搜档网
当前位置:搜档网 › 基于FPGA 时分复用数字基带通信系统的设计

基于FPGA 时分复用数字基带通信系统的设计

基于FPGA 时分复用数字基带通信系统的设计
基于FPGA 时分复用数字基带通信系统的设计

文章编号 100426410(2003)022*******

基于FPGA 时分复用数字基带通信系统的设计

劳有兰,陈 锦

(广西工学院电子信息与控制工程系,广西柳州 545006)

摘 要:介绍了一个基于美国AL T ERA 公司FPGA 芯片EPF 10K 10L C 84开发的时分复用数字基带通信系统。该系统设计采用EDA 技术及自顶而下的设计思路,将时分复用主要硬件功能通过编程方式制作在两片FPGA 芯片上。该系统结构简单,成本低,性能稳定,抗干扰能力强

关 键 词:EDA ;V HDL ;时分复用;通信系统

中图分类号:T P 277 文献标识:A

收稿日期:2031203221

作者简介:劳有兰(19662),女,广西灵山县人,广西工学院实验师。

1 引 言

时分复用(TDM A )数字基带通信系统广泛应用于各种数字通信场合,以实现信道的复用,有效地传送数字信息。对于TDM A 系统的设计,工程上已有许多现成的电路及芯片可采用,其设计关键包括位同步信号,帧同步信号的产生、码型变换及反变换、防抖动等等[1]。在电子设计技术领域,大规模可编程逻辑器件CPLD FPGA 的广泛应用,为数字系统的设计带来极大的灵活性。由于该器件可以通过软件编程而对其硬件的结构和工作方式进行重构,使得硬件的设计可以如同软件设计那样方便快捷。正是基于这样优越的EDA 技术背景,本文采用V HDL 语言,成功地对时分复用数字基带通信系统的主要关键硬件电路信号变换、位同步和帧同步信号、信号终端进行了逻辑描述,并通过EDA 软件M A XPLU S 及开发工具G W 48成功地将系统的硬件编程代码下载到用于发送和接收的两片FPGA 芯片上。由于高度集成化,使得本系统整体性及可靠性大大提高,系统抗干扰能力也大大增强。

2 系统功能、结构及工作原理

本系统由发送端、传送信道及接收端构成。系统框图见图1

图1 系统组成原理框图

S -OU T —时分复用信号,BS -OU T —位同步信号,FS -OU T —帧同步信号

第14卷 第2期

广西工学院学报 V o l 114 N o 12

2003年6月 JOU RNAL O F GUAN GX IUN I V ER S IT Y O F T ECHNOLO GY June 12003

发送系统由码型生成器、频率发生器、输入数据显示等部分构成。其中码型生成器已通过编程方式开发在1片EPF 10K 10L C 84芯片上。按实际设计要求系统输入信号一帧中有24个时序,其中八个时序为帧同步码,16个时序为数字信息码。系统帧结构见图2[2]

图2 帧结构

接收系统由位同步单元、帧同步单元、终端单元及输出数据显示单元构成,其中位同步单元、帧同步单元和终端单元也是通过编程方式开发在另一片EPF 10K 10L C 84芯片上。同时为了便于观测及调试,系统设置了信号源测试点S _OU T ,位同步测试点B S _OU T ,帧同步测试点FS _OU T ,各测试点能测试到相应的信号。

系统硬件原理图见图3。芯片EPF 10K 10L C 84包括84个可用I O 口,可集成度为12000个逻辑门,采用+5V 单电源[3]。在发送端,其逻辑功能包括:(1)接受来自信号输入的信息,预设置所传输的信号和信号所伴随的标志;(2)对输入的频率进行分频;(3)把按键输入的并行信号转换成串行输出信号S _OU T 。在接收端,EPF 10K 10L C 84芯片功能包括:(1)位同步信号产生;(2)帧同步信号产生;(3)数字终端功能。它接收来自信道的S _OU T 信号,并把时分复用的两路数据信号分离出来

图3 系统主要硬件原理图

3 软件设计

系统软件用V HDL 语言编制,它完成库定义端口、说明信号定义及各功能模块逻辑功能的描述。在硬件设计的电路级、逻辑门级、寄存器级以及系统级都可以用行为模型描述,按结构分解的方式可以把硬件设计一直分解到电路级,分解得到的最小模块也具有行为域的模型。时分复用数字基带系统可以分为码型生成器、位同步、帧同步和数字终端。采用相应的硬件语言的语句可描述每一个功能模块。

在V HDL 编程中,各功能模块在程序中的地位是并行的,分别由相应的p rocess 和例化语句来完成。这些语句不必同时存在,每一语句模块都可以独立异步运行,模块之间并行运行,并通过信号交换信息。 ?发送系统的设计:分频器输出一个分频信号,即24个时序输入。其中的8个时序为帧标志S 1(X 1110010)的输入。

?接收系统的设计:从接收系统中恢复相应的数据信号,它包括位同步模块,帧同步模块和数字终端模块等三个部分。

53第2期 劳有兰等:基于FPGA 时分复用数字基带通信系统的设计

?位同步:位同步的作用是在接收端产生与接收码元的重复频率和相位一致的定时脉冲序列。时分复用通信系统不要求输入信号一定是周期信号或准周期信号。为了体现EDA 的特点,本设计采用了触发器型数字环,它捕捉时间短,抗噪能力强。

?帧同步:在时分复用系统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,可以集中插入、也可以分散插入。帧同步的作用是在接收端产生与截止时刻相一致的定时脉冲序列,在此采用连贯式插入法的巴克码识别器来实现。

?数字终端:接收码型生成器输出信号、位同步信号和帧同步信号。把两路数据信号从时分复用信号中分离出来,1个8路并行数据信号分两次显示。

4 功能仿真、下载及硬件调试

411 仿真

在完成系统动作功能的V HDL 语言描述后,在M ax lp u s 软件上即可对程序进行编译、优化,在逻辑功能下载之前,有必要对系统功能进行仿真,由于本系统功能简单,设计过程主要对发送部分码型生成器信号(S _OU T ),接收部分位同步信号(B S _OU T )、帧同步信号(FS _OU T )和分离数据进行仿真。然后对仿真结果进行分析、调试。M ax lp u s 对发送系统时分复用输出信号S _OU T 的仿真结果如图4

图4 时分复用输出信号S _OU T 的仿真结果

CL K 是系统输出的脉冲频率,因频率太高,在此无法显示其标准的方波波形。S 3是输入的第一个八路信号,从低到高为(11110010,00001010,10001010,01001010)。S 2是输入的第二个八路信号,从低到高为(00101100,10101100,01101100,11101100)。S 1是输入的巴克码信号,从低到高为(11110010)最低位是无意义位。S _OU T 是时分复用输出信号。从波形分析得到的二进码为(111100101111001000101100,111100100000101010101100,111100100001010011011001,111100100100101011101100)。通过对比可以得出S _OU T 所输出的信号是正确的,因此仿真结果符合设计要求。

M ax lp u s 对位同步信号B S _OU T 、

帧同步信号FS _OU T 和数字终端分离数据的仿真结果如图5

。图5 接收端仿真结果

CL K 是系统输出的脉冲频率。S _OU T 为传输过来的信号,也就是接收系统的输入端的信号。B S _OU T 为位同步输出信号。S _OU T 每来一个信号,位同步就产生一个脉冲。FS _OU T 是帧同步信号的输出端,输出的信号就是传输信号经过与巴克码比较产生的一个脉冲信号。每隔一段时间就有一帧信号来,因此它的信号是周期性输出的,只要不存在巴克码这个标志,它才没有脉冲信号。D ata 0是第一个八路数据输出端。D ata 1是第二个八路数据输出端。从仿真的结果来看输入的信号是(111100101111001000101100,111100100000101010101100,111100101000101001101100)。输出的第一个八路数据以十六进制表示为4F ,

63广西工学院学报 2003年6月

50,51。输出的第二个八路数据以十六进制表示为34,35,36。分析结果基本上符合预定的结果。

通过对多个仿真结果分析,程序在执行中有以下几个特点:(1)时钟脉冲必须经过分频后才能作为其它时钟脉冲使用。(2)位同步信号出现了7,8n s 的跳变,但是没有影响仿真结果。(3)数据分离要在第一个帧信号标志S 1(X 1110010)出现后才能分离,这样才不会出现错误数据。

412 程序的下载及调试

仿真结果通过后,再进行程序的适配、下载和调试。调试时把发送部分与接收部分连接起来进行系统调试。检测各测试点信号是否正确。在调试中,硬软件要结合起来。由于芯片可以高度集成。问题一般出现在软件上,故在调试中软件参数的更改是最重要的。

5 结束语

本设计是基于FL EX 芯片EPF 10K 10L C 84,采用EDA 技术及V HDL 语言开发设计的时分复用数字基带通信系统,在芯片设计过程中采用了自顶而下的设计方法,整个系统具有结构简单,性能稳定,有效性、可靠性高。除此之外其优点还体现在设计者不受芯片结构的影响,避免了重复设计,缩短了开发周期;设计的模块化,提高了软硬件的组合度,使设计成果可以重复利用;在选择实现系统的目标器件的类型、规模、硬件结构等方面具有更大的自由度;总的设计方案和功能结构被确定后,就可以进行多人多任务的并行工作方式,扩大了设计的规模,提高了设计的效率。

[ 参 考 文 献 ]

[1]樊昌信,詹道庸,徐炳祥等1通信原理[M ]1北京:国防工业出版社,20011

[2]王福昌,潘晓明1通信原理实验[M ]1武汉:华中理工大学出版社,19991

[3]潘 松,王国栋1V HDL 实用教程[M ]1成都:电子科技大学出版社,20001

A design of T OM A d ig ital comm un ication system based on FPGA ch ip

LAO You 2lan ,CH EN J in

(D ep t 1of E lectric Info rm ati on and Con tro l Engineering ,Guangx i U n iversity

of T echno logy ,L iuzhou 545006,Ch ina )

Abstract :A TDM A digital comm un icati on system is in troduced based on the FPGA ch i p develop ed by EPF 10K 10L C 84of Am erican AL T ERA com p any 1T he train though t of the design of the system is to u se EDA techno logy and from top to bo ttom ,and the m ain functi on of TDM A can be m ade on tw o FPGA ch i p s by p rogramm ing 1T he structu re of the system is si m p le ,the co st is low ,the p erfo rm ance is stab le and the resistance to distu rbance is strong 1

Key words :EDA ;V HDL ;TDM A ;comm un icati on system ;

73第2期 劳有兰等:基于FPGA 时分复用数字基带通信系统的设计

通信原理实验--数字基带传输仿真实验

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

通信原理第四章(数字基带传输系统)习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12) () s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ =-∞ = =-+--=-+ --=-+-? ∑ ?∑ ?? ∑ ? ----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

通原实验数字基带系统

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:数字基带系统 院系:通信与信息工程学院 专业班级:通工1005班 学生姓名:郑灏 学号:03101150 (班内序号)04 指导教师:张明远 报告日期:2012年9月8日

●实验目的: 1、熟悉仿真环境; 2、掌握数字基带信号的常用波形与功率谱密度; 3*、掌握奈奎斯特第一准则与码间干扰的消除; 4*、掌握眼图及其性能参数。 ●仿真设计电路及系统参数设置: 1、模拟图一 时间参数:No. of Samples = 4096;Sample Rate = 2000Hz Rate = 100Hz; 双极性码Amp = 10V;单极性码Amp = 10V,Offset = 10V; 功率谱密度选择(dBm/Hz 1 ohm); 用于采样的矩形脉冲序列幅度1V,频率100Hz;脉宽0.005s(占空比50%); 2、模拟图二 图符0为Rate = 100Hz,Amp = 10V的双极性不归零码 通带增益0dB,阻带增益-40dB;

归一化最低截止频率10Hz/2000Hz = 0.005; 归一化最高截止频率190Hz/2000Hz = 0.095; 分别记录信源与信宿的眼图,时间参数如下: Start = 0.02s,Length = 0.05s; 仿真波形及实验分析: 1、记录单、双极性不归零码的波形与功率谱密度 (1)单极性不归零码的波形:矩形波不归零,幅度10V,频率100Hz,Offset=10V (2)单极性不归零码的功率谱密度:第一零点带宽100H z,可看到明显的直流分量和谐波分量

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

实验九 数字基带通信系统实验

姓名:班级学号:47 实验九数字基带通信系统实验 一、实验目的 1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程 2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响 3.掌握位同步信号、帧同步信号在数字分接中的作用 二、实验内容 1.用数字信源、数字终端、位同步及帧同步连成一个理想信道时分复用数字基带通 信系统,使系统正常工作。 2.观察位同步信号抖动对数字信号传输的影响。 3.观察帧同步信号错位对数字信号传输的影响。 4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。 三、基本原理 本实验使用数字信源模块(EL-TS-M6)和数字终端、位同步及帧同步模块(EL-TS-M7)。 1. 数字终端模块工作原理: 原理框图如图7-1所示。它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。两个串行数据信号码速率为数字源输出信号码速率的1/3。 在数字终端模块中,有以下测试点及输入输出点: ? FS-IN 帧同步信号输入点 ? S-IN 时分复用基带信号输入点 ? BS-IN 位同步信号输入点 ? SD 抽样判决后的时分复用信号测试点 ? BD 延迟后的位同步信号测试点 ? FD 整形后的帧同步信号测试点 ? D1 分接后的第一路数字信号测试点 ? B1 第一路位同步信号测试点 ? F1 第一路帧同步信号测试点

高速光时分复用系统的全光解复用技术

高速光时分复用系统的全光解复用技术 李利军,陈 明,范 戈 (上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200030) 摘要:作为高速光信号处理应用的一个分支,全光解复用技术涉及到半导体非线性光学多方面的问题,是实现高速光时分复 用(OT DM )系统的关键技术之一。文章对现有的OT DM 系统的全光解复用技术进行了综述,较为详细地描述了两类主流技术的工作原理,对两者的优缺点做了剖析。介绍了潜在的基于更高速全光开关的解复用新技术,并探讨了全光解复用技术的演进思路。 关键词:光时分复用系统;全光开关;解复用中图分类号:T N914 文献标识码:A 文章编号:1005-8788(2005)06-0027-04 A survey of a ll -opti ca l de m ulti plex i n g techn i ques for h i gh speed O TDM syste m s L IL i 2jun,CHEN M i n g,FAN Ge (Nati onal Laborat ory on Local Fiber 2Op tic Communicati on Net w orks,Shanghai J iaot ong University,Shanghai 200030,China )Abstract:A s a branch app licati on of high s peed op tical signal p r ocessing .The all 2op tical de multi p lexing technol ogy relates t o many as 2pects of se m iconduct or non 2linear op tics and is one of the key technol ogies t o realize the high 2s peed op tical ti m e 2dividi on multi p lexing (OT DM )syste m.This paper gave a survey of current all 2op tical de multi p lexing technol ogies,the p rinci p les of operati on of t w o p re 2dom inant technol ogies have been described in detail,their advantages and disadvantages were analyzed .The potential demulti p lexing technol ogy based on higher 2s peed op tical s witch was als o intr oduced and the evoluti on r oute of all 2op tical de multi p lexing technol ogy dis 2cussed in this paper . Key words:op tical ti m e -divisi on multi p lexing (OT DM )syste m s;all -op tical gate;de multi p lexing 光时分复用(OT DM )技术是一种能有效克服电子电路带宽“瓶颈”、充分利用低损耗带宽资源的扩容方案。与波分复用(WDM )系统相比,OT DM 系统只需单个光源,光放大时不受放大器增益带宽的限制,传输过程中也不存在四波混频等非线性参量过程引起的串扰,且具有便于用户接入、易于与现行的同步数字系列(S DH )及异步传输模式(AT M )兼容等优点。在多媒体时代,超高速(速率高于100Gbit/s )的OT DM 技术对超高速全光网络的实现具有重要意义,其中涉及的关键技术包括:超短光脉冲的产生、时分复用、同步/时钟提取和解复用。解复用可以由光开关来实现。适用于时分复用光信号的光开关有:机械光开关、热光开关、喷墨气泡光开关、液晶光开关和声光开关等。但这些窗口宽度从几百个ns 到几十个m s 的光开关并不适合于线路速率在100Gbit/s 以上的高速OT DM 系统,这是因为这些光开关在操作过程中引入了电的控制信号。基于光学非线性效应(如:光Kerr 效应、四波混频(F WM )效应和交叉相位调制(XP M )效应)的全光开关是实现高速OT DM 信号解复用技术的关键器件。 1 基于相移型全光开关的解复用技术 相移型光开关是一类干涉型光开关,这类光开 关的平衡状态对应器件的闭合状态,而它的非平衡状态是在非线性介质中用控制脉冲对被分割成两路的信号光的其中一路的相位进行半波调制,使得这两路信号光在光开关输出端干涉耦合的耦合量为最大值,从而使光开关导通。 相移型全光开关中的非线性介质可以是光纤也可以是半导体材料。光纤在非线性响应速度方面具有明显的优势(<10fs ),而且不存在载流子密度起伏和增益饱和等问题;然而由于半导体材料在集成度(有效长度低于1mm )、偏振稳定性、非线性强度(高于前者4个数量级)等方面具有更加明显的优势,因而在全光开关中得到了广泛的重视。 基于相移型全光开关的解复用技术是非常多的。基于光Kerr 效应的解复用最早报道于1987年[1] ,随后的非线性光环路镜(NOLM )、太赫兹光非对称解复用器(T OAD )和马赫-曾德尔干涉仪(MZI )则是基于XP M 效应的光开关。 半导体光放大器(S OA )的非线性效应很复杂,除了亚皮秒级的双光子吸收(TP A )、谱烧孔(SHB )和载流子加热(CH )外,还有p s 级的带间载流子起伏(I nterband Carrier Dyna m ics ),各种非线性机制的恢复时间也相差很大。尽管提高有源区载流子密度和添加辅助光可以把载流子寿命控制在几十个p s 收稿日期:2004-12-21 作者简介:李利军(1976-),男,山西寿阳人,博士,主要从事高速光通信技术研究。 7 22005年 第6期(总第132期) 光通信研究 ST UDY ON OPTI CAL COMMUN I CATI O NS 2005 (Sum.No .132)

通信原理------数字基带传输实验报告

基带传输系统实验报告 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习matlab的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观察眼图和星座图判断信号的传输质量。 二、实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带传输系统模型如下:

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率Fo为 4 /Ts,滚降系数分别取为、、1,

通信原理课程设计 基于MATLAB的数字基带传输系统的研究和分析讲解

塔里木大学信息工程学院通信原理课程设计 2016届课程设计 《基于MATLAB的数字基带传输系统的研究与分 析》 课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业通信工程 班级通信16-1 指导教师蒋霎

塔里木大学教务处制 摘要 本论文主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过比较最终选择双极性不归零码。然后介绍了MATLAB仿真软件。之后介绍了数字基带信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 关键字:数字基带传输系统MATLAB 计算机仿真;

目录 1.前言 0 2.正文 0 2.1数字基带传输系统 0 2.2 数字基带信号 (1) 2.2.1基本的基带信号波形 (1) 2.2.2基带传输的常用码型 (2) 2.3实验原理 (5) 2.3.1数字通信系统模型 (5) 2.3.2数字基带传输系统模型 (5) 3.1MATLAB软件简介 (6) 3.1.1软件介绍 (6) 3.1.2 Matlab语言的特点 (7) 4.1实验内容 (7) 4.1.1理想低通特性 (8) 4.1.2余弦滚降特性 (8) 4.1.3 Matlab设计流程图 (9) 4.1.4余弦滚降系基于matlab的程序及仿真结果 (9) 致谢 (12) 参考文献 (13) 附录 (14)

波分复用/解复用 知多少

波分复用/解复用器 知多少? 随着数据业务的飞速发展,现代生活对传输网的带宽需求越来越高,而光纤资源已经固定且再次铺设费用昂贵,这就需要设备制造商提供有保障、低成本的解决方案。鉴于城域网具有一定的传输距离、较多的业务种类等许多不同于骨干网的特点,波分复用(WDM,Wavelength Division Multiplexing)技术就十分适用于光纤扩容。 什么是光波分复用技术? 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。 什么是波分复用/解复用器? 我们知道波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 波分复用/解复用器的工作原理是什么? 在FDM系统中,波分复用器用于发射端将多个波长的信号复合在一起并注入传输光纤中,而波分解复用器则用于在接收端将多路复用的光信号按波长分开分别送到不同的接收器上,波分复用/解复用器可以分成两大类,即有源(主动)和无源(被动)型,我们这里只介绍被动型的器件,它按照工作原理可以分成三类,最简单的一种波分复用器是基于角度散射元件,例如棱镜和衍射光栅,另外两种波分复用器为光滤波器和波分复用定向耦合器。从原理上讲,一个波分解复用器反射过来用即为波分复用器,但应该注意的是在FDM系统中对它们的要求不一样,波分解复用器严格要求波长的选择性,而复用器不一定要求波长选择性,因为它的作用只是将多路信号复合在一起。

数字基带系统实验一总结报告

实验一基带传输系统实验 目录: 一、实验目的 (2) 二、实验原理 (2) 三、实验内容 (3) (一)因果数字升余弦滚降滤波器设计 (3) 1) 窗函数法设计非匹配形式的基带系统的发送滤波器 (3) 2) 频率抽样法设计匹配形式的基带系统的发送滤波器 (5) 3) 非匹配形式下窗函数设计法和匹配模式下频率抽样法设计的滤波器第一零点带 宽和第一旁瓣衰减 (7) (二)根据离散域基带系统模型,设计无码间干扰的二进制数字基带传输系统 (7) (三)非匹配模式和匹配模式的无码间干扰的数字基带传输系统测试 (10) 1) 非匹配滤波器无加性噪声系统 (10) 2) 非匹配滤波器和匹配滤波器加加性噪声系统 (12) 四、实验心得 (15) 指导老师:马丕明 班级:通信一班 姓名:石恬静201100120172 蒋金201100120222

一、实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、实验原理 数字通信系统的模型如下图所示: 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 带限信道的数字基带传输系统的传输模型为: 发送滤波器 传输信道 接收滤波器 输入符号序列 {a }l ,其取值为1或-1;每隔一个比特周期Tb 发送一个脉冲信号得到 发送信号()d t ;在匹配形式下,发送滤器和接收滤波器都是平方根升余弦滚降滤波器,在

时分复用和频分复用

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过 传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大 大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交2块。打车要20块 为什么坐公交便宜呢 这里所讲的就是“多路复用”的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组

实验七:时分复用数字基带通信系统

实验七:时分复用数字基带通信系统 一、实验目的 1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。 2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。 3.掌握位同步信号、帧同步信号在数字分接中的作用。 二、实验内容 1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。 2.观察位同步信号抖动对数字信号传输的影响。 3.观察帧同步信号错位对数字信号传输的影响。 4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。 三、基本原理 本实验要使用数字终端模块。 1. 数字终端模块工作原理: 原理框图如图7-1所示,电原理图如图7-2所示(见附录)。它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。两个串行数据信号码速率为数字源输出信号码速率的1/3。 在数字终端模块中,有以下测试点及输入输出点: ? S-IN 时分复用基带信号输入点 ? SD 抽样判后的时分复用信号测试点 ? BD 延迟后的位同步信号测试点 ? FD 整形后的帧同步信号测试点 ? D1 分接后的第一路数字信号测试点 ? B1 第一路位同步信号测试点

? F1 第一路帧同步信号测试点 ? D2 分接后的第二路数字信号测试点 ? B2 第二路位同步信号测试点 ? F2 第二路帧同步信号测试点 延迟1延迟2 整形延迟3FS-IN BS-IN S-IN FD FD -7 FD -15 FD -8 FD -16 BD 显示 串/并变换 串/并变换 F2÷3 并/串变换并/串变换 D 2 B1 F1 D 1 SD-D BD 显示 B2 图7-1 数字终端原理方框图 图7-1中各单元与电路板上元器件对的应关系如下: ? 延迟1 U63:单稳态多谐振荡器4528 ? 延迟2 U62:A :D 触发器4013 ? 整形 U64:A :单稳态多谐振荡器4528;U62:B :D 触发器4013 ? 延迟3 U67、U68、U69:移位寄存器40174 ? ÷3 U72:内藏译码器的二进制寄存器4017 ? 串/并变换 U65、U70:八级移位寄存器4094 ? 并/串变换 U66、U71:八级移位寄存器4014(或4021) ? 显示 三极管9013;发光二极管 延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图7-3所示。 移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。在FD-7及B D 的作用下,

通信原理数字基带传输系统习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量1 s f T =否 【答案4-2】 1)随机二进制序列的双边功率谱密度为 由于 可得: 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2)当基带脉冲波形()g t 为 ()g t 的付式变换()G f 为 因此 式中: 1 s s f T = 。 所以,该二进制序列不存在离散分量。 3)当基带脉冲波形()g t 为

()g t 的付式变换()G f 为 因此 式中: 1s s f T = 。 所以,该二进制序列存在离散分量。 【题4-3】设二进制数字基带信号的基本脉冲序列为三角形脉冲,如下图所示。图中s T 为码元宽度,数字信息1和0分别用()g t 的有无表示,且1和0出现的概率相等: 1)求数字基带信号的功率谱密度; 2)能否重该数字基带信号中提取同步所需的频率1 s s f T =的分量若能,计 算该分量的功率。 【答案4-3】 1)由图得 ()g t 的频谱函数()G ω为 由题设可知 所以 代入二进制数字基带信号的双边功率谱密度函数表达式,可得 2)二进制数字基带信号的离散谱分量()v P ω为 当1m =±时,s f f =±,代入上式可得 因为该二进制数字基带信号中存在1s s f T =的离散分量,所以能从该数字基带信号中提取码元同步所需的频率1s s f T =的分量。 该频率分量的功率为 【题4-5】已知信息代码为,求相应的AMI 码、HDB3码、PST 码及双相码。 【答案4-5】 AMI 码: +10000 0000 –1+1 HDB3码; +1000+V-B00-V0+1-1

通信原理实验报告-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 班级:08211317 学号:08211660 姓名:张媛(27)

一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1 )数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=?? ?=+0 1)(0t kT h b 00≠=k k

实验6 时分复用 解复用TDM实验

实验6 时分复用/解复用(TDM)实验 一、实验目的 1.掌握时分多路复用的概念; 2.了解本实验中时分复用的组成结构。 二、实验仪器 1.复接/解复接、同步技术模块,位号:I 2.PCM/ADPCM编译码模块,位号:H 3.增量调制编译码模块,位号:D 4.时钟与基带数据发生模块,位号:G 5.20M双踪示波器1台 6.铆孔连接线9根 7.电话单机 1部 三、实验原理 在数字通信中,为扩大传输容量和提高传输效率,通常需要把若干低速的数据码流按一定格式合并为高速数据码流,以满足上述需要。数字复接就是依据时分复用基本原理完成数码合并的一种技术。在时分复用中,把时间划分为若干时隙,各路信号在时间上占有各自的时隙,即多路信号在不同的时间内被传送,各路信号在时域中互不重叠。 把两个或两个以上的支路数字信号按时分复用方式合并成单一的合路数字信号的过程称为数字复接,其实现设备称为数字复接器。在接收端把一路复合数字信号分离成各路信号的过程称为数字分接,其实现设备称为数字分接器。数字复接器、数字分接器和传输信道共同构成数字复接系统。本实验平台中,数据发送单元模块的39U01内集成了数字复接器,数据接收单元的39U01内集成了数字分接器,连接好光传输信道即构成了一个完整的数字复接系统。 数字复接的方法主要有按位复接、按字复接和按帧复接三种;按照复接时各路信号时钟的情况,复接方式可分为同步复接、异步复接与准同步复接三种。本实验中选择了按帧复接的方法和方式。下面介绍一下“按帧复接”方法和“准同步复接”方式的概念。 按帧复接是每次复接一个支路的一帧数据,复接以后的码顺序为:第1路的F0、第2路的F0、第3路的F0、第4路的F0、……,第1路的F1.第2路的F1.第3路的F1.第4路的F1.……,后面依次类推。也就是说,各路的第F0依次取过来,再循环取以后的各帧数据。这种复接方法的特点是:每次复接一支路信号的一帧,因此复接时不破坏原来各 个帧的结构,有利于交换。 同步复接指被复接的各个输入支路信号在时钟上必须是同步的,即各个支路的时钟频率完全相同的复接方式。为了接收端能够正确接收各支路信码及分接的需要,各支路在复接时,插入一定数量的帧同步码、告警码及信令等,PCM基群就是这样复接起来的。准同步复接是在同步复接分接的基础上发展起来的,相对于同步复接增加了码速调整和码速恢复环节。在复接前必须将各支路的码速都调整到规定值后才能复接。 本实验中数字复接系统方框图,如下图2-1: 帧同步

实验6.数字基带信号的眼图实验

实验六 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足: ()0,s s T T H πωωω?≤?=? ?? ,其他 (3-3)

图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1) 1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤?? ???? ?-? =≤≤???+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα= - (3-6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最

时分复用-解复用实验

固定及变速率时分复用、解复用实验 第一部分固定速率时分复用/解复用实验 一、实验目的 1.掌握固定速率时分复用/解复用的同步复接/分接原理。 2.掌握帧同步码的识别原理。 3.掌握集中插入帧同步码时分复用信号的帧结构特点。 二、实验内容 1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。 2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。 3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对 应关系。 4.观察信号源发光管与终端发光管的显示对应关系,直接观察时分复用与解复用的实验效果。 三、实验仪器 示波器,RC-GT-II型光纤通信实验系统。 四、基本原理 1.同步复接/分接原理 固定速率时分复用/解复用通常也称为同步复接/分接。在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。 图1.1 数字复接器的基本组成图 1.2 数字分接器的基本组成图数字复接器的基本组成如图1.1所示。数字复接器的作用是把两个或两个以上的支路数字信号按时分复接方式合并成为单一的合路数字信号。数字复接器由定时、调整和复接单元所组成。定时单元的作用是为设备提供统一的基准时间信号,备有内部时钟,也可以由外部时钟推动。调整单元的作用是对各输入支路数字信号进行必要的频率或相位调整,形成与本机定时信号完全同步的数字信

号。复接单元的作用是对已同步的支路信号进行时间复接以形成合路数字信号。 数字分接器的基本组成如图1.2所示。数字分接器的作用是把一个合路数字信号分解为原来支路的数字信号。数字分接器由同步、定时、分接和恢复单元所组成。定时单元的作用是为分接和恢复单元提供基准时间信号,它只能由接收的时钟来推动。同步单元的作用是为定时单元提供控制信号,使分接器的基准时间与复接器的基准时间信号保持正确的相位关系,即保持同步。分接单元与复接单元相对应,分接单元的作用是把输入的合路数字信号(高次群)实施时间分离。分接器的恢复单元与复接器的调整单元相对应,恢复单元的作用是把分离后的信号恢复成为原来的支路数字信号。 将低次群复接成高次群的方法有三种;逐比特复接;按码字复接:按帧复接。在本实验中,由于速率固定,信息流量不大,所以我们所应用的方式为按码字复接,下面我们把这种复接方式作简单介绍。 按码字复接:对本实验来说,速率固定,信息结构固定,每8位码代表一“码字”。这种复接方式是按顺序每次复接1个信号的8位码,输入信息的码字轮流被复接。复接过程是这样的:首先取第一路信息的第一组“码字”,接着取第二路信息的第一组“码字”,再取第三信息的第一组“码字”,轮流将3个支路的第一组“码字”取值一次后再进行第二组“码字”取值,方法仍然是:首先取第一路信息的第二组码,接着取第二路信息的第二组码,再取第三路信息的第二组码,轮流将3个支路的第二组码取值一次后再进行第三组码取值,依此类推,一直循环下去,这样得到复接后的二次群序列(d)。这种方式由于是按码字复接,循环周期较长,所需缓冲存储器的容量较大,目前应用的很少。 图1.3 按码字复接示意图 (a)第一路信息;(b)第二路信息;(c)第三路信息;(d)复接后2.本实验所用的同步复接模块的结构原理 本实验所用到的固定速率时分复用端的原理方框图如图1.4所示。这些模块产生三路信号时分复用后的FY_OUT信号,信号码速率约为128KB,帧结构如图1.5所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此FY_OUT信号为集中插入帧同步码时分复用信号。同时通过发光二极管来指示码型状态:发光二极管亮状态表示1码,熄状态表示0码。本实验中用到的电路,除并行码产生器和8选一电路是由分

数字基带通信系统

内蒙古工业大学信息工程学院 实 验 报 告 课程名称: 通信原理 实验名称: 数字基带通信系统 实验类型:验证性□ 综合性□ 设计性□ 实验室名称: 格物楼B 座通信实验室102 班级:电子09-1班 学号: 姓名: 组别: 同组人: 成绩: 实验日期: 2012/6/11

预习报告 一、实验目的 1. 了解完整的数字基带通信系统的组成及各部分功能。 2. 掌握汉明码的编码规则,了解信道编码在通信系统中的作用。 1.掌握高斯白噪声、带限信道的概念,加深对信道模型的理解。 2.掌握同步信号在数字通信系统中的作用。 3.掌握眼图波形与信号传输畸变的关系。 二、实验器材 1. 信号源模块 2.信道模拟模块 3. 终端模块 4.同步信号提取模块 5. 20MHz双踪示波器一台 4.误码率测试仪(可选)一台 5.频率计(选用)一台 6.连接线若干 三、预习要求 1.复习信道模拟、差错控制编码、位同步提取等数字基带系统原理。 2.写出实验方案和步骤,完成“实验内容及步骤”之中的第一项内容。 3.完成预习报告,应包括实验名称、目的、方案、步骤和记录表格等。

实验报告 一、实验目的 1. 了解完整的数字基带通信系统的组成及各部分功能。 2. 掌握汉明码的编码规则,了解信道编码在通信系统中的作用。 7.掌握高斯白噪声、带限信道的概念,加深对信道模型的理解。 8.掌握同步信号在数字通信系统中的作用。 9.掌握眼图波形与信号传输畸变的关系。 二、实验器材 1. 信号源模块 2.信道模拟模块 3. 终端模块 5.同步信号提取模块 5. 20MHz双踪示波器一台 10.误码率测试仪(可选)一台 11.频率计(选用)一台 12.连接线若干 三、预习要求 1.复习信道模拟、差错控制编码、位同步提取等数字基带系统原理。 2.写出实验方案和步骤,完成“实验内容及步骤”之中的第一项内容。 3.完成预习报告,应包括实验名称、目的、方案、步骤和记录表格等。 四、实验原理 图4-1 数字基带通信系统实验框图 1.信道 在数字通信系统中,如果我们仅着眼于讨论编码和译码,采用编码信道的概念是十分有益的。所谓编码信道是指编码器输出端到译码器输入端的部分。这样定义是因为从编译码的角度看来,编码器的输出是某一数字序列,而译码器的输入同样也是某一数字序列,他们可能是不同的数字序列。因此,从编码器输出端到译码器输入端,可以用一个对数字序列进行变换的方框来加以概括。 本实验中可选用无限带宽信道和带限(8K)信道。测量眼图来观察出码间干扰和噪声的影响时应选用带限(8K)信道,从而估计出系统性能的优劣程度。

相关主题