搜档网
当前位置:搜档网 › 超纯水制备的工艺比较

超纯水制备的工艺比较

超纯水制备的工艺比较
超纯水制备的工艺比较

超纯水制备的工艺比较

电子工业用超纯水概述

半导体、集成电路芯片及封装、液晶显示、高精度线路板、光电器件、各种电子器件、微电子工业、大规模、超大规模集成电路需用大量的高纯水、超纯水清洗半成品、成品。集成电路的集成度越高,对水质的要求也越高。目前我国电子工业部把电子级水质技术分为五个行业标准,分别为18MΩ.cm、15MΩ.cm、10MΩ.cm、2MΩ.cm、0.5MΩ.cm,以区分不同水质。

制备电子工业用超纯水的工艺流程

电子行业制备超水的工艺大致分成以下几种:

1、采用离子交换树脂制备超纯水的传统水处理方式,其基本工艺流程为:原水→沙炭过滤器→精密过滤器→原水箱→阳床→阴床→混床(复床)→纯水箱→纯水泵→后置精密过滤器→用水点

2、采用反渗透水处理设备与离子交换设备进行组合的方式,其基本工艺流程为:原水→沙炭过滤器→精密过滤器→原水箱→反渗透设备→混床(复床)→纯水箱→纯水泵→后置精密过滤器→用水点

3、采用反渗透水处理设备与电去离子(EDI)设备进行搭配的的方式,这是一种制取超纯水的最新工艺,也是一种环保,经济,发展潜力巨大的超纯水制备工艺,其基本工艺流程为:原水→沙炭过滤器→

精密过滤器→原水箱→反渗透设备→电去离子(ED I)→纯水箱→纯水泵→后置精密过滤器→用水点

三种制备电子工业用超纯水的工艺比较:大连超纯水设备,大连EDI超纯水设备,大连电子行业超纯水设备

目前制备电子工业用超纯水的工艺基本上是以上三种,其余的工艺流程大都是在以上三种基本工艺流程的基础上进行不同组合搭配衍生而来。现将他们的优缺点分别列于下面:

1、第一种采用离子交换树脂其优点在于初投资少,占用的地方少,但缺点就是需要经常进行离子再生,耗费大量酸碱,而且对环境有一定的破坏。

2、第二种采用反渗透作为预处理再配上离子交换设备,其特点为初投次比采用离子交换树脂方式要高,但离子设备再生周期相对要长,耗费的酸碱比单纯采用离子树脂的方式要少很多。但对环境还是有一定的破坏性。

3、第三种采用反渗透作预处理再配上电去离子(EDI)装置,这是目前制取超纯水最经济,最环保用来制取超纯水的工艺,不需要用酸碱进行再生便可连续制取超纯水,对环境没什么破坏性。其缺点在于初投资相对以上两种方式过于昂贵。

纯水与超纯水的制备工艺

纯水与超纯水的制备工艺 最佳水质: 1. 天然水中常见杂质 包括可溶性无机物、有机物、颗粒物、微生物、可溶性气体等。纯水、超纯水系统就是要尽可能彻底地去处这些杂质。 2. 净化水质的主要工艺 目前常用净化水质的工艺方法有蒸馏法、反渗透法、离子交换法、EDI、紫外氧化法等。同时我们可以将水的纯化过程大致分为3大步,前处理(生产出纯水),离子交换(可生产出 18.2MΩ-cm超纯水)和后处理(生产出符合特殊要求的超纯水)。根据进水的水质和对出水水质的要求,确定每一步采用的方法工艺 纯化过程3大步: 1、前处理 主要包括预处理单元和反渗透(RO)单元,由于预处理后的水将通过反渗透进行再一步的净化,所以一定要尽量去除对反渗透膜有影响的杂质;主要包括大颗粒物质、余氯以及钙离子镁离子。在此要说明的一点是必须要根据进水水质的差异针对性地配备

不同的处理单元。多数纯水仪生产厂家并不能很好帮助客户解决这个问题,这会导致后续的纯化无法达到理想结果并缩短反渗透膜等仪器主要部件的寿命。

超纯水设备很好的解决了这一问题,分别设计生产了线绕过滤器、活性碳吸附过滤器以及软化树脂针对性地去除水中大颗粒物质、余氯以及钙离子镁离子,达到最佳的预处理效果。 反渗透是使用一个高压泵对高浓度溶液提供比渗透压差大的压力,水分子将被迫通过半透膜到低浓度的一边,反渗透可以滤除90%-99%的包括无机离子在内的绝大多数污染物,因为它出众的纯化效率,反渗透是水纯化系统的一个非常有效的技术,因为反渗透能去除大部分的污物,所以它经常被用作为前道处理手段,能显著地延长去离子交换柱的使用时间。鉴于反渗透在水质纯化过程中是非常关键并且反渗透膜的更换价格较高,我们建议用户一定要选择对反渗透膜有保护功能的超纯水系统。 为了尽可能延长反渗透膜的使用寿命以及提高反渗透膜的过滤效率,莱特莱德超纯水系统采用了先进的独特技术,结合领先的反渗透限流设计,在出水处有限流阀,使反渗透膜始终浸泡在水中,不致因变干而影响寿命。延长了反渗透膜寿命就是保证了出水水质,同时也提升了超纯水系统的性价比。

超纯水系统施工过程具体注意事项分析

超纯水系统施工过程具体注意事项分析 一、超纯水系统总体介绍 随着电子工业的发展,在芯片的生产加工过程中,对于水质的要求也越来越高。为了保证生产出超大规模的集成电路,除高纯原材料、高纯气体、高纯化学药品外,高纯水也是其中最关键的因素之一。 高纯水系统是将一般的市政用水处理成对不同离子的含量和颗粒度都有很高要求的超纯水。超纯水系统工程总体来说一般可分为三个部分:超纯水制造区(CUB部分)、超纯水抛光循环区(FAB部分)、超纯水输送管网(FAB各使用区)。其中超纯水制造区最为复杂其又可分为:预处理、一次纯水处理、超纯水处理三个部分。 预处理部分主要包括:沙滤、活性炭塔(有的厂商在沙滤前还增设反应槽、气浮池);一次纯水部分主要包括:阴阳离子交换塔、脱气塔(DG)、保安过滤器、紫外线杀菌器及多级反渗透;超纯水部分主要包括:MDG(脱氧膜组)、TOC-UV杀菌器、混床(MB)及终端过滤器。但是由于考虑到在向工艺线设备输送高纯水过程中,输水管道会对水质再次造成污染,因而在FAB内一般都设立抛光循环系统。抛光循环系统主要以MB为核心,再加上超滤设

备(UF),以除去在向工艺生产线输送纯水的过程中,管网溶入水中的杂质。 二、超纯水系统中各阶段常用管材 在超纯水系统中管材的选用也非常重要,既要能做到保证水质、又应该做到经济合理。超纯水系统中常用管材主要包括:PVC、SGP、SGP(RL)、SUS304、CPVC、SUS316及PVDF等管材。一般在超纯水制造区预处理阶段多采用PVC管或SUS304管。设备面管一般采用内衬胶钢管(SGP RL),对于水泵等产生震动的动力设备周边采用SUS304管;在一次纯水阶段主流程采用CPVC管或 SUS304管。高压泵与反渗透(RO)之间,由于压力高所以必须采用SCH80的SUS304管及耐压2.0Mpa级的法兰。由于RO对水温有一定的要求,因而一般在RO之前有热交换器,其周边也应该采用SUS304管;在超纯水制造阶段,主流程一般应采用SUS316管和CPVC管;抛光循环区主流程一般采用SUS316管(焊接连接,并要求双面成型)和PVDF管,超纯水回收管道采用CPVC管。 在以上水处理各阶段废水排放管道均采用普通PVC管;在纯水制造过程中酸碱等加药管线,应采用耐冲击PVC管;纯水系统中使用的氮气系统采用SUS304管,超纯水抛光系统所用氮气管道采用SUS316管;压缩空气系统在纯水系统中作为气动阀开关 动力,一般采用SUS304管或SGP管,当采用SGP管时进入电气盘前需加过滤器。

典型超纯水工艺流程设计方案

典型超纯水工艺流程设 计方案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

1纯化水工艺设计方案:(产水水质标准达到的标准:中国药典2005版纯化水标准) 自来水→预处理→一级反渗透→一级EDI→UV杀菌→超滤除热原设备→用水 自来水→预处理→一级反渗透→二级EDI→UV杀菌→超滤除热原设备→用水 2注射用水工艺设计方案:(产水水质标准达到的标准:中国药典2005版注射用水标准) 自来水→预处理→一级反渗透→一级EDI→微滤→多效蒸馏除热原设备→用水 自来水→预处理→一级反渗透→二级EDI→微滤→超滤除热源设备→用水 3电厂高压锅炉给水工艺设计方案(产水水质标准达到的标准:工业锅炉水质GB1576-2001) 自来水→预处理→一级反渗透→脱气装置→二级EDI→微滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→微滤→用水 4微电子/半导体级超纯水工艺设计方案(产水水质标准达到的标准:中国电子工业部高纯水水质试行标准) 自来水→预处理→一级反渗透→脱气装置→二级EDI→UV杀菌装置→超滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→抛光混床→UV杀菌装置→超滤→用水 5实验室用分析级纯水工艺设计方案(产水水质标准达到的标准:分析级实验室用水标准 GB6682-2000) 自来水→预处理→一级反渗透→二级EDI→UV杀菌装置→超滤→用水 自来水→预处理→二级反渗透→一级EDI→UV杀菌装置→超滤→用水 进水电导率在400~1000μs/cm的含EDI设备的典型超纯水工艺流程设计方案 1纯化水工艺设计方案:(产水水质标准达到的标准:中国药典2005版纯化水标准) 自来水→预处理→一级反渗透→二级EDI→UV杀菌→微滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→UV杀菌→微滤→用水 2注射用水工艺设计方案:(产水水质标准达到的标准:中国药典2005版注射用水标准) 自来水→预处理→二级反渗透→一级EDI→多效蒸馏除热源设备→用水 自来水→预处理→一级反渗透→二级EDI→UV杀菌装置→超滤除热源设备→用水 3电厂高压锅炉给水工艺设计方案(产水水质标准达到的标准:工业锅炉水质GB1576-2001) 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→混床→微滤→用水自来水→预处理→一级反渗透→脱气装置→二级EDI→微滤→用水 4微电子/半导体级超纯水工艺设计方案(产水水质标准达到的标准:中国电子工业部高纯水水质试行标准) 自来水→预处理→一级反渗透→脱气装置→二级EDI→抛光混床→UV杀菌装置→超滤→用水

超纯水工艺流程

超纯水工艺流程 预处理----反渗透----CEDI膜块----抛光树脂 膜法超纯水制取设备工艺流程:原水—超滤(多介质过滤器、活性炭过滤器)—反渗透—EDI—超纯水 渗透/电去离子(RO/EDI)集成膜技术是近年来迅速发展成熟,并得到大规模工业应用的最新一代超纯水制造技术,在国际上已逐渐成为纯水技术的主流。RO/EDI的集成膜技术在电子企业用水,实验室纯水系统,电厂用水等方面具有独特的优势。 自来水进入原水箱,通过原水泵增压,经砂滤器、炭滤器、阻垢剂加药、保安过滤器,到达反渗透单元,经两级反渗透过滤进入EDI单元,达到电阻率15MΩ.cm(25℃)进入纯水水箱。纯水供水设计为循环方式,经纯水供水泵增压,通过紫外线消毒器、抛光混床、0.22微米过滤器接入纯水供水管,到达使用点。 1.1预处理单元 采用石英砂过滤、活性炭过滤、保安过滤作为两级反渗透的预处理。 1.2膜系统单元 膜系统单元是本系统的核心,负责去除水中大部分的有害物质,保证终端产水达到标准要求。本设计中采用辅以pH值调节的两级反渗透作为初级脱盐工艺,EDI模块作为深度脱盐工艺。 1.2.1反渗透模块 反渗透膜是以压力差为驱动力的液相膜分离方法,可以看作是渗透的一种反向作用。在压力推动下,溶液中的水分子透过膜,而其它分子、离子、细菌、病毒等被截留,从而实现脱盐效果,达到纯化目的。 整个反渗透系统由高压泵、反渗透膜、压力容器以及相应的仪器、仪表、阀门、机架、管道及管件等组成;此外还有独立的化学清洗装置。

1.2.2EDI模块 EDI技术是将膜法和离子交换法结合起来的新工艺,基本原理主要包括离子交换、直流电场下离子的选择性迁移及树脂的电再生。水中的离子首先通过交换作用吸附于树脂颗粒上,再在电场作用下经由树脂颗粒构成的“离子传输通道”迁移到膜表面并透过离子交换膜进入浓室。由于离子的交换、迁移及离子交换树脂的电再生相伴发生,犹如边工作边再生的混床离子交换树脂柱,因此可以连续不断地制取高质量的纯水、高纯水。 EDI系统由增压泵、膜堆、电源以及相应的仪器、仪表、阀门、机架、管道等组成。 1.3供水单元 纯水供水循环采用254nm紫外线杀菌、抛光混床脱盐、0.22微米过滤,达到用户的纯水水质要求。 为保证纯水的品质以及生物学指标,在纯水制备的终端设置精度为0.22μm的微滤膜过滤器,用于截留去除脱盐设备出水中的微粒以及细菌尸体。由于0.22μm的微滤膜膜过滤器为整个脱盐工艺的最后一道处理设备,因此又称终端过滤器。过滤器内装折叠式微孔滤膜,过滤精度0.22μm,过滤器出口设置压力表。过滤器经过一段时间的运行后,滤膜表面截留了大量杂质,使滤膜堵塞,导致工作压力增加,当进出口压力差增大到某一设定值时,更换滤膜。 终端过滤器由罐体、0.22μm滤芯、压力表组成。 1.4主要设备 主要设备:原水箱、原水增压泵、砂滤器,炭滤器罐体、多路阀、阻垢剂计量泵、阻垢剂(氨基三甲叉膦酸ATMP)药罐、保安过滤器、保安过滤滤芯、一级RO高压泵、一级RO膜、二级RO高压泵、二级RO膜、膜壳、PH值调整计量泵、EDI增压泵、EDI模块、超纯水水箱、纯水增压泵、抛光混床罐、抛光树脂、0.22微米过滤器、0.22微米滤芯等。

线路板用超纯水设备典型流程及标准参考.

线路板用超纯水设备典型流程及标准参考 一、线路板用纯水概述: 线路板生产过程中,FPC/PCB湿流程绝大部分工艺都是相似的。各个工艺环节对纯水的要求也是大同小异。我们在线路板生产过程中常用到的电镀铜,锡,镍金;化学镀镍金;PTH/黑孔;表 面处理蚀刻等生产过程都需要用到不同要求的纯水。因为线路板生产过程中使用的药水不同,生产工艺流程的差异,对纯水的品质要求也不一样。 最关键的指标是:电导率(电阻率,总硅,pH值,颗粒度。线路板、电路板用纯水因为本身工艺流程的不同对纯水制造的工艺流程也不同。按照目前绝大部分线路板厂的使用情况来看,大概分为以下三种类型:预处理加离子交换纯水系统;反渗透加离 子交换系统;高效反渗透EDI超纯水设备。 二、线路板用纯水典型工艺流程: 1、采用反渗透水处理设备与离子交换设备进行组合的方式,其基本工艺流程为:原水→沙炭过滤器→精密过滤器→原水箱→反渗透设备→混床(复床→纯水箱→纯水泵→后置精密过滤器 →用水点

2、采用反渗透水处理设备与电去离子(EDI设备进行搭配的的方式,这是一种制取超纯水的最新工艺,也是一种环保,经济,发展潜力巨大的超纯水制备工艺,其基本工艺流程为:原水→沙炭过滤器→精密过滤器→原水箱→反渗透设备→电去离子(EDI→纯水箱→纯水泵→后置精密过滤器→用水点 三、标准参考 显像管、液晶显示器用纯水水质(经验数据 集成电路用纯水水质 四、线路板纯水设备特点 为满足用户需要,达到符合线路板、电路板用纯水标准的水质,尽可能地减少各级的污染,延长设备的使用寿命、降低操作人员的维护工作量。在工艺设计上,最好取符合国标自来水为源水,再设有介质过滤器,活性碳过滤器,钠离子软化器、精密过滤器等预处理系统、RO反渗透主机系统、离子交换混床(EDI电除盐系统系统等。 线路板纯水系统中水箱均设有液位控制系统、水泵均设有高低压力保护装置、在线水质检测控制仪表、电气采用PLC可编程控制器,真正做到了无人职守;同时在工艺选材上采用推荐和客

超纯水系统操作说明书

水处理设备(超纯水系统) 操 作 说 明 书

目录 一、超纯水设备工艺流程图: (2) 二、工艺流程说明: (2) 1.原水箱 (2) 2.原水泵 (2) 3.多介质过滤器 (3) 4.活性碳过滤器 (3) 5.阻垢剂加药系统 (3) 6.软化器 (4) 7.精密保安过滤器 (4) 8.高压泵 (4) 9.两级反渗透RO机 (5) 10、二级纯水箱 (12) 11、EDI输送泵 (12) 12、前置紫外杀菌器 (13) 13、0.22μ微滤系统 (13) 14、EDI装置 (13) 15、EDI超纯水箱 (17) 16、输送泵 (17) 17、核级树脂 (17) 18、后置紫外线杀菌器 (18) 19、终端0.22μ微滤系统 (19) 三、设备操作指南: (19)

四、设备维护与保养:(以原水水质与纯水水质而定) (19) 附表1:水处理设备运行记录表 (21) 附表2:水处理设备维修保养记录表 (22) 附录3:售后服务承诺 (23) 一、超纯水设备工艺流程图: 二、工艺流程说明: 1.原水箱 原水箱作为储水装置,调节系统进水量与原水泵抽送量之间的不平衡,避免原水泵启停过于频繁,箱内设置液位,原水进水阀根据液位高低进行自动补水,原水泵根据水池液位情况自动启停。 操作:原水箱顶部设置手动及自动电动进水阀,可进行手动及自动补水; 手动补水时不受液位控制,只能手动控制。自动补水阀补水时受液位控制,

当水箱液位降到设定中液位时,自动阀开启自动补水;当水箱液位达到设定高液位时,自动阀关闭停止补水,从而达到自动的性能。 2.原水泵 作用:原水泵将原水增压后输送到下道工序,保证多介质过滤器、活性炭过滤的操作压力及运行流量。 操作:原水泵可分手动和自动操作,自动运行时,原水泵将与原水箱液位联动,原水箱液位低时原水泵停止运行,中水位时重新启动;手动操作时除原水箱液位液位不与原水泵连锁外,其他和自动一样;其他有关说明及注意事项详见水泵说明书。 3.多介质过滤器 作用:在水质预处理系统中,多介质过滤器压力容器内不同粒径的石英砂按一定级配装填,经絮凝的原水在一定压力下自上而下通过滤料层,从而使水中的悬浮物得以截留去除,多介质过滤器能够有效去除原水中悬浮物、细小颗粒、全价铁及胶体、菌藻类和有机物。其出水SDI15(污染指数)小于等于5,完全能够满足反渗透装置的进水要求。 操作:多介质过滤器的反洗操作采用自动控制器,过滤器应定期清洗。冲洗周期一般为5~7个工作日,具体将根据进水浊度而定。 4.活性碳过滤器 功能:在水质预处理系统中,活性炭过滤器能够吸附前级过滤中无法去除的余氯以防止后级反渗透膜受其氧化降解,同时还吸附从前级泄漏过来的小分

超纯水处理原理,工艺及技术简介

超纯水处理原理, 工艺流程及技术简介 1.超纯水制备原理 威立雅实验室超纯水器通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。 2.原水预处理系统 预处理系统通常由聚丙烯纤维(PP)过滤器和活性炭(AC)过滤器组成。对硬度较高的原水还需加装软化树脂过滤器。PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。 3.反渗透纯化系统 反渗透(Reverse Osmosis,简称RO)是以压力差为推动力的一种高新膜分离技术,具有一次分离度高、无相变、简单高效的特点。反渗透膜“孔径”已小至纳米(1nm=10-9m),在扫描电镜下无法看到表面任何“过滤”小孔。在高于原水渗透压的操作压力下,水分子可反渗透通过RO半透膜,产出纯水,而原水中的大量无机离子、有机物、胶体、微生物、热原等被RO膜截留。 通常当原水电导率<200μS/cm时,一级RO纯水电导率≤5μs/cm,符合实验室三级用水标准。对于原水电导率高的地区,为节省后续混床离子交换树脂更换成本,提高纯水水质,客户可考虑选择二级反渗透纯化系统,二级RO纯水电导率约1~5μS/cm,与原水水质有关。 4.超纯化后处理系统 ①混床离子交换纯化柱 混床离子交换纯化柱由阴离子交换树脂和阳离子交换树脂按比例混合而成。阳离子交换树脂用其H+交换去除水中的阳离子,阴离子交换树脂用其OH-交换去除水中的阴离子,在混床树脂中被交换出来的H+和OH-结合生成H2O,因此混床离子交换纯化柱可用来深度去除RO纯水中尚存的微量离子。小型实验室超纯水器中的混床离子交换纯化柱通常为一次性使用。永洁达混床离子交换纯化柱采用原装进口核级混床树脂,其产水电阻率可达18.2M Ω.cm。 ②EDI装置 连续电去离子EDI(Electrodeionization的缩写),是利用混床离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下分别透过阴阳离子交换膜而被连续去除的过程。这一新技术可以代替传统的离子交换(DI),产出10MΩ.cm以上的超纯水。EDI深度除盐的最大优点是可长期稳定运行,无需用酸碱再生阴阳树脂,十分适合造水量100L/h 以上的超纯水中央制备系统,水质稳定,并将大大降低运行成本,TOC也将更低更稳定。永洁达EDI装置通常的产水电阻率约15~18MΩ.cm。 ③除热原超滤膜 超滤除热原已广泛用于现代制药行业。超滤(Ultrafiltration,缩写“UF”)膜的孔径介于反渗透和微滤之间(约0.01~0.1μm),通常用最小截留分子量来表示。永洁达除热原超滤膜采用截留分子量为5000道尔顿的聚砜膜,可彻底去除水中热原(其最小分子量通常大于7000)及各类微生物。 ④紫外线杀菌灯与TOC紫外消解器 紫外线杀菌灯采用254nm波长的紫外线照射杀菌,可有效破坏微生物的DNA分子,使之形

超纯水机整个处理工艺流程

超纯水机整个处理工艺流程 超纯水机整个处理工艺流程 科学的进步,人类的发展,让人们的观念也随之提高,现在很多实验对试剂,或者是对检测环境的杂质要求都已经达到了ppb级,部分检测已经达到ppt级;因此,对于超纯水机,应该是每个实验室不可缺少的。 纯水主要用途: ●氢气发生器、室内加湿器、高压消毒锅用纯水 ●缓冲液、化学试剂配制用水 ●微生物培养基制备用水 ●实验室器皿的最后清洗 ●人或实验动物饮用水等; 超纯水主要用途: ●医院、医药制剂室及中心实验室用纯化水和高纯水 ●各种医疗用生化仪、分析仪、血液透析仪用水 ●各种高效液相色谱、离子色谱用水 ●其他各种实验室用水和医药用水。 ●分析试剂及药品配置稀释用水 ●生理、病理、毒理学实验用水 ●动、植物细细胞培养用水 ●原子吸收光谱用水 ●试管婴儿用水 超纯化水质的主要工艺

超纯水机要彻底去除天然水中常见杂质,包括:微生物、颗粒物、可溶性气体、可溶性无机物、有机物等杂质。 目前净化水质的工艺方法有很多,但常用的有反渗透法、过滤法、吸附法、蒸馏法、离子交换法、紫外氧化法等。 超纯水机一般可以将水的纯化过程大致分为4大步: 第一步:预处理(初级净化); 由于预处理后的水将通过反渗透进行再一步的净化,所以一定要尽量去除对反渗透膜有影响的杂质;主要包括大颗粒物质、余氯以及钙离子镁离子。最重要的一点是必须要根据进水水质的差异针对性地配备不同的处理单元。莱特莱德环境工程有限公司能帮助客户很好的解决这个问题,用设计精密过滤器、活性碳吸附过滤器以及软化树脂针对性地去除水中大颗粒物质、余氯以及钙离子镁离子达到最佳的预处理效果。就避免了后续的纯化无法达到理想结果并缩短反渗透膜、超纯化柱等主要部件的寿命的问题。 预处理耗材(莱特莱德代理的水处理耗材配件是您很好的选择,保证产品质量,提供一流售后)的及时更换对超纯机的长期稳定运行,保护核心部件相当重要。 第二步:反渗透(生产出纯水); 反渗透可以滤除90%-99%的包括无机离子在内的绝大多数污染物,因为它出众的纯化效率,使用一个高压泵对高浓度溶液提供比渗透压差大的压力,水分子将被迫通过半透膜到低浓度的一边,此项技术是水纯化系统的一个非常有效的技术,因为反渗透能去除大部分的污物,故经常被用作前期处理手段,能显著地延长去离子交换柱的使用时间。 莱特莱德技术人员建议用户一定要选择对反渗透膜具有保护功能的超纯水机。因为反渗透在水质纯化过程中是非常关键并且反渗透膜的更换价格较高。 采用了独特技术,结合领先的反渗透限流设计,在出水处有限流阀,使反渗透膜始终浸泡在水中,不致因变干而影响寿命。为了尽可能延长反渗透膜的使用寿命以及提高反渗透膜的过滤效率,延长了反渗透膜寿命就是保证了出水水质,同时也提升了超纯水系统的性价比。 反渗透膜的质量对其寿命以及对超纯化柱的使用寿命影响很大,所以莱特莱德技术人员建议用户一定要关注反渗透膜的品牌,如我公司代理的一些大品牌:陶氏、GE、海德能、东丽等。 第三步:离子交换(可生产出18.2MΩ.cm超纯水); 离子交换即是水中的正离子与离子交换树脂中的H+离子交换,水中的负离

超纯水系统工艺及其施工(吴纯傲)

超纯水系统工艺及其施工 (Ultrapure Water System Technics and Construction) 中国电子系统工程第二建设公司:吴纯傲 文摘: 本文根据建设制备18.2MΩ以上的超纯水站为实际案例,介绍超纯水制备的基本工艺,特别注重说明了水处理不同阶段所用管道材质,并根据安装实际经验对超纯水管道施工作了详细阐述。 关键词:超纯水系统洁净 CPVC管 PVDF管 Abstract: Take example of pure water above 18.2MΩin FAB to explain the production process flow and basic technics, especially in choosing pipeline materials at difference stage. And illuminate the construction of pure water pipeline in detail base on practical experience. Key words:Ultra pure water system, Clean, CPVC pipe, PVDF pipe. 一、超纯水系统总体介绍 随着电子工业的发展,在芯片的生产加工过程中,对于水质的要求也越来越高。为了保证生产出超大规模的集成电路,除高纯原材料、高纯气体、高纯化学药品外,高纯水也是其中最关键的因素之一。高纯水系统是将一般的市政用水处理成对不同离子的含量和颗粒度都有很高要求的超纯水。超纯水系统总体来说一般可分为三个部分:超纯水制造区(CUB部分)、超纯水抛光循环区(FAB部分)、超纯水输送管网(FAB各使用区)。其中超纯水制造区最为复杂其又可分为:预处理、一次纯水处理、超纯水处理三个部分。预处理部分主要包括:沙滤、活性炭塔(有的厂商在沙滤前还增设反应槽、气浮池);一次纯水部分主要包括:阴阳离子交换塔、脱气塔(DG)、保安过滤器、紫外线杀菌器及多级反渗透;超纯水部分主要包括:MDG(脱氧膜组)、TOC-UV杀菌器、混床(MB)及终端过滤器。但是由于考虑到在向工艺线设备输送高纯水过程中,输水管道会对水质再次造成污染,因而在FAB内一般都设立抛光循环系统。抛光循环系统主要以MB 为核心,再加上超滤设备(UF),以除去在向工艺生产线输送纯水的过程中,管网溶入水中的杂质。 二、超纯水系统中各阶段常用管材 在超纯水系统中管材的选用也非常重要,既要能做到保证水质、又应该做到

超纯水的制备原理

离子交换法 离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。 离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。 阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是那一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。 若将离子交换法与其他纯化水质方法(例如反渗透法、过滤法和活性碳吸附法)组合应用时,则离子交换法在整个纯化系统中,将扮演非常重要的一个部分。离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合其他的纯化方法设计使用。 活性碳吸附法 有机物可能是阳离子、阴离子或非离子性的物质,离子交换树脂可去除原水中一些可溶性的有机酸和有机碱(阴离子和阳离子),但有些非离子性的有机物却会被树脂包覆,这过程称为树脂的“污染阻塞”现象,不但会减少树脂的寿命,而且降低其交换能力。为保护离子交换树脂,可将活性碳过滤器安装在离子交换树脂之前,以去除非离子性的有机物。 活性碳的吸附过程是利用活性碳过滤器的孔隙大小及有机物通过孔隙时的渗透率来达到的。吸附率和有机物的分子量及其分子大小有关,某些颗粒状的活性碳较能有效的去除氯胺。活性碳也能去除水中的自由氯,以保护纯水系统内其他对氧化剂敏感的纯化单元。 活性碳通常与其他的处理方法组合应用。在设计纯水系统时,活性碳与其他相关纯化单位的相关配置,是一项极为重要的项目。 微孔过滤法 微孔过滤法包括三种类型:深层过滤(depth)、筛网过滤(screen)及表面过滤(surface)。深层滤膜是以编织纤维或压缩材料制成的基质,利用随机性吸附或是捕捉方式来滞留颗粒。筛网滤

超纯水机制备纯水的工艺及使用说明

超纯水机制备纯水的工艺及使用说明 超纯水机是制取超纯水的主要设备,因为该设备体积比较小,所以一般用在实验室等地方,用来制取实验、生产用水。现在使用的各种超纯水机制备方法与纯化水相结合的新的科学技术,很容易可以生产纯净的水,目前市售的纯水机是一个成功的例子。本文主要介绍的是超纯水机制备超纯水的步骤。 超纯水机为的制备超纯水步骤大致如下: 1、原水:可用自来水或普通蒸馏水或普通的去离子水为原料,水。 2、机械过滤器:通过砂芯柱、过滤板和纤维机械杂质,如铁锈和其它悬浮物等 3、活性炭过滤器:活性炭吸附剂、吸附广泛,如煤气成分的余氯等;吸附细菌以及一些过渡金属等。过滤的反渗透膜会被损坏,所以应该努力固执。 4、反渗透膜过滤器:可以过滤95%的电解质和大分子化合物,包括胶体粒子和病毒等。因为大多数离子,使离子交换柱的使用寿命大大延长。最后一步也是超纯水机制备最重要的一个步骤,消除紫外线的流程,通过短波(紫外线照射分解水)不易被吸附的小的有机化合物,如甲醇、乙醇等,使其转变成二氧化碳和水,以减少TOC 的指标。 超纯水机最重要的技术就是反渗透技术,日常生活中我们喝干净的水是采用反渗透技术过滤净化之后的。以便能达到要求,有利于人体饮用水身体健康。反渗透技术已经广泛应用于食品工业多年。

用途:用于乳品生产乳清蛋白粉和浓度对牛奶来降低运输成本。反渗透是在全球范围内为葡萄酒行业包括葡萄酒和果汁许多实践,去除污染浓度,像烟雾去除酒精。水分蒸发,通过渗透膜将去除一些污染物,所以反渗透技术更能提现出超纯水机的优越性了。反渗透超纯水机主要是由美国军方使用的技术,当时军事人员还在用它来提供饮用水。现在反渗透技术已被广泛地应用于各行各业的 水。

超纯水机的混床工艺技术资料

超纯水机的混床工艺技术资料EDI超纯水机优势和应用 EDI超纯水机工艺技术已经越来越受人们关注,该技术有很多优点,已经被很多行业广泛应用。也取代了传统的制超纯水方法,出水更稳定,运行更可靠。 EDI超纯水机的优点 EDI系统可以用来替换传统的混床工艺,EDI跟以往工艺不同的是,此工艺不需要大量的化学药剂进行再生。EDI系统的出水水质非常稳定,又可连续达到水质标准,减少了占地面积,还省去了传统工艺中的酸、碱再生步骤,生产安全具有可靠性,又可实现模块化的组装。维修也非常简便,并且不需要停机。运行成本也是非常低的。 EDI超纯水机优势 EDI超纯水机有很多优势,其中,占地面积非常小,因为跟以往工艺相比,EDI超纯水机省去了混床部分和再生的机。出水水质可根据用户的需求进行调整,水质非常稳定,这跟混床技术相比,就可以不用担心树脂因为失效而导致水质变差等问题。而且成本低,只耗电,省去了酸碱步骤,可以节省掉材料费用,而且非常环保,增加了安全操作性。

EDI机应用领域 EDI超纯水机可以应用于电厂和一些电子行业中,像化学水的处理,半导体等用水,制药行业和食品行业对水的要求过高,我公司EDI超纯水机的产水水质均符合用户的用水需求,我公司设备还可以用于对水有严格要求的行业和各种小型的纯水站及一些 高端行业用水等。 医疗纯化水设备的基本介绍及工艺流程 近几些,医疗行业兴起,对医疗行业的管治也越来越严格,由其是一些医疗用水,必须要满足GMP,还要达到一定标准。莱特莱德作为专业超纯水处理公司,为满足用户要求提高高品质的医疗纯化水设备及服务;并结合最新工艺,弥补了传统工艺上的不足。 医疗纯化水设备性能: 医疗纯化水设备是全自动控制,可以进行设置,冲洗,开关机都可以实现自己化。反渗透主机部分,有自动保养的功能,而且整个设备都是采用不锈钢构成,结实耐用。 医疗纯化水设备工艺流程: 第一种工艺流程:原水经过加压进入四级预处理中进行处理,使水达到一定标准,可进入反渗透设备,再由离子交换器进行处

工业超纯水制备全过程分析

一、项目背景 某电子厂配套纯水制备工程。 二、设计水量 本系统要求产品水量为50m3/h,因此设计产水量确定为50m3/h。系统采用两级反渗透装置的系统回收率为75%,故系统的设计进水水量为66.7m3/h。 三、设计进水水质 本纯水系统的进水为当地深井水,其水质经当地环保部门进行了全水质分析,主要检测分析结果见水质报告。 四、目标水质 根据产品水的用途与要求,确定产品水的目标水质为:电阻率≥10MΩ·cm 五、处理工艺选择 电子用纯水不同于一般的纯水制备,它对水质具有更为严格的规定,属于高纯水范畴。一般来说,高纯水制备主要包括预脱盐与精处理脱盐两大部分,如何进行工艺的选择和组合成为高纯水制备的关键。 典型工艺流程 (水质符合美国ASTM标准,电子部超纯水水质标准(18MΩ*cm,15MΩ*cm,2MΩ*cm和0.5MΩ*cm四级) 预处理-反渗透- 水箱-阳床-阴床-混合床-纯化水箱-纯水泵-紫外线杀菌器-精制混床-精密过滤器-用水对象 预处理-一级反渗透-加药机(PH调节)-中间水箱-第二级反渗透(正电荷反渗膜)-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm精密过滤器-用水对象 预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm精密过滤器-用水对象 预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线杀菌器-精制混床-0.2或0.5μm精密过滤器-用水对象

目前,预脱盐处理常常采用的主要是离子交换工艺和反渗透工艺。离子交换已被广泛使用许多年,我国八、九十年代初的纯水制备工艺基本上都采用离子交换法,该工艺技术成熟,工艺可靠,而且可根据目标水质的要求进行多种离子交换方式的组合。随着科技和自动化技术的发展,离子交换再生频繁、操作复杂、维护麻烦、运行费用高等缺陷就越来越突出,九十年代逐渐被新的反渗透技术代替,特别是预脱盐目前基本上都采用反渗透技术。和离子交换相比,反渗透具有运行稳定、占地少、操作维护简单、可实现高度自控,处理水量越大,其优势就越明显。 预脱盐后续的精脱盐处理工艺则根据目标水质的要求而有所不同,对超高纯水(电阻率大于16 MΩ·cm),目前一般采用更先进的EDI技术;对电阻率低于 16MΩ·cm的纯水,目前仍采用经济可靠的混合床技术。因为对纯水的精脱盐,混床又显示出其独有的优势:脱盐稳定,效率高,再生周期长,操作维护少。 鉴于以上的分析,结合项目的现实情况,在综合技术因素、经济因素的前提下,确定本纯水工程采用以反渗透为主体工艺,混床作为精处理工艺。 本系统原水采用深井水,水温在15℃左右,对于反渗透系统不是最佳温度。反渗透系统的最理想的温度为20℃左右,如果要保证20℃的温度,必须对原水采用加温措施,加温的方式可以选用电加热或蒸汽换热,对于小水量系统比较可行,但是对于较大水量系统,能耗偏高。其付出与升温带来的益处相比,反而不具有经济性。温度的升高虽然有利于提高反渗透系统的回收率,但是在本系统设计中对于反渗透系统的回收率具有一定的余度,因此无需加温仍完全可以满足系统要求。同时,升温过程的控制和操作也比较复杂。因此,本系统不考虑采用原水升温措施,只在反渗透系统中考虑水温影响,进行修正。 原水经泵提升依次经过组合过滤器、投加阻垢剂和保安过滤器等预处理工段,用以去除原中水的悬浮固体、胶体、有机物,并降低原水的浊度、色度等,保证RO进水SDI<3,以提供合格的反渗透进水。保安过滤器出水经高压泵提升进入反渗透装置,反渗透出水进入中间水箱,反渗透部分设有在线PH调节装置。为保证反渗透装置长期稳定运行,设置反渗透清洗装置,视需要对反渗透膜进行清洗。中间水箱出水经纯水泵提升至混床除盐系统,利用离子交换原理进一步脱盐,处理后产出的合格水流经微孔过滤器至纯水箱处,再经供水泵提升,经过紫外线消毒装置杀灭细菌后进入用水点。 值得注意的是,本系统一次性按照产品水量为50m3/h进行设计,考虑到实际生产中可能会在初期生产的1-2年内不需要如此大的水量,需水量可能在60%左右,因此在系统配置中控制泵的选型匹配,在不同产水量的要求下,启动不同台数的水泵,达到系统对产水量的需求。 六、主要工艺说明 1、预处理

半导体生产用EDI超纯水设备技术工艺介绍

半导体生产用EDI超纯水设备技术工艺介 绍 2019年8月27日

半导体行业的生产对水质要求非常严格,半导体生产用超纯水设备采用先进制水技术,保证设备出水水质符合行业用水需求。 半导体行业用超纯水设备工艺 预处理→UF系统→一级反渗透→PH调节→级间水箱→二级反渗透→中间水箱→中间水泵→紫外线杀菌器→微孔过滤器→EDI装置→氮封水箱→增压水泵→抛光混床→循环增压泵→用水对象(≥18MΩ.CM) 半导体的生产过程中,涉及到的用水有生产用水和清洗用水。它的用水要求必须是超纯水,因为只有超纯水才能符合水质的标准,因此半导体生产用超纯水设备起到重要作用,已经得到广泛认可。下面莱特莱德小编来为大家分享半导体生产用超纯水设备工艺流程: 原水箱→原水泵→全自动多介质过滤器→全自动活性炭过滤器→还原剂加药装置→全自动软化过滤器→保安过滤器→一级高压泵→一级反渗透系统→一级RO水箱→PH调节装置→二级高压泵→二级反渗透系统→二级RO纯水箱→EDI增压泵→UV杀菌器→脱气膜→精密过滤器→EDI装置→EDI纯水箱→纯水泵→抛光混床→0.22u膜过滤器→生产线用水点半导体生产用超纯水设备工作原理 超纯水装置供给原水进入EDI系统,主要部分流入树脂/膜内部,而另一部分沿膜板外侧流动,以洗去透出膜外的离子,树脂截留水中的容存离子,被截留的离子在电极作用下,阴离子向正极方向运动,阳离子向负极方向运动,阳离子透过阳离子膜,排出树脂/膜之外,阴离子透过阴离子膜,排出树脂/膜之外,浓缩了的离子从废水流路中排出,无离子水从树脂/膜内流出。 半导体生产用超纯水备工艺 1、预处理-反渗透-水箱-阳床-阴床-混合床-纯化水箱-纯水泵-紫外线杀菌器-精制混床-精密过滤器-用水对象 2、预处理-一级反渗透-加药机(PH调节)-中间水箱-第二级反渗透-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm精密过滤器-用水对象 3、预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm 精密过滤器-用水对象 4、预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线杀菌器-精制抛光混床-TOC分解器-0.2或0.5μm精密过滤器-用水对象(新工艺)

超纯水制备技术工艺及其原理全面解析

超纯水制备技术工艺及其原理全面解析 对于超纯水的需求随着半导体工业的发展,对超纯水质量要求提高,从而大大的推动了纯水技术的发展,膜技术得到了广泛的应用,微滤,超滤,电渗析和反渗透技术先进的水处理技术得到了飞速的发展,膜法制备纯水取代了传统的离子交换器系统,解决了TOC问题,满足了电子行业对纯水质量的要求。 超纯水制备工艺 1.传统超纯水制备工艺流程: 原水—多介质过滤器—活性炭过滤器—一级除盐—混床—超纯水 2.膜法超纯水制备工艺流程: 原水—超滤—反渗透—EDI—超纯水 在膜法工艺中,超滤,微滤替代澄清,石英砂过滤器,活性炭过滤器,除去水中的悬浮物胶体和有机物,降低浊度,SDI,COD等,可以实现反渗透装置对污水回用的安全,高效运行,以反渗透替代离子交换器脱盐,进一步除去有机物,胶体,细菌等杂志,可以保证反渗透出水满足EDI进水的要求,以EDI代替混床深度脱盐,利用电而不是酸碱对树脂再生,避免了二次污染。

原水水质概论 水中的杂质按存在的形态的不同可以分为悬浮物,胶体和溶解性固体三种,其中固体含量用总固体量作为指标,把一定量水样在105-110°烘箱中烘干到恒重,所得的重量及为总固含量。 第一类是悬浮物物指悬浮于水中的物质,颗粒直径在10-4mm 以上,如泥沙,粘土,动植物残骸,微生物,有机物,藻类等第二类是胶体,指水中带电荷的胶体为例,颗粒直径在 10-5mm之间,胶体颗粒是许多分子或离子集合体,这种细小颗粒具有较大的比表面积,从而使他具有特殊的吸附能力,而被吸附的物质往往是水中的离子,因此胶体颗粒带有一定的电荷,如硅铁铝化合物及一些高分子有机物如腐殖质等,也有一些在此粒径范围的细菌,病毒等。 第三类是溶解物,只被水所溶解的,分子或离子状态的溶质或气体如氯化物,硫酸盐等。 悬浮物和胶体是使天然水产生浑浊的主要原因。 原水的预处理 反渗透因为膜材料及元件的关系,对进水水质有一定的要求,预处理解决的问题是赌赛,结构,污染和波坏,堵塞时指水

超纯水系统工艺流程图

超纯水系统工艺流程图 Final approval draft on November 22, 2020

图 3 常用的一级RO+二级EDI+MB 电子I级超纯水系统工艺配置图 适合于源水硬度高,有机物含量高,电导率高(小于1000μs/cm),要求产水电阻率18~Ω·cm的超纯水系统图 4常用的一级RO+二级EDI电子Ⅱ级超纯水系统工艺配置图 适合于源水硬度高,有机物含量高,电导率(小于1000μs/cm),要求产水电阻率15~18MΩ·cm的超纯水系统

符号说明: P Pc F R C 电磁阀球阀止回阀压力表压力控制器流量计电阻率表电导率表流变控制开关 FK 图 5 常用的一级RO+二级EDI电子+MB 电子I级超纯水系统工艺配置图 适合于源水硬度低,有机物含量低,电导率高(小于1000μs/cm),要求产水电阻率18~Ω·cm的超纯水系统

图 6 常用的一级RO+二级EDI电子Ⅱ级超纯水系统工艺配置图 适合于源水硬度低,有机物含量低,电导率高(小于1000μs/cm),要求产水电阻率15~18MΩ·cm的超纯水系统

图 7是常用的一级EDI全系统组成图。 图 7 常用的产水水质稳定的二级RO+一级EDI+MB电子Ⅰ级超纯水系统组成图 适合于源水硬度低,有机物含量高,电导率 <1000μs/cm,即TDS < 500ppm时,要求产水电阻率18~Ω·cm的纯水系统

图 8 常用的产水水质稳定的二级RO+一级EDI电子Ⅱ级超纯水系统组成图 适合于源水硬度低,有机物含量高,电导率 <1000μs/cm,即TDS < 500ppm时,要求产水电阻率15~Ω·cm的的纯水系统

纯化水与超纯水的制备

纯化水与超纯水的制备原理 摘要这是一篇关于水的纯化和超纯水制备的综述。介绍了各种纯化某些新近的进展。包括蒸馏法、离子交换法、电渗析法和反渗透法等 关键词水的纯化超纯水离子交换电渗析反渗透 一、天然水中通常含有五种杂质: 1、电解质,包括带电粒子,常见的阳离子有H+、Na+、K+、NH4+、、Mg2+、Ca2+、Fe3+、Cu2+、Mn2+、Al3+等;阴离子有F-、Cl-、NO3-、HCO3-、SO42-、PO43-、H2PO4-、HSiO3-等; 2、有机物质,如:有机酸、农药、烃类、醇类和酯类等; 3、颗粒物; 4、微生物; 5、溶解气体,包括:N2、O2、Cl2、H2S、CO、CO2、CH4等; 所谓水的纯化,就是要去掉这些杂质。杂质去的越彻底,水质也就越纯净。 国家标准:有饮用纯净水(GB17323)、分析实验室用水[2](GB6682—92)和电子级水[3](GB/T11446.1-1997)的技术指标。 二、水的纯化方法 1、蒸馏法,按蒸馏器皿可分为玻璃、石英蒸馏器,金属材质的有铜、不锈钢和白金蒸馏器等。按蒸馏次数可分为一次、二次和多次蒸馏法。此外,为了去掉一些特出的杂质,还需采取一些特殊的措施。例如预先加入一些高锰酸钾可除去易氧化物;加入少许磷酸可除去三价铁;加入少许不挥发酸可制取无氨水等。蒸馏水可以满足普通分析实验室的用水要求。由于很难排除二氧化碳的溶入。所以水的电阻率是很低的,达不到MΩ级。不能满足许多新技术的需要。 2、离子交换法,主要有两种制备方式: A. 复床式,即按阳床—阴床—阳床—阴床—混合床的方式连接并生产去离子水;早期多采用这种方式,便于树脂再生。 B. 混床式(2-5级串联不等),混床去离子的效果好。但再生不方便。 离子交换法可以获得十几MΩ的去离子水。但有机物无法去掉,TOC和COD值往往比原水还高。这是因为树脂不好,或是树脂的预处理不彻底,树脂中所含的低聚物、单体、添加剂等没有除尽,或树脂不稳定,不断地释放出分解产物。这一切都将以TOC或COD指标的形式表现出来。例如,当自来水的COD值为2mg/L时,经过去离子处理得到的去离子水的COD值常

相关主题