低噪声,体积小,高可靠性,检修周期长。35kV级以下(含)电压等级中占主导地位。

18.简述局部放电测量的脉冲电流法。

此法测量的是视在放电量。当发生局部放电时,试品两端会出现一个几乎是瞬时的电压变化,在检测回路中引起一高频脉冲电流,将它变换成电压脉冲后就可以用示波器等测量其波形或幅值,由于其大小与视在放电量成正比,通过校准就能得出视在放电量(一般单位用pC)。此法灵敏度高、应用广泛。

19.说明相对产气速率如何作为变压器故障判断的依据?

答:

相对产气速率即每运行一个月(或折算到月),某种气体含量增加原有值的百少数的平均值,按下式计算

相对产气速率也可以用来判断充油电气设备内部状况。总烃的相对产气速率大于10%时,应引起注意,但对总烃起始含量很低的设备不宜采用此判据。

需要指出,有的设备其油中某些特征气体的含量若在短期内就有较大的增量,则即使尚未达到阈值,也可判为内部有异常状况;有的设备因某种原因使气体含量基值较高,但增长速率低,则仍可认为是正常。

20.局部放电在线监测有哪些干扰?

答:

1)线路或其它领近设备的电晕放电和内部的局部放电

2)电力系统的载波通信和高频保护信号对监测的干扰

3)可控硅整流设备引起的干扰

4)无线电广播的干扰。这种干扰也是连续的周期性干扰,其频率

在500kHz以上。

5)其他周期性干扰。如开关、继电器的断合,电焊操作,荧光灯、

雷电等的干扰以及旋转电机的电刷和滑环间的电弧引起的干扰等,这

是一种无规律的随机性脉冲干扰。

21.某变电站大批电容器爆炸或外壳变形,研究表明是由于受潮引起的,请叙述受潮引起爆炸的原因。

答:

电气设备状态监测第2次作业

一、主观题(共14道小题)

1.用实例加以说明极性电介质的特点及适用场合

答:

无外电场作用时,分子的正电荷和负电荷中心不相重合,即分子具有偶极矩,称为分子的固有偶极矩。这种分子称为偶极分子或极性分子,由极性分子组成的电介质称为极性电介质,如聚氯乙烯、纤维、某些树脂等。

2.按照存在的形态,说明每一类电介质的用途。

答:

A.固体电介质:多用于支撑绝缘;

B.液体电介质:具有流动性,可用于散热要求较高的场合,如变压器;

C.气体电介质:与液体电介质相似,但其密闭性要求更高;其绝缘性能随气压而变化;

D.真空电解质:真空绝缘主要应用于中压开关设备上,具有优良的绝缘性能和灭弧性能。采用真空作为开关灭弧介质,成本低、维修费用低、无爆炸危险,另外,由于灭弧室具有高真空度,空气分子十分稀薄,真空间隙的绝缘强度比常温下的空气和SF6高得多。

3.从极化、电导、放电等角度分析电介质损耗的产生过程及影响因素.

答:

极化分为电子极化和松弛极化等,电子极化速度快,产生的损耗可以忽略;松弛极化主要由偶极子转向时分子之间的摩擦引起的,与电场速度、偶极子质量、温度等都密切相关,该极化只在交流电场下产生;电介质并非理想绝缘体,在电场作用下均有一定的电流通过,此为电介质的电导,电介质的电导越大,相同电压下产生的损耗就越大,受潮等绝缘缺陷都会使其增大,导致损耗增大;绝缘内部产生缺陷导致发生局部放电,电能以热和光的形式释放,导致损耗,而导致局部放电的原因较多,包括绝缘受潮,电压偏高等因素。

4.

什么是固体电介质的本征离子电导

答:

离子晶体点阵上的基本质点(离子),在热振动下,离开点阵形成载流子,构成离子电导。这种电导在高温下才比较显著,因此有时亦称为“高温离子电导”。

5.电介质老化有哪些主要类型?

答:

热老化、热氧化老化、光老化或光氧化老化、臭氧老化、化学老化、生物老化、疲劳、高能辐射老化、电老化。

6.叙述绝缘老化机理

答:

热老化是材料在热等因素作用下,材料发生失重、相对分子质量降低、熔化、结晶度与交联度变化等过程从而使性能下降的现象。通常所讲的热老化实际上包括:热老化、热氧化老化、热脆化和氧化脆化等。

7.简述放电对六氟化硫绝缘系统的破坏作用

答:

电晕放电对SF6的作用极为轻微,不产生剧毒的S2F10;但电弧的作用很强烈,大电流电弧通道中的温度高达4000K,能使SF6分解:

分解后绝大部分在70μs内复合还原。高温还能使电极金属汽化以及生成极少量低氟化物与金属的化合物。

SF6分解产物对绝缘材料有影响,稳定性排列顺序为:

C-C,C-F,C-H>酯基>氨基>缩醛>含硅材料含硅材料的稳定性最差,包括含玻璃纤维的浸渍材料、层压材料、含石英粉的各种涂料或浇注料、硅树酯和硅橡胶等都不能用在充SF6的电气设备中。

8.分别说明水树枝和电树枝老化对绝缘的破坏作用。

答:

当绝缘中存在尖端电极时,施加电压后,在尖端处发生电场局部集中现象,并从该尖端长出树枝状痕迹,最后发展到击穿。从诱发树枝到击穿的全过程是树枝化老化。当针尖无气隙时,电树枝的诱发可能是先从尖端注入载流子或因局部(尖端附近)电击穿诱发电树枝。当尖端存在气隙时,可能与气隙放电有关,放

电产生的带电粒子的冲击作用和热作用引发电树枝。

水树枝是在电场和水联合作用下在高分子电介质中所产生的树枝状痕迹。诱发水树枝的外施电压比诱发电树枝的电压低得多,例如潜水电机绕组线的对地工作电压只有220V,就足以诱发水树枝,且诱导期极短,甚至没有诱导期。水树枝诱发后,往往由它进一步发展为电树枝直至击穿。

9.什么是绝缘纸的平均聚合度,为什么其可作为变压器寿命的判断依据?

答:

变压器的寿命决定于振动和外电路短路时加在线圈上机械力和绝缘纸的老化破坏。由于热老化使绝缘纸的拉伸强度降低,而拉伸强度与绝缘纸的平均聚合度有着密切的关系。测定油中分解气体(如前所述)的目的本就是测定绝缘纸平均聚合度降低的情况。例如,从正在使用的变压器中只要取得很少一点绝缘纸作为试验样品,通过测定纸的拉伸强度和绝缘纸的平均聚合度,就可以直接分析得到变压器老化的程度。

10.如何测定变压器的绝缘电阻?

答:

绝缘电阻的测定是用来推定绝缘纸或绝缘油的吸湿和老化等情况的简单试验方法。一般是使用1000V以上的绝缘试验器和绝缘电阻测定仪,来测试线圈之间、线圈与地之间的绝缘电阻。

11.绝缘子串电压分布有哪些测量方法?

答:

①短路叉法:这是检测损坏绝缘子(又称零值绝缘子)最简便的工具。

②电阻分压杆、电容分压杆法

③火花间隙检测杆法

12.绝缘电阻测试能否很好判断套管、绝缘子是否具有裂纹?能否很好判断内部绝缘受潮?

答:

绝缘电阻测试不能很好判断套管、绝缘子是否具有裂纹;不能否很好判断内

部绝缘受潮。

13.为什么在线监测中最常用的传感器是穿心式的电流传感器。

答:

因为穿心式的电流传感器不会破坏电气设备的接线结构。

14.说明电力设备维修的演变

答:

事后维修(Break-down Maintenance)是当设备发生故障或其他失效时进行的非计划性维修。在现代设备管理要求下,事后维修仅用于对生产影响极小的非重点设备,有冗余配置的设备或采用其他检修方式不经济的设备。这种维修方式又称为故障维修。

预防性定期检修(Time-Based Maintenance)是一种以时间为基础的预防检修方式,也称计划检修。它是根据设备磨损的统计规律或经验,事先确定检修类别、检修周期、检修工作内容、检修备件及材料等的检修方式。定期检修适合于已知设备磨损规律的设备,以及难以随时停机进行检修的流程工业、自动生产线设备。

状态检修(Condition-based Maintenance)或预知维修(Predictive Maintenance)是从预防性检修发展而来的更高层次的检修体制,是一种以设备状态为基础、以预测设备状态发展为依据的检修方式。它根据对设备的日常检查、定期重点检查、在线状态监测和故障诊断所提供的信息,经过分析处理,判断设备的健康和性能劣化状态及其发展趋势,并在设备故障发生前及性能降低到不允许极限前有计划地安排检修。这种检修方式能及时地、有针对性地对设备进行检修,不仅可以提高设备的可用率,还能有效降低检修费用。它与预防检修相比较,带有很强烈的主动色彩。

电气设备状态监测第3次作业

一、主观题(共12道小题)

1.说明用热老化试验确定绝缘寿命的步骤

答:

A. 老化因子的选择

B. 试样确定与制作

C. 老化温度确定

D. 在规定温度下进行试样老化

E. 根据选择的老化因子,对老化后的试验进行测试

F. 分析

2.绝缘是如何进行耐热分级的?

答:

在电工技术中,常把电机电器的绝缘结构或绝缘系统以及绝缘材料按耐热等级分类。耐热等级由绝缘包括绝缘材料与绝缘结构在电机电器运行中允许的最高长期工作温度决定。

3.说明电老化的分类

答:

局部放电(电晕放电)老化、电弧放电老化和电痕化老化、树枝化老化。4.简述负电性气体的击穿特点。

答:对于具有较大电子亲和力元素的气体,即容易附着电子的气体,必须考虑负离子的形成对其放电过程的影响。一般来说,电子亲和力大的一些气体,如含卤元素的气体,其电离能远低于He等惰性气体,但其与空气的耐压比(相同pd时)却比He等惰性气体的大。C6H6等碳氢化合物气体,分子大,在温度与压力相同时电子平均自由行程小,其耐压比虽大于1,但与CC14等气体相比,在分子自由行程相近时,后者的耐压比却高得多。表明这类气体耐压比高并非由于其电离能大、电子平均自由行程小的原因,而主要是由于电子亲和力大容易吸附电子生成负离子的原因。在这类气体中,由于SF6在性能上具有很多优点,因此在高压电气设备中得到广泛应用。

5.绝缘纸和织物浸胶和浸油的目的是什么?

答:

填充绝缘纸中的气隙,提高电气强度。

6.简述变压器绝缘结构

答:

变压器绝缘可以分为内绝缘和外绝缘。

内绝缘是处于油箱中的各部分绝缘,这些绝缘是油、固体绝缘材料和二者的组合。外绝缘是空气绝缘,这是指套管上部对地和彼此之间的绝缘以及保护间隙。

内绝缘可以分为主绝缘和纵绝缘两种。主绝缘是某一绕组与接地部分以及与其它绕组间的绝缘。主绝缘由变压器的一分钟工频耐压和冲击耐压所决定。

处于绕组之外,连接绕组的各部分及绕组与套管的那些连接线本身的绝缘,称为引线绝缘,一般根据工频耐压试验电压而决定,但有时也要考虑冲击强度。

7.简述单芯交联聚乙烯(XLPE)电缆的绝缘结构

答:

如图所示。电缆内部半导电层、绝缘体、外部半导电层是由挤塑机进行挤塑成型的。由于要连续制造厚绝缘电缆,需同时进行加热、冷却,故需80 m的高塔。

8.请画出反接法测试高压套管介质损耗的示意图

答:

9.变压器油中溶解故障气体的各组分中,电弧放电的特征气体是什么?用油中溶解乙炔判断变压器故障时,110kV变压器的注意值是5uL/L,而500kV变压器的注意值是1uL/L,说明为什么两者存在这么大的差异。

答:

1) 电弧放电的特征气体:C2H2

2) 110kV变压器电压等级低;110kV变压器体积小,同样体积的故障体积表现出来的

浓度要小得多。

10.简要比较说明少油断路器、真空断路器、SF6断路器的优缺点。

答:

(1)少油断路器:结构简单、制造容易、维护方便,但由于使用油作为绝缘介质,有发生火灾的危险,安全可靠性不是很高;

(2)真空断路器:不爆炸、低噪声、体积小、高可靠性,检修周期长,但目前电压等级不是很高;

(3)SF6断路器:体积小,占地面积小,运行安全,维护简单,技术比较先进,经济上比较优越,但为防止漏气,对工艺要求较高。

11.请给出绝缘内部气隙局部放电的等值电路

答:

12.给出容性设备在线监测系统的原理图,并简单说明。

答:

通过测试绝缘泄露电流和电压,采用傅里叶变化获得各自的相位,根据两者相位角的差即可获得介质损耗角正切。

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 发表时间:2018-07-05T16:32:13.820Z 来源:《电力设备》2018年第9期作者:官韵[导读] 摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。 (国网重庆市电力公司江津区供电分公司 402260)摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。在电力工程中,输变电设备是电网的重要组成部分,输变电设备的可用性与稳定性直接影响到电网的安全运行。及时发现并排除输变电设备的潜伏性故障是电网企业关注的一项重要课题。随着我国电力工业的发展,一方面,电网规模不断发展,输变电设备数量激增,用户对供电可靠性要求不断提高;另一 方面,设备的信息化程度越来越高,设备状态监测技术日益成熟,设备运行数据与测试数据激增,基于大数据的电气设备在线监测与故障诊断技术地发展已经逐渐成为焦点,借助信息技术对设备进行故障诊断势在必行。 关键词:电气设备;状态监测;故障诊断引言 电力行业的快速发展和技术水平的提升在我国经济建设上发挥很大的作用。在电力行业中,电气设备就是电力系统中电力线路、变压器、发电机、断路器等的统称。依据不同测量方式和传感器来反映设备实际运行状态的化学量和物理量的一种方式就是设备状态监测,主要就是为了能够检测是否具备正常运行的设备状态。这种电气设备的状态监测与故障诊断技术属于新型的交叉科学,实际应用的时候还是处于初级研究阶段,由于不断发展科学技术,逐渐运用信号技术、数据仓库技术、计算机网络技术、电子技术、传感技术等,从而一定程度上提高了电气设备的状态监测与故障诊断技术的整体水平。 1电气设备状态监测与故障诊断系统功能 1.1数据浏览功能 在系统的状态监测与故障诊断系统中,需要通过网络技术来实现数据的浏览,用户在监控系统过程中,可以通过联网计算机实现对设备运行相关数据的查询和分析。其主要是由于在设备的运用过程中,通过传感器可以将设备运行的状态发送到计算机中,通过处理器的分析功能,可以实现对数据的整理和反馈,从而可以实现对设备运行状态的监控和诊断。 1.2信号变送和评估诊断 电器设备在线运行参数采用各种传感器进行采集,例如电压、电流、湿度、温度、压力等,将各项参数转换为电信号送入到后续单元,是在线监测系统是否准确的前提;对采集的信号通过先进的评估算法对设备运行状态进行评估,给出评估结果,为制定检修策略提供依据。 1.3智能诊断功能 在电气设备运行中,通过系统可以实现对设备的数据收集,而用户将专家系统、神经网络以及人工智能等手段应用于设备的监控中,可以实现对设备运行状态的综合诊断,降低了人力资源的使用率,同时提升了设备诊断的质量和效率。 2电气设备状态监测与故障诊断技术的方法 2.1电气设备在线状态监测与故障诊断技术 第一,局部放电监测技术。局部放电监测技术、超声波监测法及电容器祸合监测法、电容器祸合监测法。第二,油色谱监测技术。现阶段比较常用的UI中设备绝缘检测方式就是油中气体分析法。第三,介损监测技术。这种技术主要应用在电容型设备中,电容型设备实际上就是部分或者全部绝缘,依据电容式设计设备绝缘结构,主要目的就是用来检测设备介电特性。合理应用测量方式能够在一定程度上克服上述问题,也就是说在相同变电站中安装容性设备,并且对比分析容性设备绝缘情况,可以及时获得出现大变化容性设备。在对比分析相同电容型设备电容量比值和介损值的时候,需要合理利用介损差值变化量来对设备绝缘情况进行判断。 2.2发电机状态监测与故障诊断 发电机状态监测与故障诊断在实际应用的时候主要作用就是检测设备初始阶段的问题和缺陷,以便于能够有计划的对设备进行维修,最大限度降低设备停机概率。在设备运行使用的过程中尽可能缩短发电机维修时间以及延长无故障时间,可以在一定程度上降低维修发电机的费用,从而增加设备可用性。现阶段发电机就是在运行中利用发电机射频监视仪、发电机状态监视器以及发电机光纤测漏仪进行状态检测,上述系统可以监测和报警发电机内部故障,引导相关操作人员能够及时了解以及重视设备实际运行情况,为操作人员进一步调整负荷进行指导以及检测是否出现停机问题。国内现阶段也开始研究氢冷发电机,依据化学量分析方式来诊断氢气中杂质成分,以此来判断设备故障。发电机设备状态检测以及系统故障诊断的时候需要采集和观测很多机械、电气、物理、化学特征和数据,形成相应的数据处理系统,为监测提供正确的缺陷和异常数据信息。利用早期故障预报来判断和分析计算机故障情况,并且提供相对合理的检修方案。诊断发电机故障的时候主要包括以下几方面:定子类故障:绕组振动故障、引出线套管故障、绝缘故障、铁心故障;转子类故障:绕组故障、本体及护环故障、绝缘故障以及油系统故障、氢系统故障、水系统故障。 2.3真空断路器控制回路电气特性的在线监测 真空断路器控制回路电气特性的在线监测主要是针对断路器控制回路电流、电压的监测。如果真空断路器的分间速度过高,那么在触头接触时整个机构就会承受过大的冲击力与机械应力,严重时会对真空断路器的一些部件产生损坏,大大缩短真空断路器的使用寿命;真空断路器的机械特性参数对真空断路器的使用乃至整个电力系统的稳定运行都有至关重要的意义。电磁铁是触发断路器完成开关动作的关键元件,因此对控制回路电流、电压信号的监测中,最直观有效的方法就是对分、合闸电磁铁线圏电流、电压进行监测。分、合闸电磁铁作为真空断路器动作过程中的第一级控制元件,是操动机构中最重要的部件。它主要传递执行断路器发出的动作命令,以电磁力的形式触发断路器的机械传动机构,从而完成分、合闸动作。然而,断路器如果长期运行,分、合闸电磁铁随着动作时间和频率的增大就会出现各种故障,例如铁芯卡涩、匝间短路、接触不良等故障,甚至会进一步发展成严重的断路器拒合、拒分、误合、误分等故障,严重影响断路器的动作性能。在断路器的分、合闸动作过程中,操动机构任何运行状态或者健康状况的变化都有可能引起电磁铁线圈电流的变化,因此,线圈电流信号中包含着丰富的操动机构状态信息。这些信息能准确反映电磁铁本身以及操动机构其他运动部件的工作状况,如铁芯有无卡滞、脱扣、传动机构的变动情况、阻间短路或者接触不良等等,从而为在线监测和故障的针对性诊断提供了重要依据。 2.4系统的发展与展望

电力设备状态监测及故障诊断系统原理 黄宏宏

电力设备状态监测及故障诊断系统原理黄宏宏 发表时间:2017-01-18T14:38:24.293Z 来源:《电力设备》2016年第24期作者:黄宏宏1 徐晓明2 [导读] 通过合理的技术或者方法,科学诊断电力设备故障情况,提高电力设备故障监测和诊断的准确性和科学性。 (1集瑞联合重工股份有限公司安徽省芜湖市 241000; 2明光浩淼安防科技股份公司安徽省明光市 239400) 摘要:现阶段,电力设备故障诊断技术越来越趋于信息化和数字化,一般使用网络来传输诊断信息,实现了远距离诊断、传输的目标。有些诊断系统还开发了诊断和报警客户端,可以随时随地监控电力设备的运营状态。 关键词:电力设备;状态监测;故障诊断 一、电力设备的状态监测技术 当前,电力设备故障监测和检修缺少合理、科学、明确的规范要求,这主要是由于各个地区存在较大的电气差别,根据电力设备运行状态,采用科学合理的故障状态检修方法,但是电力设备故障监测和检修主要依赖长期积累的实践经验,存在较大的主观性和随意性,但是实效性、规范性、客观性和科学性不足,而且电力设备故障监测和检修手段比较滞后。所以电力设备运行过程中,应做好状态监测,详细记录电力设备运行状态,做好评估和分类,为故障诊断和维修提供重要参考意见。电力设备状态监测包括以下内容:其一,为电力设备运行积累数据和资料,构建电力设备运行档案;其二,科学判断电力设备的运行状态,分析其处于异常或者正常状态,结合电力设备的故障征兆或者特征、运行状态等级、历史档案等,判断电力设备的故障程度和性质;其三,科学评估电力设备运行状态,合理分类,形成一定标准后,为电力设备状态检修提供重要参考依据,对电力设备故障或者异常状态进行有效估计,全面预测电力设备未来变化状态。对于电力设备的运行状态监测,要采取有效的方法和技术。 1、信号采集 结合当前我国电力系统建设发展现状,通过电力设备在线监测系统,持续检查和分析电力设备运行状态,利用各种运行状态量,分析电力设备运行状态,全面采集电力设备状态信息,包括磁力线密度、局部放电量、频率、电力、电压等信号,结合电力设备的各种状态量,采用合适的信号采集方法:其一,定时采样,按照电力系统运行状态,做好电力设备的定时采样;其二,一次性采样,每次采集一次合适长度的数据处理信号样本;其三,根据电力设备故障突变信号,实现自动化的信息采样;其四,结合电力设备故障诊断要求,采用峰值采样、转速跟踪采样等特殊方式。结合电力设备运行状态,采用合适的状态监测方法,对于断路器,采用振动监测法、跳闸轮廓法等,采集断路器运行状态信息;对于交流旋转电机,通过小波分析、神经网络等方法监测点击运行状态;电力系统变压器运行过程中其内部会发生绝缘老化,导致变压器发生运行故障,结合变压器的电气特性和机械性能,采用电压恢复法、极化波谱、振动分析、油气分析、局部放电等方法,全面监测变压器的运行状态。 2、数据传送 信号处理系统一般距离被检测设备比较远,长距离传输过程中,信号非常容易受到影响因素的干扰,数据信息容易出现一定程度的损失,相移基本上不可能保持一致。为此,首先需要进行模数转换,将数据信息转化为数字量,然后进行预处理,并压缩打包,再通过通信传输通道将数据信息传输到数据处理中心。光导纤维具备较强的抗干扰能力,出现的信号错乱和信号数据损失的情况较少,可以有效保证信号传输质量。 3、数据处理 通过不同方法对电力设备状态数据进行解包处理,例如,利用人工智能、小波分析,在时域利用不同信号的相关性,分析和处理另一个信号数据。把电力设备运行信号进行频谱分析转换为不同频域的频率信号。 4、故障信号特征量的选取 一般情况下,运营设备出现的故障现象,都是由多个故障体征量引起,所以提取有效的故障信息量是诊断故障工作中的重点。对处于运动状态中的设备开展故障识别工作时,经常会因为选取的特征量不同,而出现不同的结果,选取的特征量不恰当,就会出现漏诊或者误诊的情况。出现误判的主要原因是设备在故障状态下和正常状态下的特征参数有重复,即正常状态和故障状态不能很好地被区分,有一定程度的模糊性。所以在监测过程中,应当提取出具有代表性的故障特征参量。 二、诊断故障 (1)通过信息融合和多传感技术来诊断。多传感技术主要是从多个侧面、不同角度来对同一个物体进行检测,即针对同一个故障的不同表现形式,可以从时间、空间、频域的角度着手,多个领域、多个层次地收集故障特征量。为了保证故障特征量的代表性,应选取故障反应速度较快的故障状态信息量。信息融合技术是将多传感的数据按照一定的标准排列整合,并进行综合性分析。同一故障设备在不同的环境中,会反映出不同的故障特征量,运用信息融合技术可以实现“求同除异”的目标。对不同的故障状态特征量进行融合,可以提高电力设备状态监测的准确度和故障诊断的可靠性。但信息融合技术基本理论并不完善,所以信息融合技术诊断方法还需进一步研究。(2)基于特征空间的矢量故障诊断手段,其最大的优势在于具有很强的适应能力,适用范围广,最适合延时性和变化性电力设备。(3)电力设备的在线监测状态和固有特性信息量不足,会导致监测出来的结果存在偏差和变化,针对此问题,可以使用模糊理论中最大隶属原则。这种诊断原则可以迅速找出电气故障原因,并且可以判断电气的故障类型。将模糊理论中最大隶属原则和状态信号相结合,可以分析电气故障的模糊性和变化性。常用的模糊方程为Y=XR,X代表故障征兆,Y代表故障原因,R为模糊关系矩阵。(4)使用人工智能方式,包括神经网络、专家系统等。 三、电力设备故障诊断系统应用 1、采集故障信号 从复杂错综的电力设备故障信号中提取有用信号,做好电力设备故障信号处理,通过采集精细的设备运行信息,准确地进行电力设备故障诊断。电力设备的一种故障可能反映出多种故障特征量,若故障特征量选取不合理,在诊断电力设备故障状态过程中会产生漏诊或者误诊,不利于电力设备故障的正确判断,因此在针对电力设备故障,应选择合适的特征参量。 2、故障诊断信息和分析技术 近年来,我国科学技术快速发展,对于电力设备故障情况,在诊断故障过程中运用信息技术,推动电力设备故障诊断的网络化、数字

物联网技术在电力设备状态监测系统中的应用

物联网技术在电力设备状态监测系统中的应用 北极星电力信息化网 2013-11-1 11:05:33 我要投稿 关键词: 在线监测避雷器电力设备 北极星电力软件网讯:摘要:避雷器作为电力设备的过电压保护装置,其性能的优劣对电力设备安全运行起着很大作用。提出了一种基于无线传感技术的避雷器状态监测系统,并利用基波分析法来诊断避雷器运行状态,并取得较好效果。 0 引言 金属氧化物避雷器已在电力系统中得到了广泛的应用,其作为电力设备的过电压保护装置,对电力设备安全运行起着很大的作用。避雷器在运行电压作用下产生泄漏电流,包括容性电流和阻性电流,其中容性电流的大小仅对电压分布有意义,并不影响发热,而阻性电流则是造成金属氧化物电阻片发热的真正原因。当避雷器内部出现异常时,主要是阀片严重劣化和内壁受潮等阻性分量将明显增大,并可能导致热稳定破坏,造成避雷器损坏。但这个持续电流阻性分量的增大一般是经过一个过程的,因此运行中监测金属氧化物避雷器的持续电流的阻性分量,是保证安全运行的有效措施。 目前开展避雷器带电测试方式有全泄漏电流在线测试技术和利用便携式测试仪定期带电检测阻性电流。这二种测试方式均存在不足之处,其中前者只能观测全泄漏电 流无法区分容性电流和阻性电流,由于采用模拟测试技术结果易受空间电磁场干扰、精度差、准确度差;而后者无法实现实时监测,虽然能较为准确地测量阻性电流分量,但试验接线较繁琐,大型变电所引线布置复杂难以满足测试要求,雷雨季节前后各变电所普遍开展测试工作量大,此外测试过程中需要在运行设备上进行接线对工作人员及试验设备都有一定安全风险。因此,研究一种新型的避雷器状态监测系统已迫在眉睫。 1 以前避雷器在线监测存在的不足 以往有过避雷器泄漏电流在线监控实验性产品,主要采用RS-485,CAN组成监控网络。其安全保证主要是光电隔离,然而这类避雷器泄漏电流在线监控方案的安全性是有疑问的。由于避雷器在动作时要承受巨大的雷击能量,避雷器泄漏电流监视器同样也要承受这个能量,如果采用这类在线监视技术不可避免的需要布设供电和通讯线缆,电源线只能采用铜缆,这会带来巨大风险,如果装置出现问题很可能将雷击能量引入控制室,导致故障扩散到变电站主控设备而使得整个变电站崩溃。由于安全风险巨大,采用此类在线监测方案的产品几乎没有得到变电站采用。

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统 MDS-4000系统简介 MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。 MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。 MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。 MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。 MDS-4000系统特点 MDS-4000系统技术特点

高压电气设备状态检测的国内外研究现状

高压电气设备状态检测的国内外研究现状 1 引言 在电力系统和各种用户系统中,高压电器和开关设备均具有重要的地位和作用,各种高压和开关设备的工作原理和功能各不相同,构成供变电工程的各个组成部分。随着电力系统的发展,对发、输、供和用电的可靠性要求越来越高。对高压电气设备的状态检测显得尤为重要。目前国内外对高压电气设备状态检测主要是针对断路器、容性设备避雷器、变压器等设备进行检测。断路器中应用最多的是SF6封闭式组合电器,它主要指将断路器、隔离开关、母线和互感器等都是浸泡在高性能绝缘材料中,如真空、SF6气体等,,称为“气体绝缘开关设备”( GIS,Gas Insulated Switchgear) 。对高压电器状态检测主要指的是对各种开关设备和电器进行检测,其对整个电力系统的运行起至关重要的作用。 2. 高压电器状态检测的国内外研究现状 2.1断路器状态监测的国内外现状 高压断路器实时状态监测技术在国内发展的时间不超过10年, 由于断路器状态的好坏, 对电力系统的安全、可靠运行有着直接的影响。因此, 对断路器的状态监测也是十分必要的。目前用于评估断路器状态主要采用两种方法: 一是跳闸线圈轮廓法(TCP) , 一是振动监测法。振动监测法是通用的方法,而TCP 法则是通过考察断路器动作时, 流过跳闸/闭合线圈里的电流波形来获得断路器的状态信息。因为当断路器处于不同状态时, 会产生不同的电流波形。 2.1.1 GIS中SF6断路器状态的在线检测 GIS(Gas Insulated Switchgear)装置是20世纪60年代中期出现的一种新型开关装置。GIS具有占地面积小、故障率低等优点,已成为高压开关设备的主要发展方向。GIS技术的应用,使得其核心电力元件——SF6断路器的检修更加困难,所以必须对其中的断路器进行在线状态监测才能做到维修量最小和维护费用最低。 随着技术的不断发展,SF6开关设备运行状态在线检测手段也日益进步,激光检漏和超声局放等新技术的出现,可以在设备不停电的情况下对开关设备状态进行综合在线检测,并对故障点进行精确定位,为现场SF6 开关状态的在线检测提供了新的方法。激光成像技术是利用SF6 对红外光谱的吸收特性,使肉眼不能观察到的SF6 泄漏气体在红外视频上清晰可见,由图像快速地确认泄漏源,为检测人员提供了一种快速识别泄漏源的技术。当GIS、罐式断路器内部有局部放电发生时,其释放的能量使SF6 气体周围的温度升高,从而产生瞬时的局部过压,形成的扰动以声波的形式传播,传播到金属外壳时会在外壳上传播。在外壳上用特制的声探头可检测到传播波,这样就可以间接发现设备内部存在的局部放电。而如果在设备内部有金属微粒存在,微粒在电场力与重力作用下会在内部跳动,碰撞金属外壳,从而产生一定频率的声波,这同样可以用声探头进行检测。 2.1.2 GIS中局部放电在线监测技术 GIS以结构紧凑、可靠性高等优点逐渐成为超高压电力系统中的主流设备,但由于制造运输现场装配等多种原因不可避免地存在绝缘缺陷而影响其长期可靠性。鉴于绝缘介质在发生击穿前都会产生局部放电,因此对GIS进行局部放电监测可以发现绝缘的早期故障。。通过对GIS局部放电在线监测,可以监测到GIS 的绝缘状况,预先发现GIS 内部存在的绝缘缺陷,避免绝缘事故的发生。因此,开展GIS 在线监测技术的研究具有越来越重要的意义。GIS 的局部放电检测技术主要有:超声波检测法、化学检测法、脉冲电流法、超高频法等。

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 1前言 1.1状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,状态监测”是特征量的收集过程,而故障诊断”是特征量收集后的分析判断过程。 广义而言,诊断”的含义概括了状态监测”和故障诊断”:前者是诊”;后者是断”。 1.2状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

浅谈电力设备状态监测技术

浅谈电力设备状态监测技术 发表时间:2009-02-11T13:31:11.420Z 来源:《黑龙江科技信息》2008年9月下供稿作者:贾洪海 [导读] 介绍了电力设备状态监测技术发展及现状,论述了状态监测将向着智能型、系统型的状态智能管理系统发展 摘要:介绍了电力设备状态监测技术发展及现状,论述了状态监测将向着智能型、系统型的状态智能管理系统发展,介绍了该系统的组成及功能,指出了先进的传感器技术和智能信息处理技术在发展新型的状态监测系统方面的巨大作用。 关键词:电力设备;状态监测;状态智能管理;智能信息处理 引言 状态监测(condition-based moni-toing)是利用传感技术和微电子技术对运行中的设备进行监测,获取反映运行状态的各种物理量,并对其进行分析处理,预测运行状况,必要时提供报警和故障诊断信息,避免因故障的进一步扩大而导致事故的发生,指导设备最佳的维修时机,为状态检修提供实时数据。 20世纪80年代以来,随着科学技术的发展,状态监测技术在我国逐渐开展起来,设备维修策列也从“计划维修”逐步向“状态维修”转换。纵观该技术的应用,还不够成熟,总体来看,投入产出比,性能价格比都很不理想。随着网络、通信、信息技术的进一步发展,设备状态监测将向着系统化集成化方向发展,形成以状态监测为基础的设备智能管理系统,新型传感器技术、智能信息处理技术将更多的应用于系统中,能对在线和离线数据进行分析处理,对设备进行实时监测、故障诊断,针对诊断结果提供相应的维修策略,并对设备进行状态分析,评估设备的当前健康水平。 1 状态智能管理系统 状态监测技术的研究将从局部探讨进入系统研究阶段,建立在状态监测基础上的状态智能管理系统将成为发展趋势,该系统具有对设备进行状态量监测、故障预警、故障诊断、状态评估等功能,并且能对状态维修提供智能化决策。该状态监测系统是实行电气设备状态检修体制的前提和基础,系统将由下列几部分组成: (1)传感器(Sensor)。 将电量、物理量、化学量,转换成适合于数据采集装置处理的电信号。其选择依赖于状态监测采用的方法和被监测设备的故障产生机理。通常考虑适用于在线监测,有较高的灵敏度、价廉、非侵入性、抗干扰等特点。 (2)数据限集(Data acquisition)。 采集传感器输出信号,对信号进行去噪、选取、滤波、模/数转换等处理以及对传感器补偿和校正等。 (3)故障检测(Fault detection)。 首要目的是明确被检测设备是否出现初期故障征兆,为故障报警以及进一步的故障分惜提供依据。故障检测一般包括参考模型和故障特征提取两种方法。 (4)诊断与决策(Diagnosis)。 测到的异常信号进行处理、分析,制定维修策略。目前的研究方向倾向于由计算机采用先进的数字信号处理、人工智能技术进行在线自动分析处理,从而给出设备的故障类型、故障定位和维修决策等信息。 (5)评估(Assessment)。 对影响设备状态各种因素进行分析,涉及到这些因素的定义(即状态参量)、检测和综合分析,最终对设备的状态进行评估,为设备的使用和维护提供依据。 简要概括一下状态监测系统的任务,工作过程和相关技术理论。新型传感器技术、数字信号处理、智能信息处理等技术以其强大的数字处理能力在设备的状态监测领域得到了广泛应用。自动分析处理功能和在线故障诊断是实行状态监测的显著特征,状态监测将向着快速计算、智能分析的系统化方向发展。 智能管理系统的软件部分将是高性能的信息融合软件系统,具有规范的接口和通信标准。能实现各种状态信息,各种故障诊断方法,各种信息处理方法的有机融合,提高状态监测的可靠性和实用性,其系统分析数据能够远程传输,实现数据共享。该软件是信息处理的中枢,能够对多源信息进行融合处理,对在线、离线数据进行自动分析,根据故障征兆进行分析诊断,及时发现潜伏性故障,并且对设备状态进行分析,对设备进行状态评估,根据评估的情况,如正常级别、缺陷级别、障碍级别、事故级别,确定合适的检修方案。 2 新技术的应用 2.1智能传感器 传感器是设备状态信息获取的源头,将直接影响到监测系统的性能。传统的传感器有易受干扰、寿命低、灵敏度不高、成本高、稳定性差等缺点,科学技术的发展促进了测量技术的进步,新型传感器的出现解决了信息采集可得性问题,新工艺、新测量原理的传感器对提升系统性能起到了关键作用。目前,新型数字式传感器,基于MEMS技术的传感器已大量采用,特别是MEMS传感器,具有体积小,可靠性高,技术附加值高等特点,已成为全世界传感器市场增长最快的产品之一。建立在新工艺、新测量原理上的智能传感器,能提高数据采集的精度,并且有自校正、自补偿功能,将智能传感器用于设备数据采集,能解决数据不稳定,存在严重干扰,测量数据精确度不高等问题,也为系统诊断分析打好了基础。 2.2智能信息处理 智能信息处理技术就是将不完全、不可靠、不精确、不一致和不确定的知识和信息逐步改变为完全、可靠、精确、一致和确定的知识和信息的过程和方法。就是利用对不精确性、不确定性的容忍来达到问题的可处理性和鲁棒性。处理方法有神经网络、模糊系统、粗糙集、信息融合等。 设备的诊断、分析、评估、决策都存在信息处理的问题,拿故障诊断来说,设备故障类型繁多,故障的征兆也很多,故障因果关系复杂,其故障机理无法以固定的规则来表示,这种特殊性决定了其监测信息中存在不确定信息,传统方法只能处理确定性信息,智能信息处理技术能对不确定信息进行处理。在设备状态智能管理系统中,可获得的信息有在线的、离线预防性实验、历史数据等,如何对信息进行分析处理,提取与设备诊断相关的特征信息,从而得出对设备运行状态进行可靠评定,为状态维修提供可靠决策,是该系统的关键。在智

电力设备带电检测技术规范

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 ...................................................................... I 1 范围 (1) 2 规范性引用文件 (1) 3 定义 (1) 5 变压器检测项目、周期和标准 (4) 6 套管检测项目、周期和标准 (5) 7 电流互感器检测项目、周期和标准 (6) 8 电压互感器、耦合电容器检测项目、周期和标准 (8) 9 避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11 开关柜检测项目、周期和标准 (12) 12 敞开式SF6断路器检测项目、周期和标准 (12) 13 高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

。 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

设备状态监测及故障诊断

设备状态监测及故障诊断 近年来,为了提高设备管理与维修的现代化水平,在省设协和油田设备处的大力支持与帮助下,我厂应用状态监测及故障诊断技术,及时发现并解决了许多设备隐患,提高了设备运行可靠度,为电厂长周期、满负荷生产奠定了良好的基础。 1 开展状态监测与故障诊断工作的缘由 1.1 状态监测与故障诊断是一种新的管理理念 电厂生产的特点是自动化水平高、生产连续性强,一旦某台设备发生故障,将迫使机组降低负荷,甚至停机。多年的摔打与磨练告诉我们:单凭眼看、手摸、耳听、鼻嗅等感观经验来判断设备故障已无法适应现代化生产的需要,只有开展状态监测和故障诊断工作才能彻底摆脱这种落后的管理模式。 1.2 状态监测和故障诊断是提高设备管理水平的需要 我厂已搞过8次大修,在检修项目的确立和设备系统部件的更换上,虽然针对性、方向性有了很大提高,但确切性、适宜性、经济性仍有差距。根据“四个凡是”的贯标精神要求,设备、系统的大小修的立项应更具科学性、针对性,减少盲目性,要解决这一问题,惟有开展状态监测和故障诊断。 1.3 状态监测和故障诊断是降本增效的需要。我厂检修费用一年比一年紧缩,降本增效压力逐年递增,如何进一步降低发电成本,是摆在全厂干部职工面前的一个现实问题。从历年大修情况来看,部分单位存在不同程度的欠修和过剩检修。过剩检修意味着工作量加大,费用增加,造成人、财、物的浪费,而欠修将给设备运行带来隐患。开展状态监测和故障诊断可有效避免欠修和过剩检修,做到物尽其用,达到降本增效的目的。 1.4 状态监测和故障诊断是二期投产的需要 我厂二期两台机组相继投产,如果按照过去三年一大修的计划,每年至少要安排一台机组大修,甚至一年安排两台机组的大修。我厂经过8次机组大修,积累了丰富的检修经验,对设备、系统的性能特点有了更深的了解。特别是1999年和2000年的机组技改性大修,使设备的可靠性有了明显提高,基本具备了把机组三年一大修改为四年一大修的条件。延长大修周期的保证是开展状态监测和故障诊断,延长设备使用寿命,避免突发性故障。 近几年来,通过实践逐步提高了对状态监测和故障诊断工作的认识,通过对设备定时、定点、定人监测,特别是#2机组在线监测系统,避免了多起设备事故,更坚定了我们开展这项工作的决心。 2 开展状态监测及故障诊断技术的依据

设备状态监测

1)设备状态监测的概念对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。 状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。 特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 (2)设备状态监测与定期检查的区别设备的定期检查是针对实施预防维修的生产设备在一定时期内所进行的较为全面的一般性检查,间隔时间较长(多在半年以上),检查方法多靠主观感觉与经验,目的在于保持设备的规定性能和正常运转。 而状态监测是以关键的重要的设备(如生产联动线、精密、大型、稀有设备,动力设备等)为主要对象,检测范围较定期检查小,要使用专门的检测仪器针对事先确定的监测点进行间断或连续的监测检查,目的在于定量地掌握设备的异常征兆和劣化的动态参数,判断设备的技术状态及损伤部位和原因,以决定相应的维修措施。 设备状态监测是设备诊断技术的具体实施,是一种掌握设备动态特性的检查技术。 它包括了各种主要的非破坏性检查技术,如振动理论,噪音控制,振动监测,应力监测,腐蚀监测,泄漏监测,温度监测,磨粒测试(铁谱技术),光谱分析及其他各种物理监测技术等。

西南交通大学电气设备状态监测期末复习

第一章 1、电介质的定义 电介质是指在电场作用能产生极化的一切物质。广义上说来,电介质不仅包括绝缘材料,而且包括各种功能材料,如压电、热释电、光电、铁电等材料。 2、电介质的分类方法 (1)根据正负电荷在分子中的分布特性,可把电介质分为三类:?非极性电介质?极性电介质?离子型。(2)根据实际应用情况,按照电介质的凝聚形态,可将其分为四种基本类型:固体电介质、液体电介质、气体电介质、真空绝缘 3、不同类型电介质在绝缘特性上的差异 4、常用的气体、液体、固体电介质的特点及其适用场合 液体电介质又称绝缘油,在常温下为液态,在电气设备中起绝缘、传热、浸渍及填充作用,(特点):流动性,击穿后有自愈性,电气强度比气体的高,用液体电介质制造的高压电气设备体积小,节省材料,液体电介质可燃,易氧化变质,产生水分、酸、油泥等导致电气性能变坏。(适用场合):主要用在变压器、油断路器、电容器和电缆等电气设备中。 气体电介质应具有绝缘强度高、化学及热稳定性好、对结构材料的腐蚀作用很小、不燃、不爆、液化温度低、热导率高、在电弧条件下耐分解、不产生有毒及腐蚀性分子等特性。?此外,还要求成本低,净化维护方便。 真空绝缘(特点):采用真空作为开关灭弧介质,成本低、维修费用低、无爆炸危险,另外,由于灭弧室具有高真空度,空气分子十分稀薄,真空间隙的绝缘强度比常温下的空气和SF6高得多。(适用场合):主要应用于中压开关设备上,具有优良的绝缘性能和灭弧性能。5、SF6气体在电气绝缘领域的应用及其优缺点 SF6气体综合性能优异,具有很高的绝缘强度和灭弧性能,广泛应用于高压断路器、电容器、电缆、变压器及气体绝缘变电站(GIS)放电后的分解对含Si02的瓷和玻璃等无机材料有强的腐蚀性;密度大,在检修充SF6电气设备时易引起工作人员窒息;价格较贵。 6、电气设备对不同电介质的具体要求 液体介质的要求:(1)电气性能好,例如绝缘强度高、电阻率高、介质 损耗及介电常数小(电容器则要求介电常数高)(2)散热及流动性好,即粘度低、导热好、物理及化学性质稳定、不易燃、无毒及其它一些特殊要求. 对气体电介质的要求应具有绝缘强度高、化学及热稳定性好、对结构材料的腐蚀作用很小、不燃、不爆、液化温度低、热导率高、在电弧条件下耐分解、不产生有毒及腐蚀性分子等特性。此外,还要求成本低,净化维护方便。 7、为什么要用组合绝缘结构8、典型的电气设备组合绝缘有那些

简述电力系统设备状态监测及其发展情况

简述电力系统设备状态监测及其发展情况 发表时间:2019-07-31T11:54:32.950Z 来源:《科学与技术》2019年第05期作者:熊西林[导读] 电力系统状态监测随着电力企业受到电力设备故障带来的生产问题,而越来越受到重视。云南电网有限责任公司迪庆供电局 674400 摘要:电力系统状态监测随着电力企业受到电力设备故障带来的生产问题,而越来越受到重视。随着科学技术的发展,状态监测也经历了人工故障检修、人工定期隐患排查、智能化状态监测、基于计算机大数据技术的设备状态监测四个发展阶段,让电气设备运行过程中存在的故障发现、问题维修越来越科学化和合理化,有效降低了运行成本,提高了企业综合实力。 关键词:电力系统;设备状态;电力设备;监测技术 电力设备在经过日常运营中会出现机器上的磨损,性能上的衰退,导致因设备机能出现问题而产生运行故障,进而引发重大生产事故,导致电力能源不能持续稳定地为社会生产生活服务,带来了巨大的经济损失。基于这样的现实需求,电力系统设备监测的概念由此产生,它是建立在计算机信息处理技术、传感器技术以、物联网技术、人工智能技术的成熟发展而来的,它通过传感器获取设备在运行过程中的特定参数,传输到电脑大数据处理系统中,来分析其设备特性的变化与发展趋势,进而评估设备的“健康”状态[1]。随着现代技术的发展,电力设备监测已经越来越趋于智能化和自动化,人工干预的程度越来越小,全天候的自动监测能够让设备处于监测的常态之中,让监测无死角,无漏洞。 一、电力系统设备状态监测内容分析 (一)电力变压器的状态监测 电力变压器的常见的故障为有载调节器和绕组。因此,加强对有载调节器、绕组和变压器油/纸损耗老化、超负荷运行状态的参数监控十分必要。 有载调节器故障主要表现为抽成、转抽和驱动机构由于长时间的磨损产生的机械故障,以及触点烧损、转换电阻和绝缘问题产生的电气故障。其中绕阻绝缘和主绝缘是造成变压器运行故障的最大因素。一般是通过温度、油中气体分析、局部放电等监测参数来分析运行状态。监测技术一般是通过附在变压器箱体上的压电传感器来获取相应的数据参数。 (二)发电机的状态监测 发电机故障是多类型故障的综合,主要表现在定子绕组故障、转子体故障、转子绕组故障、定子铁心故障这四个方面。其中钉子绕组绝缘劣化是发电机故障的主要原因,而PD监测是目前通用方法之一。在监测过程中要注意利用信号处理技术来抑制噪音,防止信号传输受到电气干扰使得测量数据有误。同时还要做好PD行为解释,已达到判定需要定子绕组维护获得机器,从而找出故障位置和原因。 (三)高压断路器状态监测 断路器的工作状态直接关系着电力系统运行的稳定性和安全性。常见的断路器故障主要为拒动、误动、绝缘、载流这四点,其监测方法包含以下三方面内容: 首先是信号的采集。高压断路器是机电一体化的开关设备,在运行过程中必然存在多种性质的物理量,这就需要传感器来对其数据进行精确的探测,以上传到云端服务器中。 其次要通过信号特征量的选取进行分析。信号特征量的选取是其监测的主要内容,通过特征量与规定参数的比较,来确定断路器的工作状态是否存在故障隐患,一旦发现故障要确定其类型,并建立断路器故障诊断的专家系统。 最后根据故障数据的处理结果,在专家系统的分析下,给出对策和措施,帮助检修人员提高维修效率。 二、电力系统设备状态监测发展现状介绍 由于国民经济与社会生产生活的不断前进,电力能源的需求量越来越大,导致电力建设规模不断扩大。电力设备数量的增多带来的是管理技术与管理水平的不断升级,方可实现设备生产价值的最大化。而设备在运行中的监测技术的应用已经成为电力企业最基本的管理行为,是提前发现安全隐患和生产故障的有效保证。 电力设备的监测与维修是随着技术的革新不断变迁的过程。在电力行业发展早期,主要是人工进行故障检修模式为主,出现了问题才去解决问题,而不是提前发现问题隐患将其消灭于萌芽阶段。到了20世纪中、后期,主要是人工定期计算检修为主,通过定时检修来排查隐患,但是由于电力设备数量的不断增多以及人工检修受到时间和精力的影响,投入成本大,实现的效果低。 随着计算机技术在电力系统应用的逐渐成熟,通过智能监测硬件与软件结合的方式来实现电力设备24小时全天候在线监测的技术已得到普及。基于智能化和自动化的设备状态监测,以科学的监测标准,通过数据分析的形式进行电力设备进行准确的、全面的、立体的综合管控,能够降低人工监测与检修的工作量,提高监测质量与检修水平。根据研究表明,在电力系统中实施状态监测与检修可以将设备的利用率提高至10%左右,检修费用节省30%左右,设备使用寿命延长率达到15%左右[2]。 由于我国的电力系统跨越区域广阔,电力设备运行的环境复杂,各种自然灾害频发,需要将计算机网络技术、传感监测技术、通信技术与电网设备设施进行高度的集中融合,实现数据的互联互通,监测的精细请准,并根据上述各项技术的不断升级而加强监测系统的改造,让电力设备状态监测做到提前发现隐患,及时进行故障预警,科学合理的制定维修方案。 三、电力系统设备状态监测发展趋势分析 当前,诸多电力企业已经认识到状态监测技术对发电设备的重要性,因为其关系到电气输送的持续性和稳定性,这对电气企业在用户心中的形象和口碑具有重要的参考价值。未来随着科学技术的发展,状态监控技术的发展将表现在以下几个方面:一是随着监测数据量的爆发增长,对于数据的处理需要更加智能科学,那么,就需要基于神经网络技术、知识系统、模糊逻辑与大数据分析等相应技术的不断进步,让状态监测的数据能够在去伪存真、去粗取精中实现数据价值更高效的利用。 二是实现状态监测办公移动化,事故处理自动化。移动应用在企业的运营管理中已经越来越普及,对于安全监控管理来说,需要监测人员随时随地进行设备的在线监测管理。而借助手机APP和移动端设备就能够实现这一工作需要,打破了时间、空间的限制,首先能够实现记录、拍照、定位等工作记录,其次能够通过APP或移动端设备帮助工作人员快速定位设备故障点,缩短发现故障设备时间,并通过监测系统的统一调度,自动进行事故设备源头的断电,防止二次事故的发生。

相关主题