搜档网
当前位置:搜档网 › 导航原理讲义第一章

导航原理讲义第一章

导航原理讲义第一章
导航原理讲义第一章

导航原理(principle of navigation)

i) 使用教材:无(主要是没有合适的教材,要自己编)。ii)参考书:

1.惯性导航原理,邓正隆,哈尔滨工业大学出版社,

1994;

2.GPS卫星导航定位原理与方法,刘基余,科学出版

社,2003;

3.Elliott D. Kaplan. Understanding GPS:principles and

applications(second edition).

中译本:1)GPS原理与应用(第一版),邱致和(20所),电子工业出版社;

2)GPS原理与应用(第二版),寇艳红(北航),电子工业出版社,2007。

4)Pratap Misra,Per Enge. Global Positioning System: Signals, Measurements and Performance(second Edition).

中译本: GPS 信号,测量与性能(第二版),罗鸣等,电子工业出版社;

iii)课程考核方式:课堂大作业形式。

iv)课程的主要内容:

惯性导航部分;

北斗部分;

GPS部分;

天文导航部分;

组合导航部分;

新增部分:

量子导航

Simulation-based(粒子滤波)。瑞典林雪平大学(LinkOping University)的Rickard Karlsson提出一种无需GPS即可定位并导航的新技术。

第一章导航及其发展

§1.1 导航的基本概念

1、导航的定义

在各种复杂的气象条件下,采用最有效的方法并以规定的所需导航性能,引导运载体航行的过程(引导运载体按一定航线从一个地点(出发点)到另一个地点(目的地)的过程)。

2、导航参数

导航过程中需要用来完成导航任务的参数。

载体的位置、速度、姿态(角度)等,其中最重要的参数是确定载体的位置,即定位。所以,导航的核心就是定位。

3、导航的任务

1)引导运载体进入并沿预定航线航行;

2)导引运载体在夜间和各种气象条件下安全着陆或进港。

3) 为运载体准确、安全地完成航行任务提供所需要的其他导引及情报咨询服务;

4)确定运载体当前所处的位置及其航行参数(最重要)。

4、导航与定位的区别与联系

区别:

导航是对运动点而言的,观测时间很短,观测数据要进行实时处理,提供相对参考位置的相对坐标,定位精度不及固定点高。

定位是对固定点而言的,允许较长时间的观测,观测数据

事后处理,提供绝对坐标,定位精度较高。

联系:能够导航的系统必须能够定位,能够定位的系统必须能够导航。这取决于观测器材能否在运载体上获得足够精度的观测量。

5、导航系统(设备)

能够完成引导功能的设备。

如指南针、罗盘(最简单),卫星导航系统、无线电导航系统、惯性导航系统。

早在春秋战国时,我们祖先就了解并利用磁石的指极性制成最早的指南针——司南。战国时的《韩非子》中提到用磁石制成的司南。司南就是指南的意思,东汉思想家王充在其所著《论衡》中也有关于司南的记载。司南由一把“勺子”和一个“地盘”两部分组成。司南勺由整块磁石制成。它的磁南极那一头琢成长柄,圆圆的底部是它的重心,琢得非常光滑。地盘是个铜质的方盘,中央有个光滑的圆槽,四周刻着格线和表示24个方位的文字。

图司南

由于司南的底部和地盘的圆槽都很光滑,司南放进了地盘就能灵活地转动,在它静止下来的时候,磁石的指极性使长柄总是指向南方。这种仪器就是指南针的前身,由于当初使用司南必须配上

地盘,所以后来指南针也叫罗盘针。

在制作中,天然磁石因打击受热容易失磁,磁性较弱,司南不能广泛流传。到宋朝时,有人发现了人造磁铁。钢铁在磁石上磨过,就带有磁性,这种磁性比较稳固不容易丢失。后来在长期实践中出现了指南鱼。

从指南鱼再加以改进,把带磁的薄片改成带磁的钢针,就创造了比指南鱼更进一步的新的指南仪器。把一支缝纫用的小钢针,在天然磁石上磨过,使它带有磁性,人造磁体的指南针就这样产生了。

11世纪初,中国人发明的用地球磁场使铁片磁化的方法图解

图元代陈元靓设计的指南鱼

图指南针

图航海罗盘

指南针发明后很快就应用于航海。世界上最早记载指南针应用于航海导航的文献是北宋宣和年间(公元1119-1125年)朱所著《萍洲可谈》(成书略晚于《梦溪笔谈》),书中记载了中国海船上航海很有经验的水手。他们善于辨别海上方向:“舟师识地理,夜则观星,昼则观日,阴晦则观指南针”。“识地理”,是表明当时舟师已能掌握在海上确定海船位置的方法。说明我国人民在航海中已经知道使用指南针了。这是全世界航海史上使用指南针的最早记载,我国人民首创的这种仪器导航方法,是航海技术的重大革新。指南针应用于航海并不排斥天文导航,二者可配合使用,这更能促进航海天文知识的进步。

中国使用指南针导航不久,就被阿拉伯海船采取,并经阿拉伯人把这一伟大发明传到欧洲。恩格斯在《自然辩证法》中指出,"磁针从阿拉伯人传至欧洲人手中在1180年左右"。1180年是我国南宋孝宗淳熙七年。中国人首先将指南针应用于航海比欧洲人至少早80年。

北宋著名科学家沈括(《梦溪笔谈》著者),在制作和应用指南针的科学实践中发现了磁偏角的存在。他精辟地指出,这是因为地球上的磁极不正好在南北两极的缘故。指南针及磁偏角理论在远洋航行中发挥了巨大的作用,使人们获得了全天候航行的能力,人类第一次得到了在茫茫大海中航行的自由。从此开辟了许多新的航线,缩短了航程,加速了航运的发展,促进了各国人民之间的文化交流与贸易往来。指南针对航海事业的重要意义怎么说也不为过。李约瑟说:“你们的祖先在航海方面远比我们的祖先来得先进。中国远在欧洲之前懂得用前后帆的系统御风而行,或许就是这个原因,在中国航海史上从未用过多桨奴隶船”。这类似于秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的。达尔文的进化论,kalman filter等等。

6、导航系统的分类

(1)依据是否依靠外界信息完成导航任务可分为自主式导航系统与非自主式导航系统。

自主式导航系统:在不依靠外界信息或不与外界发生联系的情况下,独立完成导航任务,如惯性导航系统,天文导航。

惯性导航基于牛顿力学定律,组成惯性导航系统的设备都安装在运载体内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。

天文导航系统是自主式导航系统,不需要地面设备,不受人工或自然形成的电磁场的干扰,不向外辐射电磁波,隐蔽性好。虽然短时间内的导航定位精度不及惯性导航,但其误差不随时间积累,这一特点对长期运行的载体来说非常重要。另外,它可以同时提供位置、速度和姿态信息。因而,天文导航成为深空探测、载人航天和远洋航海必不可少的关键技术和卫星、远程导弹、运载火箭、高空远程侦察机等的重要辅助导航手段。

需要特别指出的是,天文导航因不需要设置专门的导航信息源,人们一般称之为自主式导航,但因为其导航信息源(恒星)在载体之外,有时候又将其称为半自主式导航。

非自主式导航系统:必须有地面设备或依靠其他外部信息才能完成导航任务(无线电导航系统、卫星导航系统等等)。除了要装在运载体上的导航设备外,还需设在其他地方的一套或多套设备与其配合工作,才能产生导航信息。在运载体上的设备分别被称为弹载、机载、船(舰)载、车载或单兵导航设备,而设在其他地方的那套设备被称为导航台。导航台与运载器上的导航设备用无线电相联系,总体形成一个导航系统。

§1.2 导航的发展史

自从人类出现最初的政治、经济和军事活动以来,便有对导航的要求。

远古时期的人类在狩猎或寻找猎物时,在夜晚行进中需要依靠星空辨识方向,因此天文学成了人类研究最早的科学,天文导航也就成为人类最早导航系统之一。天文导航也是古丝绸之路的导航系统。

当人类的经济与军事活动还较简单时,因为只要在前进方向上不出现错误,便可以到达目的地,因此人们主要依赖的,同时也主要需要的导航信息就是航向。随着人类运输和交通工具的不断改进,为了提高安全性和经济性,天空被划分为具有一定高度与宽度的航路,近海和港口被划分为不同的航道,人们对导航的要求也从航向转变为对未知的准确判断与预测,使导航的功能从主要提供运载体的航向转变为主要提供运载体的位置信息以及速度信息。尤其是军事领域的需要,出于自身安全和有效打击敌方的目的,对运载体的位置和速度信息的精度要求越来越高,现代科技的发展为这些需要提供了必须的基础,无线电导航与惯性导航在背景下出现并不断发展。

无线电导航的发明,是导航系统成为航行中真正可以依赖的工具,因此具有划时代的意义。

一、国内情况

人类历史上研制最早的导航设备要数四千年以前黄帝部落使

用的指南车(指南针是利用磁铁的指极性,而指南车是利用机械装置实现定向性的(制作一套可自动离合的齿轮传动机构,指南车的发明,标志着我国古代对齿轮系统的应用在当时世界上居于遥遥领先的地位。实际上它是现代车辆上离合器的先驱),两者的原理和构造完全不同,指南车比指南针要早)。传说中黄帝部落和蚩尤部落在公元前2600年发生的涿鹿大战中,黄帝部落在战争中发明了指南车。指南车使得黄帝的军队在大风雨中仍能辨别方向,从而取得了战争的胜利。这是人类研制的导航设备在战争中显示出巨大的作用。随之人类经济活动范围的扩大,对导航需求也越来越重要。

图过洋牵星术

15世纪,明代永乐年间,郑和七下“西洋”,“舟师”使用罗盘、测深器、牵星板(类似于现在的六分仪)等世界的先进技术,创造了世界航行史的壮举。

图牵星术所用设备及其原理

20世纪60年代,我国在沿海地区布设了罗兰A台链,取名为中导-Ⅰ型系统。

20世纪90年代,又分别在南海、东海和北海布设了罗兰C (脉冲双曲线系统)台链,取名远导-Ⅰ型系统。罗兰C使用脉

冲信号,脉冲载频大约100kHz,作用距离达1000nmile。罗兰A 在海岸布设有一系列岸台,以一定重复周期相互同步地发射脉冲信号,当船载机收到来自两个台的信号时,便可测出这些信号到达时间的差值,再乘以电波传播速度,换算为及两个台的距离的差值,利用这个差值,便知道船只处于以两个发射台为焦点的地球表面上的一条双曲线上。再利用来自另外两个台的信号的时间差值,又知道船只处于地球表面上的另一个双曲线上。这两个双曲线的交点便是船只所在的位置。罗兰C与罗兰A最大的不同在于不仅利用脉冲包络,而且还利用了脉冲载波相位,完成了各台站间的同步和为用户接收机测量时间差,因此定位精度大大提高。

2000年10月31日和12月21日,在西昌相继发射了北斗系统第一颗和第二颗导航定位试验卫星。2000年5月25日,将第三颗导航卫星送入太空,2004年北斗导航定位系统正式运营。现在北斗二代正在加紧组网(美国斯坦福大学研究人员成功破解我国“北斗”导航卫星信号编码程序,研究人员中有一名中国留学生)。

中国自主研制的“北斗一号”系统在通信中断的情况下发挥重要作用,救灾部队携带的北斗系统正在陆续发回各种灾情和救援信息。

“北斗一号”卫星导航定位系统监测到,一支携带了“北斗一号”终端机的部队,从中午12时开始,沿着马尔康、黑水、理县到汶川的317国道,以每小时6公里左右的速度一路急进,6个

小时前进了近40公里,已经进入汶川县境内,离县城还有40公里左右的路程。

图北斗卫星导航定位系统(第一代)工作示意图

图北斗导航卫星模型

图“北斗”系统地面定位用户机

图手持式北斗用户机用于抗震救灾

由于通信受阻碍,位于北京的卫星导航定位指控中心初步判断该部队隶属四川武警总队。指控中心正在进一步了解情况。

“北斗一号”卫星定位系统是利用地球同步卫星为用户提供快速定位、简短数字报文通信和授时服务的一种全天候、区域性的卫星定位系统。系统的主要功能是:

1、定位:快速确定用户所在地的地理位置,向用户及主管部门提供导航信息。

2、通讯:用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。

3、授时:中心控制系统定时播发授时信息,为定时用户提供时延修正值。

汶川大地震用到的就是北斗一号系统具备非常有用的“卫星短信”功能。当然,你也可以用卫星电话。

R190卫星/GSM900双频手提电话是爱立信为亚洲卫星特别制造的,目前世界上体积最小的卫星电话,配合亚卫卫星。其覆盖面几及整个亚洲地区,任何时候只要在这个范围内可以用R190卫星电话透过卫星联接到世界各地的其它通讯网络,直接接通各种制式的移动电话、巿内电话或其它卫星电话。但是卫星电话也有不少缺点:花费昂贵、带宽不足,在一个区域内只能同时容纳少量用户。在地震灾区大量使用卫星电话进行联系是不可想象的。

二、国外情况

17世纪初,欧洲各国开始进入资本主义社会,开拓市场客观上促进了导航特别是天文导航的发展。在无边无际的大海中航行,没有导航定位手段是不可能的,为了确定船舶的位置,人们就利用星体在一定时间与地球的地理位置具有固定规律的原理,发展了通过观测星体确定船舶位置的方法——天文导航。

二战时,德国在V-2火箭上第一次安装了初级的惯性导航系统,以提供火箭的姿态和入轨的初速度。惯性导航是依据牛顿力学原理来测量载体的运动状态的。飞到英国伦敦上空,发出怪叫声,英国人称为“讨厌的乌鸦”。惯性导航的缺点:定位误差的积累。

19世纪电磁波的发现,直接推动了近代无线电导航系统的发展。典型的有罗兰A,罗兰C、奥米伽、测向仪、无线电定位与天文导航相比,无论在定位的速度还是自动化程度方向都有了长

足的进步,但是无线电导航定位系统的作用距离(覆盖)和定位精度之间产生矛盾(作用距离长,定位精度低;作用距离短,定位精度高)。

随着1957年前苏联第一颗人造地球卫星的发射和20世纪60年代空间技术的发展,各种人造卫星相继升空,人们很自然地想到如果从卫星上发射无线电信号,组成一个卫星导航系统,就能较好地解决了覆盖面与定位精度之间的矛盾,于是出现了卫星导航系统(星基无线电导航系统)。

约翰?霍普金斯大学应用物理实验室研究人员通过观测卫星发现,接收的频率与发射的频率存在多普勒漂移现象。这样,知道了用户机的位置,测得多普勒漂移,便可得卫星的位置;反过来,知道了卫星位置,测得多普勒漂移,便可得用户机的位置。

目前比较成熟的有美国的GPS系统。俄罗斯的格洛纳斯(GLONASS),1995年完成24颗卫星的组网。但由于财力不足,目前在轨卫星不足,不能独立组网,只能与GPS联合使用。

当然,还有欧洲伽利略导航卫星系统计划,目前,实施进度慢,已邀请中国加入合作研究。

§1.3 导航的发展趋势

人类的导航技术一直处于不断的发展进步中。随着现代其他科学技术的不断发展,为导航技术提供了新的方法和手段,同时也对导航技术提出了新的要求,促使并推动了导航技术的进一步

发展。

一、现代军事作战对导航的要求及其发展

在人类科技史上,许多新技术都是首先用于军事领域,而军事领域的需求也对科技进步有着重要的推动作用,导航技术的发展也不例外。

1、现代军事作战对导航的要求

(1)具有强的电子对抗能力

随着导航军事作用的急剧扩展,开始出现了导航电子对抗问题,其中包括对导航信号的侦听、堵塞干扰、欺骗干扰和系统的反利用等等,因此,为军事作战服务的新型导航系统都应该尽量具有强的电子对抗能力。

(2)高于敌方的导航信息精度

C3I(command,control,communication and information)作为重要的军事装备在现代战争起着越来越重要的作用。C3I的任务是把关于战场上己方和敌方单位的情报信息,如它们的分布、航向与航速等收集到一起,形成实时的战场敌我态势,提供给指挥员以帮助做出正确而及时的判断与决策。然后还要把指挥和控制命令及时而可靠下达到作战单位和硬软武器系统,使战场态势发生有利于己方的变化。与之同时,为了使各作战单位之间能配合作战,还要让它们了解其周围的敌我态势。

导航是C3I系统的重要组成部分。有了导航为各作战单位所提供的实时定位与航向航速等信息,才能完成上述C3I的任务。

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

汽车电子电路图

汽车电子电路图

一、汽车整车电路的组成 汽车整车电路通常有电源电路、起动电路、点火电路、照明与灯光信号装置电路、仪表信息系统电路、辅助装置电路和电子控制系统电路组成。 ⒈电源电路:也称充电电路,是由蓄电池、发电机、调节器及充电指示装置等组成的电路,电能分配(配电)及电路保护器件也可归入这一电路。 ⒉起动电路 是由起动机、起动继电器、起动开关及起动保护电路组成的电路。也可将低温条件下起动预热的装置及其控制电路列入这一电路内。 ⒊点火电路 是汽油发动机汽车特有的电路。它由点火线圈、分电器、电子点火控制器、火花塞及点火开关组成。微机控制的电子点火控制系统一般列入发动机电子控制系统中。 ⒋照明与灯光信号装置电路 是由前照灯、雾灯、示廓灯、转向灯、制动灯、倒车灯、车内照明灯及有关控制继电器和开关组成的电路。 ⒌仪表信息系统电路 是由仪表及其传感器、各种报警指示灯及控制器组成的电路。

⒍辅助装置电路 是由为提高车辆安全安性、舒适性等而设置的各种电器装置组成的电路。辅助电器装置的种类随车型不同而有所差异,汽车档次越高,辅助电器装置越完善。一般包括风窗刮水及清洗装置、风窗除霜(防雾)装置、空调装置、音响装置等。较高级车型上还装有车窗电动举升装置、电控门锁、电动座椅调节装置和电动遥控后视镜等。电子控制安全气囊归入电子控制系统。 ⒎电子控制系统电路 主要有发动机控制系统(包括燃油喷射、点火、排放等控制)、自动变速器及恒速行驶控制系统、制动防抱死系统、安全气囊控制系统等电路组成。 二、三种电路图 1.布线图 布线图识按照汽车电器在车身上的大体位置来进行布线的,如图8-6所示。 其特点是:全车的电器(即电器设备)数量明显且准确,电线的走向清楚,有始有终,便于循线跟踪,查找起来比较方便。它按线束编制将电线分配到各条线束中去与各个插件的位置严格对号。在各开关附近用表格法表示了开关的接线与挡位控制关系,表示了熔断器与电线的连接关系,表明了电线的颜色与截面积。

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

计算机视觉测量与导航_张正友法相机标定 _结课实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 计算机视觉测量与导航 实验报告 院系:航天学院 学科:控制科学与工程 姓名:TSX 学号: 任课教师:张永安卢鸿谦 日期:2014.05.13

摘要 人类视觉过程可看成是一个复杂的从感觉到知觉的过程,也就是指三维世界投影得到二维图像,再由二维图像认知三维世界的内容和含义的过程。信号处理理论与计算机出现以后,人们用摄像机等获取环境图像并转换成数字信号,完成对视觉信息的获取和传输过程,用计算机实现对视觉信息的处理、存储和理解等过程,形成了计算机视觉这门新兴学科。其中从二维图像恢复三维物体可见表面的几何结构的工作就叫做三维重建。随着计算机硬件、软件、图像采集、处理技术的迅速发展,三维重建的理论和技术已被广泛应用于航空航天、机器人技术、文字识别、工业检测、军事侦察、地理勘察、现场测量和虚拟植物可视化等领域。相机标定是三维重建必不可少的步骤,它包括对诸如主点坐标、焦距等与相机内部结构有关的内部参数的确定和对相机的旋转、平移这些外部参数的确定。价格低廉的实验器材、简单的实验环境、快捷的标定速度和较高的标定精度是现在相机标定研究追求的几大方向。数码相机的标定就是研究的热点之一。本次报告介绍了基于棋盘格模板标定的基本原理和算法,利用MATLAB的相机标定工具箱,使用张征友算法对相机进行了标定,记录了标定的过程,并给出结果,最后对影响标定精度的因素进行了分析。 关键词:相机标定张正友角点提取内外参

1基于棋盘格标定的基本原理和算法 1.1基础知识 1.1.1射影几何 当描述一张相机拍摄的图像时,由于其长度、角度、平行关系都可能发生变化,因此无法完全用欧氏几何来处理图像,而射影几何却可以,因为在射影几何中,允许存在包括透视投影的更大一类变换,而不仅仅是欧氏几何的平移和旋转。实际上,欧氏几何是射影几何的一个子集。 1.1.2齐次坐标 设欧氏直线上点p的笛卡尔坐标为(x,y)T,如果x1,x2,x3满足x=x1/x2,y =x2/x3,x3≠0,则称三维向量(x1,x2,x3)T为点P的齐次坐标。当x3= 0时,(x1,x2,0)T规定直线上的无穷远点的齐次坐标。 实际上,齐次坐标是用一个n+ 1维向量来表示原本n维的向量。应用齐次坐标的目的是用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系。形的几何变换主要包括平移、旋转、缩放等。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为P’=R*P+T(R为旋转缩放矩阵,T为平移矩阵,P为原向量,P′为变换后的向量)。当n+1维的齐次坐标中第n+1维为0,则表示n维空间的一个无穷远点。

汽车电路图及其应用 20个基本电路图讲解

《汽车电路图及其应用 20个基本电路图讲解》 摘要:电路图是人们为了研究和 工程的需要,用约定的符号绘制的一种表示电路结构的图形。汽车电路图是将汽车电源、起动系统、点火系统、照明、仪表、电子控制装置及辅助装置,按照它们各自的工作特点及相互的内在联系,通过开关、导线、熔断器、继电器等连接起来所构成的一个完整的整体。通过电路图可以知道实际电路的情况。汽车电路图的表达方法有:线路图、电路原理图、线束图、接 线图四种。关键词:电路图;表达方法;应用一、汽车电路图概述电路 图是人们为了研究和工程的需要,用约定的符号绘制的一种表示电路结构的图形。通过电路图可以知道实际电路的情况。这样,我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了;在设计电路时,也可以从容地在纸上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功;而现在,我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高了工作效率。汽车电路图是将汽 车电源、起动系统、点火系统、照明、仪表、电子控制装置及辅助装置,按照它们各自的工作特点及相互的内在联系,通过开关、导线、熔断器、继电器等连接起来所构成的一个完整的整体。汽车电路图是汽车电工、汽车电气技术员不可缺少的极其重要的维修资料,也是汽 车专业的学生必须掌握的学习资料。作为现代汽车电工,要想提高汽车电器理论水平,就要重视对汽车电路图的学习、掌握和应用。组成汽车电路图的基本原则是在电工技术中所提 到的电路“三要素”。即:任何一条电路都得由电源、中间环节和负载组成。电源包括交流发电机和蓄电池;中间环节包括开关、熔断器、继电器、导线……;负载包括喇叭、灯、电动机 等各种用电设备。维修汽车电器时,大家感到轿车电路不好修,难度大,其实只是轿车的“中间环节”略微复杂而已。因此,在分析汽车电路时,一定要从汽车电路组成的三要素这基本原则出发,准确无误地任何一个系统电路的电源、中间环节和负载之间的内在联系和组成。有的人不会读汽车电路图,更不会用汽车电路图,实际上就是不太了解汽车电路图组成上的上述基本原则,问题的实质是他学习和应用电路图的方式和方法不正确。二、汽车电路图的表 达方法汽车电路图的表达方法有:线路图、电路原理图、线束图、接线图四种。一)线路图线路图是传统的汽车电路表达方法,它是将汽车电器按汽车上的实际位置、用相 应的外形简图或原理简图画出来,并用线从电源到开关至搭铁一一连接起来所构成的。如东风EQ1090型汽车的线路图。线路图的主要优点是:图中电器的外形、安装位置都和实际情况一致,因此可以循线跟踪的查找。导线中间的分支、接点容易找到,便于制作线束,因此仍有不

二维码导航工作原理

总体设计: 该系统由以陀螺仪导航系统、视觉系统、AGV子系统、电源管理系统、传感器系统和装置机械结构五部分组成。导航采用陀螺仪导航为主,视觉导航为辅,最大化融合和利用各导航的优势,提高系统的可靠性和导航精度。 其运行原理如下:AGV在接收到工作中心的指令后,由导航系统将其指引至货物装载处,装载完毕后,按照预设指令,其分析起点-终点路径后,规划出最佳行走路径,行走至指定位置。该过程中不断利用导航系统识别周围特征标志信息,以实时利用AGV子系统计算分析其所处位置,之后利用无线通信方式发送至工作中心电脑,以管理和规划工业现场的总体物流运行进度,避免相互干涉,提高运输效率。 项目技术归纳为以下几点: (1)陀螺仪导航与视觉联合导航:本系统采用陀螺仪导航系统专用模块,主要实现技术为差分定位,并结合工业现场的地图,利用车载控制系统实时分析系统地图坐标数据,之后与地图信息对比以获取定位信息。项目采用图QR码扫描自适应阈值算法的视觉技术识别运动过程中的关键标志物,辅以航位推算系统以达到路径自动辨识和规划,从而最终达到对AGV导航的目的。通过视觉定位QR码技术导航的图像获取、摄像机标定、特征提取和深度恢复等过程,以达到对物体的位置精确定位。 QR码(二维码) (2)路径规划:AGV运行路径规划分为全局规划和局部规划。全局规划中采用切线图法,即将路径中关键点作为特征点,将该特征点的切线表示弧,这样可以获取AGV起始点和目标点的最短路径,提高AGV路径进行规划的速度;局部规划中采用人工势场法,其设计思想是将AGV在工业现场作业视为一种抽象人造受力场中的运动,通过建立人工势场的负梯度方向指向系统的运动控制方向,目标点对AGV产生引力,障碍物对AGV产生斥力,其驱动结果使其在势场合力作用下控制AGV运动方向并计算AGV位置,为防止工业现场AGV在到达目标位置前陷入局部小点而无法达到预设位置,系统利用模拟退火算法使势函数跳出局部极小点,以使AGV顺利到达目标位置。 (3)多任务分解及协调:为解决多个AGV间任务分配、路径规划和相互协调,系统采用模糊动态数学模型的方法,该方法基于专家辨识系统的设计思路,将任务分配分解为“最重要、重要、一般、次要”四个等级,并将路径规划为“最近、较近、合理、备选”四个等级,之后利用模糊动态数学模型进行建模和分析,输出最佳的任务分解和路径规划。具体应用中,利用工业现场工作中心对多个AGV提前预置任务和目标路径,提供给系统的初始输入和输出,由系统自动完成对任务和路径的分析,并将指令传送至各AGV车载控制系统,以达到AGV间的任务协调和路径选取。需要指出的是,为了解决实际应用过程中由于任务的不断更

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

卫星导航定位实验报告

China University of Mining and Technology 《卫星导航定位算法与程序设计》 实验报告 学号: 07122825 姓名:王亚亚 班级:测绘12—1 指导老师:王潜心/张秋昭/刘志平 中国矿业大学环境与测绘学院 2015-07-01

实验一编程实现读取下载的星历 一、实验要求: 读取RINEX N 文件,将所有星历放到一个列表(数组)中。并输出和自己学号相关的卫星编号的星历文件信息。读取RINEX O文件,并输出指定时刻的观测信息。 二、实验步骤: 1、下载2014年的广播星历文件和观测值文件,下载地址如下: ftp://https://www.sodocs.net/doc/8e16906585.html,/gps/data/daily/2014/ 2、要求每一位同学按照与自己学号后三位一致的年积日的数据文件和星历文件,站点的选择必须选择与姓氏首字母相同的站点的数据,以王小康同学为例,学号:07123077,需下载077那天的数据。有些同学的学号365<后三位 <730,则取学号后三位-365,以姜平同学为例:学号10124455,下载455- 365=90 天的数据,有些同学的学号730<后三位<=999,则取学号后三位-730,以万伟同学为例:学号:07122854,则下载854-730 = 124天的数据。可以选择wnhu0124.14n wnhu0124.14o 根据上述要求我下载了2014年第95天的数据,选择其中的wsrt0950.14n和wsrt0950.14o星历文件。指定时刻(学号后五位对应在年积日对应的秒最相近时刻)的观测值信息如张良09123881,后五位23881,取23881-3600*6= 2281秒,6点38分01秒,最近的历元应该是6点38分00秒的数据。根据计算与我最接近的观测时刻为2014年4月5日6点20分30.00秒。 3、编程思路: 利用rinex函数读取星历文件中第14颗卫星的星历数据并输出显示。对数据执行762次循环找到对应的2014年4月5日6点20分30.00秒,并输出观测值。 4、程序运行结果:

导航定位技术原理及应用__复习资料

1试说明GPS全球定位系统的组成以及各个部分的作用。 (1) 空间星座 GPS卫星星座由24颗(3颗备用)卫星组成,分布在6个轨道内,每个轨道4颗。 基本功能:接收和存储由地面监控站发出的导航信息,接收并执行监控站的控制指令;利用卫星的微处理机,对部分必要的数据进行处理;通过星载原子钟提供精密时间标准;向用户发送定位信息;在地面监控站的指令下,通过推进器调整卫星姿态和启用备用卫星。 (2) 地面监控 地面监控部分由分布在全球的5个地面站组成,包括5个监测站,1个主控站,3个信息注入站。 监测站:对GPS卫星进行连续观测,进行数据自动采集并监测卫星的工作状况。 主控站:协调和管理地面监控系统,主要任务:根据本站和其它监测站的观测资料,推算编制各卫星星历、卫星钟差和大气修正参数,并将数据传送到注入站;提供全球定位系统时间基准;各监测站和GPS卫星原子钟,均应与主控站原子钟同步,测出其间的钟差,将钟差信息编入导航电文,送入注入站;调整偏离轨道的卫星,使之沿预定轨道运行;启用备用卫星代替失效工作卫星。 注入站:在主控站控制下,将主控站推算和编制的卫星星历、钟差、导航电文和其它控制指令等,注入到相应卫星的存储系统,并监测注入信息的正确性。 (3) 用户设备 由GPS接收机硬件和数据处理软件以及微处理机和终端设备组成。 GPS接收机硬件主要接收GPS卫星发射的信号,以获得必要的导航和定位信息及观测量,并经简单数据处理而实现实时导航和定位。GPS软件主要对观测数据进行精加工,以便获得精密定位结果。 2试说明我国北斗导航卫星系统与GPS的区别 一是使用范围不同。“北斗一号”是区域卫星导航系统,只能用于中国及其周边地区,而GPS是全球导航定位系统,在全球的任何一点只要卫星信号未被遮蔽或干扰,都能接收到三维坐标数据。二是卫星的数量和轨道是不同的。“北斗一号”有3颗,位于高度近3.6万千米的地球同步轨道。三是定位原理不同。“北斗一号”是用户首先发射要求服务的信号,通过卫星转发至地面控制中心,地面控制中心计算出用户机的位置后再通过卫星答复用户,而GPS只需要4个卫星的位置信息,由用户接收机解算出三维坐标,由于“北斗一号”本身是二维导航系统,仅靠2颗星的观测信号尚不能定位,观测信号的获得需要具有转发或收发信号功能,而通信功能是GPS不具备的。 3 GPS相较其他导航定位系统的特点 1.功能多,用途广.可以用于导航,测时,测速,测量及授时. 2.定位精度高. 3.实时定位. 天球:以地球质心为中心,半径r为任意长的一个假想的球体。 大地经纬度:大地经度是指通过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角 天文经纬度:天文经度是指本初子午面与过观测点的子午面所夹的二面角,天文纬度是指过某点的铅垂线与赤道平面之间的夹角。 黄道:地球公转的轨道面与天球相交的大圆即地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点 赤经:从春分点沿着天赤道向东到天体时圈与天赤道的交点所夹的角度 赤纬:从天赤道沿着天体的时圈至天体的角度

看懂汽车电路图

看懂汽车电路图 随着汽车电子技术的发展,汽车电路图变得越来越复杂、越来越重要,因此如何快速而准确地识读汽车电路图是许多汽车维修人员常常感 到头疼的事情。汽车电路图常见的表达方式有线路图、原理图和线束图等3种。 线路图的特点 线路图是传统的汽车电路图表达方式,它将汽车电器在车上的实际位置相对应地用外形简图表示在电路图上,再用线条将电路、开关、保险装置等和这些电器一一连接起来。 线路图的特点是:由于电器设备的外形和实际位置都和原车一致,因此,查找线路时,导线中的分支、接点很容易找到,线路的走向和车上实际使用的线束的走向基本一致。其缺点是:线条密集、纵横交错,导致读图和查找、分析故障时,非常不方便。 识读线路图的要点是: 1. 对该车所使用的电器设备结构、原理有一定的了解,对其电器设备规范比较清楚; 2. 通过识读认清该车所有电器设备的名称、数量以及它们在汽车上的实际安装位置; 3. 通过识读认清该车每一种电器设备的接线柱的数量、名称,了解每一接线柱的实际意义。 原理图的特点

原理图是用国家统一规定的图形符号,把仪器及各种电器设备,按电路原理,由上到下合理地连接起来,然后再进行横向排列。 原理图的特点是:对线路图作了高度地简化,图面清晰、电路简单明了、通俗易懂、电路连接控制关系清楚,有利于快速查找与排除故障。 识读原理图的要点是: 1.识读各电器设备的各接线柱分别和哪些电路设备的哪个接线柱相连; 2.识读电路设备所处的分线路走向; 3.识读分线路上的开关、保险装置、继电器结构和作用。 线束图的特点 线束图是汽车制造厂,把汽车上实际线路排列好后,并将有关导线汇合在一起扎成线束以后画成的树枝图。 线束图的特点是:在图面上着重标明各导线的序号和连接的电器名称及接线柱的名称、各插接器插头和插座的序号。安装操作人员只要将导线或插接器按图上标明的序号,连接到相应的电器接线柱或插接器上,便完成了全车线路的装接,该图有利于安装与维修,但不能说明线路的走向,线路简单。 线束图的识读要点是: 1.认清整车共有几组线束、各线束名称以及各线束在汽车上的实际安装位置。 2.认清每一线束上的枝叉通向车上哪个电器设备、每一分枝叉有

导航原理与系统课程实验

091143107龚建鹏付永鹏刘浩116 导航原理与系统课程实验 一、实验目的 1.掌握导航系统的显示数据。 2.熟悉在驾驶舱中导航系统的操作。 3.熟悉导航系统维护过程中系统测试的方法与步骤。 二、实验设备及参考资料 1.航空电子专业课程实验系统。 2.航空电子专业课程实验系统操作手册。 三、实验内容和步骤 一)学生端启动试验系统 1.学生端点击“开始实验”,启动实验系统环境。 2.飞机供电操作 在驾驶舱内视镜,查看头顶板电源控制面板外部电源按键上灯的显示,按压外部电 源按键,接通外部电源,使飞机利用外部电源进行供电。 3.使用ADIRU CDU 面板校准IR1,观察校准结果是否正常。 二)观察导航系统在EFIS的显示 1.测向系统 A)VOR、ADF 系统的显示 通过FCU上的VOR/ADF转换开关选择对应系统的数据显示,调整ND适当的显 示方式,在RMP上设置地面台的频率,观察在ND上指针的变化。 B)ILS 系统的显示 按压FCU 上的ILS按键,调整适当的ND显示方式,查看在PFD上ILS系统的 显示。 2.测距系统 A)无线电高度表的显示 无线电高度表显示在PDF的姿态球下方,可以通过进行RA测试来查看显示。 B)DME系统的显示 显示在VOR或ILS台的下方,测试过程中显示故障的位置。 3.监控系统 A)ATC ATC系统是用于地面管制人员识别飞机及其信息,因此在记载设备只有系统的 控制面板,而无信息输出。 B)TCAS 通过测试查看显示数据。 C)GPWS 通过测试查看显示数据。 三)系统测试 通过AMM手册查找系统测试方法,并执行操作。 A)MMR

最全汽车继电器的接线方法与汽车继电器原理图

最全汽车继电器的接线方法与汽车继电器原理图 作为一名元则继电器的研发人员,目前有很多人,问我汽车继电器的接线方法与其原理图,现总结给大家: 一、了解汽车电路图的一般规律 1.电源部分到各电器熔断器或开关的导线是电器设备的公共火线。在电路原理图中一般画在电路图的上部。 2.标准画法的电路图,开关的触点位于零位或静态。即开关处于断开状态或继电器线圈处于不通电状态,晶体管、晶闸管等具有开关特性的元件的导通与截止视具体情况而定。 3.汽车电路的特点是双电源、单线制,各电器相互并联,继电器和开关串联在电路中。 4. 大部分用电设备都经过熔断器,受熔断器的保护。 5.整车电路按功能及工作原理划分成若干独立的电路系统。这样可解决整车电路庞大复杂,分析困难的问题。现在汽车整车电路一般都按各个电路系统来绘制,如电源系、启动系、点火系、照明系、信号系等,这些单元电路都有着自身的特点,抓住特点把各个单元电路的结构、原理吃透,理解整车电路也就容易了。 二、认真阅读图注 认真阅读图注,了解电路图的名称、技术规范,明确图形符号的含义,建立元器件和图形符号间一一对应的关系,这样才能快速准确地识图。 三、掌握回路 在汽车电路中。发电机和蓄电池都是电源,在寻找回路时,不能混为一谈,不能从一个电源的正极出发。经过若干用电设备后,回到另一个电源的负极,这种做法。不会构成一个真正的通路,也不会产生电流。所以必须强调。回路是指从一个电源的正极出发,经过用电器,回到同一电源的负极。 四、熟悉开关作用 开关是控制电路通,断的关键,电路中主要的开关往往汇集许多导线,如点火开关、车灯总开关,读图时应注意与开关有关的五个问题:

单片机实验报告

本科生实验报告 实验课程单片机原理及应用 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师任家富 实验地点6C902 实验成绩 二〇一五年三月二〇一五年六月 单片机最小系统设计及应用 摘要 目前,单片机以其高可靠性,在工业控制系统、数据采集系统、智能化仪器仪表等领域得到极其广泛的应用。因此对于在校的大学生熟练的掌握和使用单片机是具有深远的意义。通过本次课程设计掌握单片机硬件和软件方面的知识,更深入的了解单片机的实际应用,本次设计课程采用STC89C52单片机和ADC0804,LED显示,键盘,RS232等设计一个单片机开发板系统。进行了LED显示程序设计,键盘程序设计,RS232通信程序设计等。实现了单片机的各个程序的各个功能。对仿真软件keil的应用提升了一个新的高度。单片机体积小、成本低、使用方便,所以被广

泛地应用于仪器仪表、现场数据的采集和控制。通过本实验的学习,可以让学生掌握单片机原理、接口技术及自动控制技术,并能设计一些小型的、综合性的控制系统,以达到真正对单片机应用的理解。 关键词:单片机;智能;最小系统;ADC;RS232;显示;STC89C52 第1章概述 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。单片机采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 它最早是被用在工业控制领域,由于单片机在工业控制领域的广泛应用,单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。 现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。 第2章实验内容 2.1单片机集成开发环境应用

汽车电路-原理图线束图布线图介绍

1、整车电路原理图: 为了生产与教学的需要,常常需要尽快找到某条电路的始末,以便确定故障分析的路线。在分析故障原因时,不能孤立地仅局限于某一部分,而要将这一部分电路在整车电路中的位置及与相关电路的联系都表达出来。整车电路图的优点在于: (1)对全车电路有完整的概念,它既是一幅完整的全车电路图,又是一幅互相联系的局部电路图。重点难点突出、繁简适当。 (2)在此图上建立起电位高、低的概念:其负极“-”接地(俗称搭铁),电位最低, 可用图中的最下面一条线表示;正极“+”电位最高,用最上面的那条线表示。电流的方向基本都是由上而下,路径是:电源正极“+”→开关→用电器→搭铁→电源负极“-”。 (3)大可能减少电线的曲折与交叉,布局合理,图面简洁、清晰,图形符号考虑到元器件的外形与内部结构,便于读者联想、分析,易读、易画。 (4)各局部电路(或称子系统)相互并联且关系清楚,发电机与蓄电池间、各个子系统之间的连接点尽量保持原位,熔断器、开关及仪表等的接法基本上与原图吻合。 2、局部电路原理图: 为了弄清汽车电器的内部结构,各个部件之间相互连接的关系,弄懂某个局部电路的工作原理,常从整车电路图中抽出某个需要研究的局部电路,参照其他翔实的资料,必要时根据实地测绘、检查和试验记录,将重点部位进行放大、绘制并加以说明。这种电路图的用电器少、幅面小,看起来简单明了,易读易绘;其缺点是只能了解电路的局部。 线束图 整车电路线束图常用于汽车厂总装线和修理厂的连接、检修与配线。线束图主要表明电线束各用电器的连接部位、接线柱的标记、线头、插接器(连接器)的形状及位置等,它是人们在汽车上能够实际接触到的汽车电路图。这种图一般不去详细描绘线束内部的电线走向,只将露在线束外面的线头与插接器详细编号或用字母标记。它是一种突出装配记号的电路表现形式,非常便于安装、配线、检测与维修。如果再将此图各线端都用序号、颜色准确无误地标注出来,并与电路原理图和布线图结合起来使用,则会起到更大的作用且能收到更好的效果

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

高精度捷联式惯性导航系统算法研究大学论文

高精度捷联式惯性导航系统算法研究 1. 引言 随着计算机技术的发展,捷联式惯性导航系统(strapdown Inertial Navigation System, SINS)的概念被提出,它取消了平台式惯性导航系统中复杂的机械平台装置,而将惯性传感器直接固联在载体上。SINS具有制造和维护成本低、体积小、重量轻以及可靠性高等优点,目前在高、中、低精度领域都得到了广泛使用。 捷联算法的基本框图如图1所示。 图1 捷联算法的基本框图 在捷联惯性导航系统中,惯性传感器直接固联在载体上,因此对惯性传感器的性能提出了更高的要求。SINS中使用的陀螺所承受的动态范围较大,一般能够达到100 /s,与此同时,SINS中的陀螺和加速度计与载体一起进行角运动和线运动,这增加了导航计算机输出数据的难度和复杂性。姿态实时计算是捷联惯导的关键技术,也是影响捷联惯导系统导航精度的重要因素。 载体的姿态和航向是载体坐标系和地理坐标系之间的方位关系,两坐标系之间的方位关系等效于力学中的刚体定点转动问题。在刚体定点转动理论中,描述动坐标系相对参考坐标系方位关系的方法有欧拉角法、四元数法、方向余弦法以及等效旋转矢量法。本报告对这四种姿态算法进行简单介绍,并结合研究对象对等效旋转矢量算法进行重点研究。针对角速率输入陀螺构成的捷联式惯性导航系统,本报告给出了一种改进的姿态算法,并在圆锥运动环境下对该算法进行数学仿真,验证了该方法的可能性。 2. 姿态算法介绍 2.1 欧拉角法

一个动坐标系相对参考坐标系的方位可以完全由动坐标系依次绕三个不同轴转动三个角度进行确定。把载体坐标系ox b y b z b 作为动坐标系,导航坐标系ox n y n z n (即地理坐标系)作为参考坐标系,导航系依次转过航向角H 、俯仰角P 、横摇角R 可得到载体坐标系,通过求解欧拉角微分方程得到三个欧拉角,从而进一步可以得到捷联姿态矩阵。欧拉角微分方程如下所示: cos cos 0sin cos 1sin sin cos cos sin cos sin 0cos b nbx b nby b nbz P P P R P R P R P P P P H R R ωωω????????????=-???? ????????-?????? (1) 式(1)即为欧拉角微分方程,求解方程可以得到三个欧拉角,也就是航向角、俯仰角以及横摇角,根据三个姿态角和姿态矩阵元素之间的关系即可以得到姿态矩阵n b C 。 2.2 方向余弦法 常用方向余弦姿态矩阵微分方程的形式为 b bk b n nb n =C C ω (1) 式中bk nb ω为载体坐标系相对地理坐标系的转动角速度在载体坐标轴向的分量的反对称矩 阵形式,具体表达式如式(2)。 00 0b b nbz nby bk b b nb nbz nbx b b nby nbx ωωωωωω??-??=-????-? ? ω (2) 用毕卡逼近法求解矩阵微分方程,其解为 2002 00sin 1cos ()()()b bk bk n nb nb t t t θθθθ???-?+?=+?+??????? C C I θθ (3) 式中 10 0n n b b nbz nby t bk bk b b nb nb nbz nbx t b b nby nbx dt θθθθθθ+??-?????==?-?????-??? ? ?θω 0θ?=2.3 四元数法 四元数微分方程的形式为

相关主题