搜档网
当前位置:搜档网 › 光纤陀螺

光纤陀螺

光纤陀螺
光纤陀螺

1.1国内外光纤陀螺研究现状

1.1.1国外光纤陀螺的研究现状

Pircher和Hepner在1967年提出光纤陀螺,后由美国Utah大学Vali和orthill 于1976年经过实验演示,从此光纤陀螺(Fiber optic gyroscope)以其态结构所具有的优势,引起科技界的瞩目。

截止到20世纪90年代,全世界研制光纤陀螺及其系统的单位已经有几十家,精度范围已经覆盖了从战术级到惯性级、精密级的各种应用。霍尼韦尔公司(Honeywell)是航空和军事领域光学陀螺产品的最主要研制单位,该公司从1991年开始批量生产光纤陀螺及其系统。其研制的AHZ-800型光纤陀螺(0.5/h)姿态航向基准系统1995年被Dornier 328-100和Dornier 328-110系列飞机认可,目前已交付了上万套光纤陀螺姿态/航向基准系统(AHRS),作为标准配置广泛应用于许多商业的和定期的飞机(包括Embraer145支持客机、Dornier 328支线客机、波音777、Cessna Excel商业喷气飞机和史密斯公司Learjet 45商业喷气飞机)上。Honeywell公司在美国空军的支持下,还研制一种战术武器惯导系统用的光纤陀螺惯性测量单元(IMU),精度为(0.1/h)每月大约生产100套。在可行性论证阶段,Honeywell公司研制的精密级光纤陀螺已经达到偏置稳定性为0.0003/h,角随机游走为0.0001°/h,标度因数稳定性小于1ppm。Honeywell公司的精密级光纤陀螺已经应用在高精度飞船导航、飞船定位和稳定(“哈勃”望远镜)及战略导弹中。

格鲁曼(Northrop Grumman)公司在2001年兼并了利顿(Litton)工业公司,2002年从Audax集团接收了光纤传感技术公司,是美国最有影响的光纤陀螺及其系统产品的生产企业。目前,格鲁曼公司为许多重要的军事应用和商业应用生产光纤陀螺和惯性测量单元,陀螺漂移在1.0/h~0.001/h之间。

美国KVH工业公司的DSP光纤陀螺系列是将KVH公司独家拥有的保偏光纤和光纤元件与集成数字信号处理结合起来,克服了模拟信号处理的限制,本质上消除了温度敏感漂移和旋转误差。KVH公司的DSP光纤陀螺系列,如DSP-3000、DSP-4000和DSP-5000适合用于精度水平较高的军事应用和商业应用。

法国IXSEA公司主要从事光纤陀螺技术的研发,其中大突破是提出“全数字信号处理”的概念,即将数字解调与数字相位斜波结合起来。20世纪90年代中期,军用导航级光纤陀螺(0.01/h)投入生产。目前,IXSEA公司已研发出的ASTRIX200系列光纤陀螺测量单元中光纤陀螺精度为0.001/h。

除此之外,国外还有很多从事光纤陀螺及其系统产品的研制的单位。俄罗斯光联公司(Optolink)的光纤陀螺产品已应用于欧洲、亚洲等地的航天、航空、船舶、兵器、电子、铁路、通信等领域;日本航空电子工业有限公司(JAE)已经完

成消偏闭环IFOG的设计与开发工作,已经研制出零偏稳定性为0.02/h、标度因数稳定性为15ppm的惯性级光纤陀螺;日本日立公司的光纤陀螺商业应用包括了从地下到地面、从车载到机载的系统,其高灵敏度光

纤陀螺的寻北和跟踪精度均小于0.05°。

1.1.2国内光纤陀螺的研究现状

由于国外对光纤陀螺的技术封锁,国内光纤陀螺的研究起步较晚,集成光学技术和保偏光纤技术相对落后。直到1987年光纤陀螺技术才被列入重点研究计划之列,目前我国光纤陀螺技术的研究取得了较大进步[4-6]。

北京航空航天大学研制的保偏干涉型光纤陀螺测试精度优于1.0/h,消偏光纤陀螺检测精度约2.0/h,可望走向实用化[7]。尽管其精度较高,并且接近于工程应用,但是抗振性能较差,若在抗振性能方面加大研究力度,将来取得较好的使用效果和可靠性数据,可采用国内研制的光纤陀螺代替国外产品。

清华大学开展了光波导陀螺的研究,把光纤敏感线圈改为光纤敏感环,使双向光束在敏感环中循环传播数次,这样光纤的长度可减少,从而使导航级光纤陀螺的光纤长度由500~l000m减小到200m以下。这一改进可减小光纤敏感线圈在结构和绕制等方面的难度,也可减小绕制给振动特性带来的影响。这种光纤陀螺被称为循环干涉型光纤陀螺。

1996年,航天工业总公司13所成功研制出采用Y分支多功能集成光路、零偏稳定性达0.4/h的全数字闭环保偏光纤陀螺。浙江大学和Honeywell公司几乎同时发现利用消偏可提高精度[8]。

哈尔滨工程大学长期从事舰船惯性技术和组合导航领域的研究工作,进行“高精度全数字闭环光纤陀螺仪”项目的自行研制已经有10余年,目前已经研制出高等精度的光纤陀螺及其航姿参考系统,该陀螺采用进口的保偏光纤,结构轻巧,是一种单自由度角速率传感器。实际的光纤陀螺捷联惯导系统由3只加速度计、3只光纤陀螺以及以DSP、FPGA为核心的硬件电路组成。

1.2 光纤陀螺的工作原理

1.2.1 光纤陀螺的分类

光纤陀螺按其光学工作原理可分为三类:

1.干涉式光纤陀螺(IFOG)

2.谐振式光纤陀螺(RFOG)

3.受激布里渊散射式光纤陀螺(BFOG)

其中干涉式光纤陀螺技术已经完全成熟并产业化,而谐振式陀螺和受激式布里渊散射式光纤陀螺还处在基础研究阶段,尚有许多问题需要进一步探索。

所以这里主要探讨干涉式光纤陀螺的误差分析。

1.2.2萨格奈克效应

光纤陀螺是一种敏感角速率的光纤传感器,它实际上是一个基于萨格奈克效应的环形干涉仪。萨格奈克效应是法国学者萨格奈克(G.Sagnac )提出的光学效应。在一个任意几何形状的闭合光学环路中,从任意一点发出、沿相反方向传播的两束光波,绕行一周返回到该点时,如果闭合光路相对惯性空间沿某一方向转动,则两束光波的相位将发生变化,这种现象成为萨格奈克效应。(0805)本质上,萨格奈克效应揭示了同一光路中沿相反方向传播的两束光之间产生的光程差L ?与其所绕轴的旋转角速率Ω之间的关系。萨格奈克效应如图X 所示:

从光源发出的光被分成强度相等的两束光后由M 点进入光形环路,其中一束沿顺时针方向传播,另一束沿逆时针方向传播。这两束光绕行一周后,又在M 处会合。假定环形光路中介质的折射率为1,环路相对惯性空间无旋转时,两束沿相反方向传输的光在绕行一周后所经历的光程相等,都等于环形光路的周长,即:

2C W C C W L L R

π== (X-X) 这里,CW L 为沿顺时针方向光束所经历的光程,CCW L 为沿逆时针方向光束所经历的光程。

这两束光绕行一周所花时间也相等,都等于光程L 除以真空中的光束0c ,即:

当环形光路以角速度Ω绕垂直轴沿顺时针方向旋转时,这两束光绕行一周重新回到M 点处所走的光程就不再相等了,同时它们所花的时间也不再相等。沿顺时针方向传输的光绕行一周后到达'M (M 点旋转后的位置点)点多走了CW R t Ω一段距离,其实际光程为:

00

2CW CCW L R t t c c π===

2C W C W L R R t πΩ=+

绕行一周的时间为:

求解得: 沿逆时针方向传输的光绕行一周后到达'M 点少走了CCW R t Ω的一段距离,其

实际光程为:

2C C W C C W L R R t πΩ=-

绕行一周的时间为:

求解得: 两束沿相反方向传输光绕行一周后到达'M 点的时间差为:

实际上,通常情况下220

()c R Ω ,所以公式(上)在工程要求的精度内可近似为:

两束光绕行一周后到达M 点的光程差为:

这表明两束光的光程差L ?与输入角速度Ω成正比。

下面讨论光在折射率为n 的光路中的传播。当环形光路静止时,两束光在光路中的传播速度均为0c /n ,当有角速度Ω(设为顺时针方向)输入时,两束光的传输速度不再相等。根据洛伦兹—爱因斯坦速度变换式,可得沿顺、逆时针传输的两束光的速度分别是:

00

2CW CW CW L R R t t c c πΩ+==02CW R

t c R πΩ=-00

2CCW CCW CCW L R R t t c c πΩ-==02CCW R

t c R πΩ=+22204()

CW CCW R t t t c R π?ΩΩ=-=-2

20

4R t c π?Ω=2

00

4R L c t c π??Ω==

00()1c n CW R nc R c ΩΩ

+=+ 00()1c n CW R nc R c ΩΩ

-=-

在此情况下,两束沿相反方向传输的光束绕行光纤环一周的时间分别满足下列关系:

00()

221CW CW CW c n

CW R nc R R t R R t t R c ΩπΩπΩΩ++==++ 00()221CCW CCW CCW c n

CCW R nc R R t R R t t R c ΩπΩπΩΩ--=

=-- 推导得:

02202()()

CW R nc R t c R πΩΩ+=- 02202()()

CCW R nc R t c R πΩΩ-=- 2

2204()CW CCW

R t t t c R π?ΩΩ=-=- 由此可以看出,在介质中沿相反方向传输的两束光绕光纤环一周的时间差t ?与在真空中的情况完全相同。他们产生的光程差可推导如下:

02

244c n R R L c

ππ?ΩΩ== 式中c 为光在介质环路中的传播速度。

若光纤环的长度为l ,绕成半径为R 的圆环,则有2l R π=,2A R π=,L ?的值为:

42A Rl L c c ΩΩ?=

= 两束光之间由光程差L ?所产生的相位差R ?φ为:

24R Rl K L L c

ππ?φ??Ωλλ=?=

= 这里,2K πλ=为波矢量。 公式(上式)是以单匝光纤环为例推导出得结果,而实际上光纤陀螺一般采

用的是多匝光纤环(设为N 匝)的光纤线圈,则其相位差R ?φ为:

442R N Rl RL LD c c c

πππ?φΩΩΩλλλ=== 这里,L N l =?为光纤线圈的总长度,2D R =为光纤线圈环的直径。

可以看出,萨格奈克效应产生的相位差与旋转角速度成正比,其比例因子(及标度因子)为2S LD K c πλ=。

干涉式光纤陀螺的核心部分是双光束干涉仪,它是利用光电探测器检测两束光的干涉光强,光强大小可以表示为:

[]01()R I I COS ?φ=+

式中I 是探测器的检测光强,0I 是光源发射出光束的光强。

公式(上式)中存在一个以零位为中心的π±rad 的单调相位测量区域,相应的旋转速率也有一个x Ω±的单值工作范围(图)

2x c

LD λΩ=

由图可以看出:

(1)输出光强不能反映Ω转动的方向性,不论转动角速度是正还是负,探测器都有相同的输出;

(2)大多数的应用场合,萨格奈克相移很小。在0Ω=处,系统的灵敏度0dL d Ω

=,也就是说在零点处。系统的灵敏度很小; (3)由于光功率很小,导致输出信号微弱。

以上来自 (光纤陀螺建模及误差特性研究) 遨游收藏

1.3 互异性原理

互异性要求萨格奈克光纤干涉仪的两束反向传播光波应具有形同的传输特性,这样各种因素引起的两束光波的附加相移是相同的。当两束光波发生干涉时,互异性结构具有很好的“共模抑制”作用,可以消除各种寄生效应,从而能够非常灵敏的测量旋转引起的“非互易”相移。(光纤陀螺原理与技术 张贵才 P37)

1.3.1 分束器的互异性

在IFOG 系统中,除了光波传播的互异性,还存在着另一种互易效应,即分

束器的互易效应。以一个简单的环形干涉仪为例(下图),两束逆向传播的光由于传播的路径相同并同时反射和穿透,因而在通过公共输入输出端口时具有完全对应的相位。假设分光比为50:50(或3dB ),输入光波的光强为in I ,则返回光波的光强为4m I 。忽略非互易效应,两束光在干涉时的相位相等(即相位差为零),这样经历完全干涉后的光波光强int I 与输入光相同,即:

in int in 44m I I I I =++=

(干涉型陀螺建模及罗经技术研究 遨游收藏)

1.4误差分析

惯性仪表误差是影响系统精度的主要误差源,必须采用适当的数值计算方法进行补偿。要实现惯性仪表的误差补偿,必须建立仪表的数学模型。惯性仪表的数学模型就是在特定的条件下惯性仪表的输出和输入之间的数学关系。数学模型的研究是发展误差补偿技术的依据。精确的数学模型是实现精确的误差补偿的前提。惯性仪表的数学模型有很多种,如在飞行器的线运动下的惯性仪表的数学模型通常称作静态模型,因为这种模型可以做在静基座上反映出来。在飞行器角运动环境下仪表输出输入的数学关系称作动态模型。考虑仪表各种随机干扰作用下的仪表数学模型则称作随机模型。

建立惯性仪表数学模型的方法有两种,一种是解析法,根据仪表的工作原理和结构,用分析的方法推导出惯性仪表的输出和输入的关系。用这种方法得到的数学模型物理概念清晰,所有系数都用仪表结构系数来表示的,有明确的物理意义。但是,在推导数学模型时,不可避免的要作某些假设条件,因而这种模型存在一定的近似性;另一种实验法,这是工程实践中的常用方法。设计一种实验方案能够激励全部误差,然后通过大量实验取得数据,经过数据处理确定各项误差系数。(光纤陀螺捷联惯导系统中误差分析与补偿 遨游收藏)

表征光纤陀螺的主要性能指标有标度因数、零偏、零漂、随机游走系数,其

中后三项用于描述光学陀螺输出中的漂移误差。

标度因数:陀螺仪输出量与输入角速度的比值。

零偏:当输入角速度为零时陀螺仪的输出。

零漂:又称零偏稳定性。通常,静态情况下光学陀螺长时间稳态输出是一个平稳随机过程,即稳态输出将围绕零偏起伏和波动,表示这种起伏和波动的标准差被定义为零漂。零漂值的大小标志着观测值围绕零偏的离散程度。

随机游走系数:由白噪声产生的随时间积累的输出误差系数,它反映了光学陀螺输出随机噪声的强度。

由于零偏和标度因数受环境温度影响很大,因此在测试这两项指标时需要考虑温度因素。标度因数和零偏可以标定和测试,随机误差的分析可采用Allan 方差法。(惯性器件测试与建模 黄皮)

光纤陀螺的光路误差主要表现为光路(结构)非互易性,保证互易性是提高光纤陀螺精度的前提,也是研究光纤陀螺误差机理的一个重要思路。光纤陀螺的互易性主要是指相移的互易性,即任意一小段光路对两相向传播的光波具有相同的相位延迟。偏振的互易性是相移互易性的一种具体体现,因为偏振误差产生于耦合波(相位延迟与主波不同)和主波之间的寄生干涉。在光纤陀螺中,主偏振光波是需要的信号,光波的能量有主偏振反射、散射和耦合到正交偏振,都会引起主偏振的能量或功率损失,损失的能量通常都会以寄生干涉反映到探测器,形成类似于机械式陀螺的干扰力矩,造成误差。因此光纤陀螺的互易性还可解释为能量的互易性,即两相向传播的光波在经过闭环光路时在任意地方的能量损失均相同,且主偏振的能量在光路中的损失尽量小,同时产生非互易相移的正交偏振能量也小。外部物理场对光纤陀螺的作用会引起主偏振光波的能量转化成正交偏振的能量,进而引起光路误差,因此减小光路误差主要是减小外部物理场引起的光路中主偏振能量向正交偏振的转化。

1.3.1 光纤陀螺典型光路模型

光纤陀螺的典型光路模型从光路的互易性出发,从互易性要求主波功率(能量)损失最小且寄生光波能量最小的角度对模型加以解释。

1.3.1.1 相位相应模型

(有用时再写)

1.3.2 典型物理场引起的光纤陀螺误差

基于光纤陀螺的上述光路模型,提出对光纤陀螺光电子器件和光路装配的偏振和光谱损耗控制要求,以上述模型为基础,可以研究典型物理场对光纤陀螺性能的影响。

1.3.

2.1 温度场的影响

在温度场作用下,光纤的折射率变化10-5/℃,纤长变化10-6/℃。同时,热胀冷缩是光纤会受到挤压和拉伸等应力。温度场对陀螺性能的直接影响更多是通过折射率体现的,即由Shupe 效应引起的零偏零漂,对应非互易相位相位差为

22()()dn dT L z z z dz dT dt v

π?φλ-= 上式表示一小段光纤dz 上两相向传播光波的相移差,其中z 为dz 在长为L 的光纤上的纵向坐标,dn dT 表示光纤折射率的温度系数,dT dt 表示dz 上的温度变化率,v 表示光纤中的光速。对于普通的柱形绕法,即使线圈尺寸小,产生的相

位误差也很大。采用四级对称绕法来绕制光纤线圈是减小该误差的有效办法,在温度变化下的零偏变化可以降低为21N (N 为线圈的匝数)。

1.3.

2.2 磁场的影响

磁场对光纤陀螺的影响是通过法拉第效应引起。光纤在制造过程中有可能引起光纤扭转,这会产生圆折射,在磁场作用下顺时针和逆时针圆偏振光波的折射率不再相同,从而导致两者之间存在萨格奈克相移之外的相位差。在磁场方向和光纤平行的情况下,磁场引起的法拉第旋转角为:

Be VBL φ=

其中V 为Verdet 常数,B 为磁感应强度,L 为光纤的长度。由于磁场方向与光纤平行时才会引起误差,因此光纤陀螺的磁场灵敏度主要反映在线圈的平面内某个方向。当线圈的绕制不理想,导致光纤扭转率w t 的变化周期等于光纤线圈的一

匝时,产生的误差最大:

2w Be VBt L

φ?β=

式中?β为单位长度光纤的线性双折射。保偏光纤可以提高线性双折射,抑制圆双折射,由上式可知,采用保偏光纤绕制光纤线圈可以减小磁场引起的非互易相位差。但是保偏光纤拉制过程和光纤线圈绕制的不理想使该误差仍存在。采用磁屏蔽可以进一步减小该误差。(光纤陀螺误差机理若干问题探讨 遨游收藏)

三、 光纤陀螺的误差来源

由于环境及光纤陀螺本身的各种噪声源的影响,光纤陀螺输出信号中存在着各种随机误差项。为了减少光纤陀螺的误差并提高其精度,需要对其进行性能评价,辨识出影响其精度的主要误差源,以便进一步采取措施消除相关的随机误差。

在实际系统中,萨格奈克效应非常微弱,构成光纤陀螺的每个元件都可能是噪声源,而且存在各种各样的寄生效应,它们都将是引起陀螺输出漂移和标度因数的不稳定性,从而影响光纤陀螺的性能。

主要误差源

1.光源噪声

光源是干涉仪的关键组件,光源的波长变化、频谱分布变化、输出光功率的波动、返回光的干扰,都将直接影响干涉的效果。另外,返回到光源的光直接干扰了它的发射状态,引起二次激发,与信号光产生二次干涉,并引起发光强度和波长的波动。

2.检测电路噪声

光电探测器本身的噪声、调制频率噪声、前置放大器噪声和散粒噪声都是重要的噪声源。通过优选调制频率可减少频率噪声分量,用电子学方法可减少放大器噪声,而散粒噪声只能通过选择尽可能大的光源功率和低损耗的光纤通路来增强光信号,提高信噪比。

3.光纤环噪声

在光纤干涉仪中,光纤线环是敏感萨格奈克相移的传感元件,同时又对各种物理量极为敏感。光纤的瑞利背向散射效应、双折射效应、克尔效应、法拉第效应以及温度效应等都将使光纤线圈传输的光信息发生变化,引起陀螺噪声,这是光纤陀螺的最大的噪声源。

(1)光纤的瑞利后向散射效应,起因于光纤内部介质的不均匀性、光纤通路的焊接点以及与器件的耦合点,它是光纤陀螺的一项主要主要噪声源。在光纤通路中,这种背向散射光被强加余传输光上。当光纤中的背向散射光与主光束相干叠加时,对主光束将产生相位影响,形成相位误差。为了抑制此项噪声,通常采用两种办法:一是采用短相干光源。瑞利背向散射引起的相位噪声大小依赖于光源的相干长度,若采用短相干光源,则散射光对主光束的相干度很小,主光束的相位基本上不受散射光的影响,可有效抑制瑞利散射引起的相位噪声。二是在光纤线圈的一端进行相位调制,选择合适的调制频率,使左右旋转的两束瑞利散射光的偏振调制相位正好相差180,二者的光强相互抵消,可消除返回光源的光信号的附加幅度调制噪声。

(2)光纤的双折射效应。主要是指光纤在应力作用下引起的传输偏振态变化,造成干涉信号波动,使陀螺产生漂移。通常采用保偏光纤绕制光纤线圈,并在光纤光路中引入高消光比的偏振器或偏振控制器,可较好地解决双折射效应问题。

(3)克尔效应。是一种电感应双折射,是极为快速的非线性效应,它与光纤的有效折射率和传输的光强有关。当沿光纤线圈左右旋转传输的两书光波强度不等时,就会产生两束光的传播常数不同,带来非互易的相位误差。通常,抑制的办法是:一、光源采用占空比50%的方波调制;二、选用宽频谱光源;三、使用分束比差少且稳定的定向耦合器作为光路的分束/合束器件。

(4)法拉第效应。是一种磁感应旋光性,即在磁场作用下产生的旋光效应。光纤线圈中的法拉第效应会产生偏振相位误差,它的大小和方向与磁场的强度、方向及光纤的双折射有关。因此,磁场作用将引起干涉信号失调,产生漂移,对此,可此,可采用高双折射的保偏光纤,并对光纤线圈加以磁屏蔽。

(5)温度效应。一方面表现在环境温度变化时光纤面积发生变化,引起标度因数的不稳定性。通过测量环境温度信息可对转动速率测量值进行校正。此外,把光纤精心绕制在一个热膨胀系数与光纤材料相近的骨架上,减少骨架与光纤之间的热应力,也是减少噪声的有效措施。另一方面,温度效应表现在热辐射造成光纤线圈局部温度梯度,引起左右光路光程的不等,产生附加相移,故通常采用沿光纤长度方向以中心对称方式绕制的光纤线圈,并用导热性好的金属箔片加隔热层对光纤线圈进行热屏蔽,可减少热辐射的影响。另外,光纤线圈绕制过程中会给光纤带来附加应力,应力的存在将使系统传播光波的状态发生变化,影响输出的稳定,因此才赢恒张力绕制光纤也是一项重要措施。

4.光路期间噪声

为了构成光纤干涉光路,保证光路互异性以及灵敏度的最优化,在光路中引入了各种器件。然而,由于这些器件的性能不佳以及器件引入后与光纤的对接所带来的光轴不对准、接点缺陷引起的附加损耗和散射等,将产生破坏互异性的新因素。由这些因素引起的噪声称之为光路期间噪声,包括定向耦合器的损耗及分束比偏差、相位调制器的寄生偏振调制、调制幅度和调制频率的变化等。减少这些器件噪声的手段主要是,提高器件性能和光路组装的工艺水平,以获得高性能的器件和光路。

光纤陀螺仪的发展现状_周海波

2005年第24卷第6期 传感器技术(J o u r n a l o f T r a n s d u c e r T e c h n o l o g y) 综述与评论 光纤陀螺仪的发展现状 周海波,刘建业,赖际舟,李荣冰 (南京航空航天大学导航研究中心,江苏南京210016) 摘 要:根据光纤陀螺仪的工作原理和特点,光纤陀螺仪具有不同的分类。介绍了国外光纤陀螺仪的现状,预测了近期和长远的发展趋势,旨在对我国的光纤陀螺技术的发展能有所帮助。 关键词:光纤陀螺仪;萨格纳效应;干涉型;谐振式;布里渊式 中图分类号:T N2,T P2 文献标识码:A 文章编号:1000-9787(2005)06-0001-03 D e v e l o p m e n t s t a t u s o f f i b e r-o p t i c g y r o s c o p e s Z H O UH a i-b o,L I UJ i a n-y e,L A I J i-z h o u,L I R o n g-b i n g (N a v i g a t i o nR e s C e n t e r,N a n j i n gU n i v e r s i t yo f A e r o n a u t i c s a n dA s t r o n a u t i c s,N a n j i n g210016,C h i n a) A b s t r a c t:T h ef i b e r-o p t i cg y r o s c o p e(F O G)i sc l a s s i f i e d i n t od i f f e r e n tt y p e sa c c o r d i n gt oi t sp r i n c i p l ea n d c h a r a c t e r i s t i c.T h e i n t e r n a t i o n a l s t a t u so f F O G i si n t r o d u c e da n dt h es h o r t-t e r m a n dl o n g-t e r m t r e n do f F O G i s f o r e c a s t.I t w i l l b eb e n e f i t t o t h e c o u r s e o f o u r F O G. K e yw o r d s:F O G(f i b e r-o p t i c g y r o s c o p e);S a g n a c e f f e c t;i n t e r f e r o m e t r i c;r e s o n a n t;B r i l l o u i n 0 引 言 光纤陀螺仪属于第四代陀螺仪———光学陀螺仪的一种,其基本工作原理基于萨格纳效应,即在同一闭合光路中从同一光源发出两束特征相同的光,沿相反的方向进行传播,汇合到同一探测点,产生干涉。若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度,则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。通过光程差与相应的相位差的关系,可通过检测相位差,计算角速度。它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。与传统的机械陀螺仪相比,具有无运动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。与另一种光学陀螺仪———环形激光陀螺仪相比,光纤陀螺仪不需要光学镜的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。 本文从光纤陀螺仪的原理和优点出发,着重对光纤陀螺仪的分类、国外研究现状及其发展趋势做了详细的介绍,希望对我国的光纤陀螺的研制和发展有所裨益。 1 光纤陀螺仪的分类 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有结构简单、价格 收稿日期:2004-11-20便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器[1]。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关[2],主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 按照光学系统的构成可分为全光纤型和集成光学器件型。全光纤陀螺成本较低,但实现高精度的技术难度较大,大多用于精度要求不高和低成本的场合。集成光学器件光纤陀螺在信号处理中可以采用数字闭环技术,易于实现高精度和高稳定性,是目前最常用的光纤陀螺构成模式。 按照性能和应用的角度可分为速率级、战术级和惯性级等3个级别[3]。速率级光纤陀螺已经产业化,主要应用于机器人、地下建造隧道、管道路径勘测装置和汽车导航等对精度要求不高的场合。日本、法国等国家研制、生产的这种精度的陀螺仪,已大批量应用到民用领域。战术级光纤陀螺具有寿命长、可靠性高和成本低等优点,主要用于战术导弹、近程/中程导弹和商用飞机的姿态对准参考系统中。惯性级光纤陀螺主要是用于空间定位和潜艇导航,其开发和研制正逐步走向成熟,美国有关公司和研究机构是研制、生产该级别光纤陀螺的佼佼者,如H o n e y w e l l,N o r t h r o p等公司。 1

光纤陀螺技术规范

光纤陀螺技术岗位规范 1 范围 本规范规定了光纤陀螺岗位职责和岗位标准。。 本规范适用于光纤陀螺岗位的初级、中级、高级职务人员。 2 引用标准 Q/AG L07 1.1-2003职工政治思想和职业道德通用标准 3 岗位职责 3.1负责光纤陀螺初样、正样、和定型产品研制的全部技术工作。 3.2严格贯彻执行国标、部标、企标及有关科研技术、质量管理和安全技术法规。 3.3负责项目、技术论证、可行性研究论证、技术经济分析和项目的申报工作。 3.4根据研制合同,制定阶段和年度工作计划,并组织实施。 3.5参加本专业及相关专业的技术会议,评审本专业范围内的科研成果。 3.6贯彻全面质量管理,负责对试验中出现的各种技术问题进行分析论证、改进设计。3.7根据工程化的实际要求,改进光纤陀螺的性能、环境适应性,不断采用新技术、新工艺改制和研究新样机,以满足武器装备的新需求。 3.8根据项目进展情况,适时编写专题技术总结、专题研究报告和鉴定申请报告。 3.9负责技术转让,技术咨询,技术服务以及资料管理和完成技术资料归档工作。 4 岗位标准 4.1 政治思想与职业道德 执行Q/AG L07 1.1-2003职工政治思想与职业道德通用规范 4.2文化程度 4.3 专业理论知识

4.3.1 初级职务 4.3.1.1具有高等数学、物理光学、模拟和数字电路等基础理论知识。 4.3.1.2具有光纤陀螺的原理及构成等专业理论知识。 4.3.1.3掌握光纤陀螺性能指标测试的流程和试验规范。 4.3.1.4懂得光纤陀螺技术参数的含义。 4.3.1.5了解光纤陀螺的研制过程和有关技术标准。 4.3.1.6初步掌握一门外语,并能查阅本专业书刊、资料。 4.3.2 中级职务 4.3.2.1具有光纤技术、信号分析、自动控制、计算机接口等基础理论知识。 4.3.2.2熟悉各种相关光学和电子仪器设备的操作,精通电路图。 4.3.2.3熟悉光纤陀螺的组装、调试以及技术指标的采样测试。 4.3.2.4掌握光纤陀螺的研究现状及存在的问题,了解关键技术。 4.3.2.5熟悉光纤陀螺各种技术参数的形成原因和改进方向。 4.3.2.6掌握一门外语,并能较熟练的查阅本专业书刊、资料。 4.3.3 高级职务 4.3.3.1精通光纤陀螺信号分析、噪声处理、电路检测等专业知识。 4.3.3.2精通光纤陀螺的原理、构成以及和光纤陀螺有关的系统知识,熟悉光纤以及各连接器件参数对光纤陀螺的影响。 4.3.3.3熟悉自控理论一般的数学建模,精通信号检测反馈理论。 4.3.3.4精通光纤光路结构分析、电路设计以及器件接口等理论和方法,掌握计算机软件的一般编程和应用。 4.3.3.5 熟悉项目的研制程序、典型技术和有关标准。 4.3.3.6掌握一门外语,并能熟练的查阅和笔译本专业的书刊、资料。 4.4 实际工作能力 4.4.1 初级职务 4.4.1.1能按步骤的完成光纤陀螺的器件焊接、电路板的制作等。

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

光纤陀螺

光纤陀螺及军事应用 摘要:本文主要介绍了光纤陀螺,光纤陀螺的发展历史及其现状;在光纤陀螺分类的基础上分析其原理;光纤陀螺的特点;分别于陆海空三个不同的方面讲述光纤陀螺的军事应用以及光纤陀螺未来发展趋势。 关键词:光纤陀螺;发展历史;原理;分类;特点;军事应用;发展趋势 Fiber Gyroscope and Military Application Xu Rui (School of Economy and Administration, Shanghai University, Shanghai 200444, China) Abstract: This paper mainly introduces the development history and present situation of fiber optic gyroscope, optical fiber gyroscope; analyze its principle based on the classification of the characteristics of fog; fog; military application and development trends in the future about the fiber optic gyroscope fog on three different aspects of armed respectively Keywords: Fiber gyroscope;History;principle;Classification;Characteristic;Military application;Development trend. 1 前言 现代陀螺仪是现代航空、航海、航天和国防工业中 广泛使用的一种惯性制导仪器,它的发展对一个国家的 工业、国防和其它高科技的发展具有十分重要的战略意 义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械 式的陀螺仪对工艺结构的要求很高,结构复杂,它的精 度受到了很多方面的制约[1]。光纤陀螺仪作为新一代的 陀螺仪,是一种利用Sagnac效应测量旋转角速度的新型 全固态惯性仪表[2],较为常见的外形如图(1)所示。光 纤陀螺因其零部件少、体积小、抗电磁辐射和冲击能力图1 光纤陀螺 强、寿命长、易于集成、成本低等优点而飞速发展, 广泛用于兵工、航海、航空、航天等军事领域。 2 光纤陀螺仪的发展历史及现状 自从美国犹他大学的VAL I和 SHORTHI LL等人成功研制第1个光纤陀螺以来,光纤陀螺已经发展了将近30年。以下是光纤陀螺的主要发展历程[3~7]。 1970 年,新一代低损耗光纤推动光纤陀螺的研制; 1976年, VAL I和SHORTHI LL 等人成功研制了干涉式光纤陀螺(I-FOG);1977 年~1982年,对光纤陀螺的基本结构进行研究,提出了光纤陀螺最小结构,开环结构和闭环结构,并提出了谐振式光纤陀螺(R-FOG)和布里渊光纤陀螺(B-FOG)的思想;1980年~1990年,对光纤陀螺的误差因素和光学元件进行研究,引入了超辐射发光二极管、保偏光纤、光学铌酸锂集成芯片、绕纤技术等,对光纤陀螺提出“all digital”的概念,首次实现商业化(实用于波音777);1990 年至今,光纤陀螺的实际应用研究(特别是航天航空,工业领域),运用光电集成芯片(LiNbO 质子交换光波导)、微光电机械、 3 信号处理技术等技术致力于降低光纤陀螺成本、小型化、高性能的研究,对I-FOG

中国光纤陀螺仪市场调研报告

中国光纤陀螺仪行业 市场调研投资分析预测报告

正文目录 第一章光纤陀螺仪行业概述 (19) 第一节光纤陀螺仪简述 (19) 一、定义及分类 (19) 二、产品特性 (20) 三、主要应用领域 (21) 第二节光纤陀螺仪的型号及用途 (21) 第三节光纤陀螺仪行业发展现状 (22) 第四节产业链结构分析 (25) 第五节光纤陀螺仪生产技术和工艺分析 (28) 第六节光纤陀螺仪在生产中遇到的问题及其解决方法 (31) 第七节光纤陀螺仪行业的地位分析 (31) 一、行业在第二产业中的地位 (31) 二、行业在GDP中的作用 (31) 第八节2015-2020年光纤陀螺仪行业相关政策发展的影响展望 (32) 一、国家“十三五”产业政策发展的影响展望 (32) 二、相关行业政策的影响展望 (32) 第二章中国光纤陀螺仪行业政策技术环境分析 (34) 第一节光纤陀螺仪行业政策法规环境分析 (34) 一、国家“十三五”规划解读 (34)

二、行业“十三五”规划解读 (34) 三、行业税收政策分析 (35) 四、行业标准概述 (36) 五、行业环保政策分析 (36) 六、行业政策走势及其影响 (36) 第二节政策法规对光纤陀螺仪产品的影响 (37) 一、2014-2015年中国光纤陀螺仪环保政策执行影响分析 (37) 二、节能环保新政策对光纤陀螺仪市场的影响 (37) 三、新政策对光纤陀螺仪市场的影响 (37) 第三节光纤陀螺仪行业技术环境分析 (38) 一、国内技术水平现状 (38) 二、国际技术发展趋势 (38) 三、科技创新主攻方向 (39) 第三章光纤陀螺仪生产技术分析 (41) 第一节光纤陀螺仪主要生产工艺技术 (41) 一、光纤陀螺仪生产工艺原理 (41) 二、光纤陀螺仪生产工艺流程 (42) 第二节光纤陀螺仪其他生产方法 (43) 第三节光纤陀螺仪生产工艺优劣势比较 (46) 第四节光纤陀螺仪工艺技术的改进与发展趋势 (46) 第五节光纤陀螺仪工艺技术路线的选择 (46) 第六节光纤陀螺仪质量指标 (47)

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

光纤陀螺技术规范

光纤陀螺技术规范 Q/AG L07 ×.××-2003 光纤陀螺技术岗位规范1 范围本规范规定了光纤陀螺岗位职责和岗位标准。。 本规范适用于光纤陀螺岗位的初级.中级.高级职务人员。 2 引用标准 Q/AG L071.1-2003职工政治思想和职业道德通用标准 3 岗位职责3.1负责光纤陀螺初样.正样.和定型产品研制的全部技术工作。 3.2严格贯彻执行国标.部标.企标及有关科研技术.质量管理和安全技术法规。 3.3负责项目.技术论证.可行性研究论证.技术经济分析和项目的申报工作。 3.4根据研制合同,制定阶段和年度工作计划,并组织实施。 3.5参加本专业及相关专业的技术会议,评审本专业范围内的科研成果。 3.6贯彻全面质量管理,负责对试验中出现的各种技术问题进行分析论证.改进设计。 3.7根据工程化的实际要求,改进光纤陀螺的性能.环境适应性,不断采用新技术.新工艺改制和研究新样机,以满足武器装备的新需求。 3.8根据项目进展情况,适时编写专题技术总结.专题研究报告和鉴定申请报告。

3.9负责技术转让,技术咨询,技术服务以及资料管理和完成技术资料归档工作。 4 岗位标准4.1 政治思想与职业道德执行Q/AG L071.1-2003职工政治思想与职业道德通用规范4.2 文化程度4.3 专业理论知识4.3.1 初级职务4.3.1.1具有高等数学.物理光学.模拟和数字电路等基础理论知识。 4.3.1.2具有光纤陀螺的原理及构成等专业理论知识。 4.3.1.3掌握光纤陀螺性能指标测试的流程和试验规范。 4.3.1.4懂得光纤陀螺技术参数的含义。 4.3.1.5了解光纤陀螺的研制过程和有关技术标准。 4.3.1.6初步掌握一门外语,并能查阅本专业书刊.资料。 4.3.2 中级职务4.3.2.1具有光纤技术.信号分析.自动控制.计算机接口等基础理论知识。 4.3.2.2熟悉各种相关光学和电子仪器设备的操作,精通电路图。 4.3.2.3熟悉光纤陀螺的组装.调试以及技术指标的采样测试。 4.3.2.4掌握光纤陀螺的研究现状及存在的问题,了解关键技术。 4.3.2.5熟悉光纤陀螺各种技术参数的形成原因和改进方向。 4.3.2.6掌握一门外语,并能较熟练的查阅本专业书刊.资料。

光纤陀螺寻北仪的发展现状

光纤陀螺寻北仪的发展现状 1光纤陀螺的研究及应用现状 (1) 2 陀螺寻北仪的发展情况 (1) 1光纤陀螺的研究及应用现状 在惯性导航和惯性制导系统中,陀螺仪是极其重要的敏感元件。所谓惯性导航,就是通过测量运载体的加速度,经过计算机运算,从而确定出运载体的瞬时速度和瞬时位置。所谓惯性制导,则是在得到这些参数的基础上,控制运载体的位置以及速度的大小和方向,从而引导运载体飞向预定的目标。 以陀螺仪和加速度计为敏感元件的惯性导航和惯性制导系统,是一种完全自主式的系统。它不依赖外部任何信息,也不向外发射任何能量,具有隐蔽性、全天候和全球导航能力。因此,惯性导航成为现代飞机、大型舰只和核潜艇的一种重要导航手段,而惯性制导则成为地地战术导弹、战略导弹、巡航导弹和运载火箭的一种重要制导方法。此外,惯性导航还可陆军炮兵测位、地面战车导航以及大地测绘等领域。由此可见,陀螺仪在航空、航天、航海、兵器以致国民经济的某些部门中都有着广泛的应用。 2 陀螺寻北仪的发展情况 第一阶段,20世纪50年代在船舶陀螺罗经的基础上,研制出矿用液浮式陀螺罗盘,这是陀螺寻北仪发展的初级阶段。在这个阶段,德国的克劳斯塔尔矿业学院于1949年研制出液浮式单转子陀螺球,电磁定中心,陀螺电源频率333HZ,电压为100伏三相交流电,陀螺转速19000转/分。一次观测中误差06'' ±,定向时间4小时,仪器重量640千克。其型号为MWI,1955年和1959年相继研制出MW3和MW4a型。精度进一步提高,定向时间进一步缩短,仪器重量进一步减轻。 第二阶段,从20世纪60年代开始,利用金属悬挂带将陀螺灵敏部陀螺马达转子和陀螺房在空气中通过悬挂柱悬挂起来,悬挂带的另一端与支承外壳相固定并采用三根导流管直接向马达供电。这样构成了摆式陀螺罗盘。与第一阶段相比,仪器结构大大简化,全套仪器进一步小型化,重量大大减轻,由于电源频率稳定性大大提高,使陀螺转速稳定,减小了角动量脉动,提高了仪器观测精度。1963

【CN209512878U】一种用于光纤陀螺的光纤环【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920267079.2 (22)申请日 2019.03.04 (73)专利权人 江西寻准智能科技有限责任公司 地址 332000 江西省九江市九江经济技术 开发区综合工业园区内绿冬丝科园区 5号楼 (72)发明人 冯唐荣 黄芳 祝露峰 余贤  (74)专利代理机构 北京纽乐康知识产权代理事 务所(普通合伙) 11210 代理人 苏泳生 (51)Int.Cl. G01C 19/72(2006.01) (54)实用新型名称 一种用于光纤陀螺的光纤环 (57)摘要 本实用新型公开了一种用于光纤陀螺的光 纤环,包括光纤环骨架,光纤环骨架为工字环结 构,光纤环骨架上下端面之间的外环壁为光纤绕 制环面,光纤环骨架的上端面为光纤盘装面且光 纤盘装面上设置有两个出纤螺线槽;光纤绕制环 面设有光纤环且光纤环两出纤端涂胶盘于光纤 盘装面上;光纤环外侧设有保温外层,光纤环骨 架的中心圆孔内设置有保温内层。本实用新型设 置有保温外层和保温内层,能够减少温度对于光 纤陀螺影响, 提高光纤陀螺的稳定性。权利要求书1页 说明书2页 附图3页CN 209512878 U 2019.10.18 C N 209512878 U

权 利 要 求 书1/1页CN 209512878 U 1.一种用于光纤陀螺的光纤环,包括光纤环骨架(1),其特征在于,所述光纤环骨架(1)为工字环结构,所述光纤环骨架(1)上下端面之间的外环壁为光纤绕制环面(2),所述光纤环骨架(1)的上端面为光纤盘装面(3)且所述光纤盘装面(3)上设置有两个出纤螺线槽(4);所述光纤绕制环面(2)设有光纤环(5)且所述光纤环(5)两出纤端涂胶盘于光纤盘装面(3)上;所述光纤环(5)外侧设有保温外层(6),所述光纤环骨架(1)的中心圆孔内设置有保温内层(7)。 2.根据权利要求1所述的用于光纤陀螺的光纤环,其特征在于:所述保温外层(6)为环带状且两边沿设有垂直于环带的延展部(61),所述延展部(61)覆盖住所述光纤环骨架(1)上下端面的外沿部分,且所述延展部(61)对应两个所述出纤螺线槽(4)开设有孔(62)。 3.根据权利要求1所述的用于光纤陀螺的光纤环,其特征在于:所述保温内层(7)为环带状且紧贴所述光纤环骨架(1)的中心圆孔内壁。 4.根据权利要求1所述的用于光纤陀螺的光纤环,其特征在于:所述光纤环(5)按四极对称绕制。 5.根据权利要求1所述的用于光纤陀螺的光纤环,其特征在于:两个所述出纤螺线槽(4)沿所述光纤环骨架(1)的轴心对称布置。 6.根据权利要求1所述的用于光纤陀螺的光纤环,其特征在于:所述光纤环骨架(1)的下端面为封闭式结构。 2

光纤陀螺仪的发展现状

2005年第24卷第6期 传感器技术(Journa l o f T ransducer T echno logy) 综述与评论 光纤陀螺仪的发展现状 周海波,刘建业,赖际舟,李荣冰 (南京航空航天大学导航研究中心,江苏南京210016) 摘 要:根据光纤陀螺仪的工作原理和特点,光纤陀螺仪具有不同的分类。介绍了国外光纤陀螺仪的现状,预测了近期和长远的发展趋势,旨在对我国的光纤陀螺技术的发展能有所帮助。 关键词:光纤陀螺仪;萨格纳效应;干涉型;谐振式;布里渊式 中图分类号:TN2,T P2 文献标识码:A 文章编号:1000-9787(2005)06-0001-03 Devel op m ent status of fiber optic gyroscopes Z HOU H a i bo,LI U Jian ye,LA I Ji zhou,LI Rong b i n g (Navi gati on Res Cen ter,Nan jing Un iversity of Aeronau tics and A stronau tics,N an ji ng210016,China) Abstract:The fi ber opti c gyroscope(FOG)is c lassified i nto different types acco rd i ng t o its pr i nc i ple and character i sti c.The i n ternati onal status of FOG is i ntroduced and the short ter m and l ong ter m trend o f FOG i s forecast.It w ill be bene fit to t he course o f our FOG. K ey word s:FOG(fi ber optic gyro scope);Sagnac e ffect;i nterfero m e tric;resonan t;B rillou i n 0 引 言 光纤陀螺仪属于第四代陀螺仪 光学陀螺仪的一种,其基本工作原理基于萨格纳效应,即在同一闭合光路中从同一光源发出两束特征相同的光,沿相反的方向进行传播,汇合到同一探测点,产生干涉。若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度,则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。通过光程差与相应的相位差的关系,可通过检测相位差,计算角速度。它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。与传统的机械陀螺仪相比,具有无运动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。与另一种光学陀螺仪 环形激光陀螺仪相比,光纤陀螺仪不需要光学镜的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。 本文从光纤陀螺仪的原理和优点出发,着重对光纤陀螺仪的分类、国外研究现状及其发展趋势做了详细的介绍,希望对我国的光纤陀螺的研制和发展有所裨益。 1 光纤陀螺仪的分类 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有结构简单、价格 收稿日期:2004-11-20便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器[1]。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关[2],主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 按照光学系统的构成可分为全光纤型和集成光学器件型。全光纤陀螺成本较低,但实现高精度的技术难度较大,大多用于精度要求不高和低成本的场合。集成光学器件光纤陀螺在信号处理中可以采用数字闭环技术,易于实现高精度和高稳定性,是目前最常用的光纤陀螺构成模式。 按照性能和应用的角度可分为速率级、战术级和惯性级等3个级别[3]。速率级光纤陀螺已经产业化,主要应用于机器人、地下建造隧道、管道路径勘测装置和汽车导航等对精度要求不高的场合。日本、法国等国家研制、生产的这种精度的陀螺仪,已大批量应用到民用领域。战术级光纤陀螺具有寿命长、可靠性高和成本低等优点,主要用于战术导弹、近程/中程导弹和商用飞机的姿态对准参考系统中。惯性级光纤陀螺主要是用于空间定位和潜艇导航,其开发和研制正逐步走向成熟,美国有关公司和研究机构是研制、生产该级别光纤陀螺的佼佼者,如H oneyw el,l N orthrop等公司。 1

光纤陀螺仪的应用及发展

光纤陀螺仪的应用及发展 谷军,蔺晓利,何南,姜凤娇,邓长辉 (大连海洋大学信息工程学院) 摘要:本文介绍了光纤陀螺的工作原理,并根据光纤陀螺的特点介绍了在各个领域的应用,阐述了光纤陀螺在国内外的发展现状,并指出了光纤陀螺的发展趋势。从发展角度看,光纤陀螺仪将成为21世纪前期的发展重点。 关键词:光纤陀螺;现状;应用; 0 引言 萨格纳克(Sagnac)在1913年首先论证了运用无运动部件的光学系统能够检测出相对惯性空间的旋转的奇特现象,现在统称为萨格纳克效应。1976年Vali和Shorthill首次提出了光纤陀螺(Fiber optic gyro)的概念,它标志着第二代光学陀螺的诞生。光纤陀螺一问世就以其明显的优点、结构的灵活性以及诱人的前景引起了世界上许多科学家和工程师的普遍关注。国内对光纤陀螺的研究也有20多年的历史,经历开环到闭环的研究历程。在20多年的研究过程中,光纤陀螺的广泛应用前景已经得到了专家的认可,光纤陀螺作为惯性技术的核心器件,已经逐渐成为陀螺市场的主流产品。人类对光纤陀螺的需求也变得十分迫切。 光纤陀螺的应用非常广泛,是基于Sagnac效应的原理工作的。作为继激光陀螺仪之后出现的新一代陀螺,各国的研制工作已经取得了重大的进展。光纤陀螺仪的研制对惯性导航和控制领域十分重要,随着计算机、微电子和光纤技术的发展和应用,它将取代传统的机械陀螺和平台惯导系统。与机械陀螺相比,光纤陀螺无运动部件、使用寿命长;全固化结构、抗冲击能力强;测量动态范围大、无预热时问、启动时问短;不受地球吸引力影响;工艺相对简单,价格便宜;对捷联应用有先天优势。与激光陀螺相比,光纤陀螺的成本低、性价比高;体积小、功耗低、应用灵活;克服了激光陀螺闭锁带来的负效应;随着工艺和信号处理方案的发展,精度也可以和激光陀螺相当。 1 光纤陀螺仪 光纤陀螺仪是光学陀螺仪的一种。所谓光学陀螺仪就是利用萨格纳克Sagnac)效应构成的陀螺仪。利用光纤线圈构成的干涉仪效应来敏感角运动的装置称为干涉型光纤陀螺仪(IFOG);采用光纤作为谐振器来敏感角运动的装置称为谐振型光纤陀螺仪(RFOG);利用布里渊光纤环形激光器的频率变化原理构成的测角装置称为布里渊光纤陀螺仪(BFOG)。由于光学陀螺仪不象传统陀螺那样,依靠自转子的动量矩来敏感角运动。所以国外学术界也把这类陀螺定义为非陀螺仪角运动敏感器。 1.1光纤陀螺仪的特点 光纤陀螺仪作为一种新兴传感器件,具有许多深受欢迎的特点:(1)无运动部件,仪器牢固稳定,耐冲击和抗加速度运动;(2)结构简单,零部件少,价格低廉;(3)启动时间短(原理上可瞬间启动);(4)检测灵敏度和分辨率高(可达10 -7rad/s);(5)可直接用数字输出并与计算机接口联网;(6)动态范围极宽;(7)寿命长,信号稳定可靠;(8)易于采用集成光路技术;(9)克服了激光陀螺因闭锁现象带来的负效应。 光纤陀螺最大的特点是可根据不同的用途,选择不同的光纤长度和线圈直径及不同的信息处理方法,可覆盖陆地、航空、航天、航海等所有陀螺仪应用范围。与传统陀螺仪(液浮

光纤陀螺仪原理

光纤陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年Vali等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。在这篇文章中,我们主要介绍现代光纤陀螺仪的原理和设计。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 光纤陀螺仪具有很高的精度和灵敏度。现在光纤陀螺仪已经达到0.01度/hr。 为了了解光纤干涉陀螺仪的基本结构,首先要了解光纤耦合器。光纤耦合器是一种光纤式的光能的分配元件。它是由两根平行的光纤将它们的内侧面磨平贴合在一起所形成的。不过现在制造光纤耦合器的方法已经不是这样的了。现代的方法是利用一种对光纤具有腐蚀作用的酸,在容器中将酸液的平面升高,在这个高度上正好可以将两根光纤的外层全部腐蚀掉。然后将这两根经过腐蚀的光纤加压贴紧,在相对较高的温度下对光纤进行拉伸。在拉伸的同时,利用仪器来测量输出的光能的分配情况,当光能分配满足耦合器的设计要求时,保持和固定耦合器的这一状况,这样一个合格的光纤耦合器就制成了。通过这种结构,当在一根光纤中一个入口有光通过时,它会经过耦合器的分配,将光在两根光纤出口中同时输出,同时两根光纤出口中的能量分配具有恒定的比例。和光线在介质表面的反射和透射一样,这样在输出的光中,在同一根光纤出口中的光是经过连接面的反射来实现的,而在另一根光纤出口中的光是经过连接面的折射来实现的,这两个光纤出口的光之间具有90度的相位差。如果我们用数字来表示光纤的进出口,1和2表示是进口,3和4表示是出口,其中1和3是同一根光纤,而2和4是同一根光纤,这将对后面的讨论比较方便一些。关于光纤耦合器两个输出的光之间的相位差的问题可以很简单地用一个闭合的环形干涉仪来说明:假设一束光射到一个50%比50%的分光片上,它的透射光经过三个反射镜回到分光片后,经过反射到达光源所在的方向;而从分光片反射的光,经过相同的三个反射镜后,回到分光片,经过透射同样到达光源所在的方向。 这两束光的强度均应该是入射光强度的1/4,因为光学的可逆性的原理,它们相干以后的光强应该等于入射光的强度。从这里看,它们之间的相位差应该等于零。如果考察与入射方向成直角的另一个出口的情况,根据光学的可逆性,在这个出口上,光的总能量应该等于零。也就是说,在这个出口上,两束光之间的相位差为180度。这两束光一束是经过两次分光片的反射,另一束是经过分光片的两次透射。所以如果仅仅考察一次反射和一次透射的两束光,它们的相位差一定是90度。 和光纤耦合器具有相同作用的是光学的Y形波导管,这也是一种光能分配的元件。不过它的体积更小,更具有集成性。它是这样制成的:首先在铌酸锂的晶块上利用照相制版使钛金属在晶体的表面上画出一个Y形状的线条,然后利用高温使钛分子渗入铌酸锂的晶粒中,从而形成一个折射率高的Y形状的光学波导管。和光纤耦合器不同,光学波导管只有一个入口,从中输出的两束光和光纤耦合器也不同,一般具有相同的相位。但是光学波导管和光纤的连接是一个很难解决的实际问题,光学波导管的截面和光纤截面的形状大不相同,因此在接口处的因为间隙,不匹配和中心偏移会

陀螺仪的发展历程以及现状的文献综述

陀螺仪的发展历程以及现状的文献综述 摘要 概述了陀螺的发展情况,论述了光纤、静电陀螺等几种现代陀螺的基本原理、分类以及其中一些国内外的研究现状。 关键词 光纤陀螺静电陀螺激光陀螺振动陀螺

作者简介: 男,北京航空航天大学,本科生

1.陀螺的发展简史 陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。自1910年首次用于船载指北陀螺罗经以来,陀螺已有近100年的发展史,发展过程大致分为4个阶段:第一阶段是滚珠轴承支承陀螺马达和框架的陀螺;第二阶段是20世纪40年代末到50年代初发展起来的液浮和气浮陀螺;第三阶段是20世纪60年代以后发展起来的干式动力挠性支承的转子陀螺;目前陀螺的发展已进入第四个阶段,即静电陀螺、激光陀螺、光纤陀螺和振动陀螺。[1] 2.光纤陀螺 光纤陀螺(FOG)是一种利用萨格奈克(Sagnac)效应测量旋转角速率的新型全固态惯性仪表。自从1976年Vali和Shoahil首次提出光纤陀螺的概念以来,引起了国内外人们极大的重视和强烈的兴趣,由于光纤陀螺与机电陀螺或激光陀螺相比有一系列优点,诸如体积小,质量轻,成本低等,特别引起海、陆、空三军的高度重视。在这短短的20多年里,光纤陀螺得到了很大的发展。国外中、低精度光纤陀螺已经产业化,高精度的光纤陀螺的开发和研制也正逐步走向成熟。美国Honeywell公司的保偏型光纤陀螺的零偏稳定性已经达到0.00038°/h,是目前报道的最高精度的光纤陀螺,拟用于潜艇导航或深层空间飞行器。光纤陀螺现已在航空航天、武器导航、机器人控制、石油钻井及雷达等领域获得了较为广泛的应用。国内光纤陀螺仪研制水平已接近惯性导航系统的中、低精度要求,但大多数未到工程实用阶段,也没有可靠性数据。光纤陀螺仪属于所谓“敏感技术”,在目前复杂的技术环境中,很难从他人那里得到更多的借鉴和参考,只有靠我们自力更生走符合。 [2] 光纤陀螺采用的是Sagnac干涉原理,用光纤绕成环形光路并检测出随转动而产生的反向旋转的两路激光束之间的相位差,由此计算出旋转的角速度。 光纤陀螺就原理与结构而言,可以将其分为干涉式光纤陀螺、谐振腔光纤陀螺、布里渊光纤陀螺、锁定模式光纤陀螺及Fabry2Perot光纤陀螺等5种;从检测相位的方法看,也可将其分为开环光纤陀螺和闭环光纤陀螺两类;从其构成方式,可分为相位差偏置式光纤 陀螺、光外差式光纤陀螺及延时调制式光纤陀螺等等。[1] 3.静电陀螺 在宇宙航行中,对陀螺仪的精度要求很高,漂移误差约为0.001(°)/h,或更高。静电陀螺仪是能满足这种要求的陀螺仪之一。静电陀螺仪是利用静电引力使金属球形转子悬浮起来,是自由转子陀螺。其基本结构是一只金属球形转子,加上两只碗形电极壳体,壳体外为陶瓷,内壁上固定6只金属电极,将球形转子放在对称密封壳体内而形成陀螺组件。如图2所示。

光纤陀螺

1.1国内外光纤陀螺研究现状 1.1.1国外光纤陀螺的研究现状 Pircher和Hepner在1967年提出光纤陀螺,后由美国Utah大学Vali和orthill 于1976年经过实验演示,从此光纤陀螺(Fiber optic gyroscope)以其态结构所具有的优势,引起科技界的瞩目。 截止到20世纪90年代,全世界研制光纤陀螺及其系统的单位已经有几十家,精度范围已经覆盖了从战术级到惯性级、精密级的各种应用。霍尼韦尔公司(Honeywell)是航空和军事领域光学陀螺产品的最主要研制单位,该公司从1991年开始批量生产光纤陀螺及其系统。其研制的AHZ-800型光纤陀螺(0.5/h)姿态航向基准系统1995年被Dornier 328-100和Dornier 328-110系列飞机认可,目前已交付了上万套光纤陀螺姿态/航向基准系统(AHRS),作为标准配置广泛应用于许多商业的和定期的飞机(包括Embraer145支持客机、Dornier 328支线客机、波音777、Cessna Excel商业喷气飞机和史密斯公司Learjet 45商业喷气飞机)上。Honeywell公司在美国空军的支持下,还研制一种战术武器惯导系统用的光纤陀螺惯性测量单元(IMU),精度为(0.1/h)每月大约生产100套。在可行性论证阶段,Honeywell公司研制的精密级光纤陀螺已经达到偏置稳定性为0.0003/h,角随机游走为0.0001°/h,标度因数稳定性小于1ppm。Honeywell公司的精密级光纤陀螺已经应用在高精度飞船导航、飞船定位和稳定(“哈勃”望远镜)及战略导弹中。 格鲁曼(Northrop Grumman)公司在2001年兼并了利顿(Litton)工业公司,2002年从Audax集团接收了光纤传感技术公司,是美国最有影响的光纤陀螺及其系统产品的生产企业。目前,格鲁曼公司为许多重要的军事应用和商业应用生产光纤陀螺和惯性测量单元,陀螺漂移在1.0/h~0.001/h之间。 美国KVH工业公司的DSP光纤陀螺系列是将KVH公司独家拥有的保偏光纤和光纤元件与集成数字信号处理结合起来,克服了模拟信号处理的限制,本质上消除了温度敏感漂移和旋转误差。KVH公司的DSP光纤陀螺系列,如DSP-3000、DSP-4000和DSP-5000适合用于精度水平较高的军事应用和商业应用。 法国IXSEA公司主要从事光纤陀螺技术的研发,其中大突破是提出“全数字信号处理”的概念,即将数字解调与数字相位斜波结合起来。20世纪90年代中期,军用导航级光纤陀螺(0.01/h)投入生产。目前,IXSEA公司已研发出的ASTRIX200系列光纤陀螺测量单元中光纤陀螺精度为0.001/h。 除此之外,国外还有很多从事光纤陀螺及其系统产品的研制的单位。俄罗斯光联公司(Optolink)的光纤陀螺产品已应用于欧洲、亚洲等地的航天、航空、船舶、兵器、电子、铁路、通信等领域;日本航空电子工业有限公司(JAE)已经完

相关主题