搜档网
当前位置:搜档网 › 三相交流调压电路

三相交流调压电路

三相交流调压电路
三相交流调压电路

存档资料成绩:

华东交通大学理工学院

课程设计报告书

所属课程名称电气工程基础

题目三相交流调压电路

分院

专业班级

学号

学生姓名

指导教师

2013 年 6 月29 日

课程设计(论文)评阅意见

评阅人 职称

20 年 月 日 序号

项 目 等 级 优秀 良好 中等 及格 不及格 1

课程设计态度评价 2

出勤情况评价 3

任务难度评价 4

工作量饱满评价 5

任务难度评价 6

设计中创新性评价 7

论文书写规范化评价 8 综合应用能力评价

综合评定等级

目录

第一章设计的内容及要求 (2)

1.1设计的内容 (2)

1.2设计的要求 (2)

第二章电路的选定 (3)

2.1单相交流调压 (3)

2.2 三相交流调压的设计选择 (4)

第三章主电路的设计 (6)

3.1 主电路的原理分析 (6)

3.2 主电路器件的选择 (8)

3.3仿真结果及示波器输出波形 (10)

第四章心得体会...................... 错误!未定义书签。参考文献(资料). (13)

第一章课程设计内容及要求

1.1设计的内容

1.熟悉单相交流调压电路工作的原理

2.设计两种三相调压电路

3.完成三相电路的设计并对主要元器件进行说明

4.对所设计的两种三相调压电路进行比较

5.选择自己认为最佳的电路仿真

1.2设计的要求

根据单相交流调压电路的原理,设计两种三相交流调压电路。对两种电路进行比较,选择其中的一种通Matlab/Simulink 仿真分别得到控制角α=0°、α=30°、α=60°和α=90°时的输出电压和电流波形,以及各相触发脉冲波形。负载考虑阻感情况。触发脉冲可通过脉冲宽度调制技术得到。

第二章电路的选定

2.1单相交流调压

所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。下面是单相交流调压电路图1及其波形如图2。

电路图1

工作波形图2

正、负半周α起始时刻(α=0),均为电压过零时刻。在

t ωα=时,对VT 1施加触发脉冲,当VT1正向偏置而导通时,

负载电压波形与电源电压波形相同;在t ωπ=时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。在t ωπα=+时,对VT2施加触发脉冲,当VT2正向偏置而导通时,负载电压波形与电源电压波形相同;在2t ωπ=时,电源电压过零,VT2自然关断。

2.2 三相交流调压的设计选择

根据单相交流调压电路的原理,可设计三相交流调压电路。常用的三相交流调压线路有星型联结,支路控制三角形联结和中点控制三角形联结。其中星型联结有分为三相三线和三相四线如图3,4。三相四线时,相当于三个单相交流调压电路的组合,三相互相错开120度工作,电流中有基波和奇次谐波。组成三相电路后,基波和3的整数倍以外的谐波在三相之中流动,不流过中性线。因此,中性线会有很大的3次谐波电流及其他3的整数倍次谐波电流,当控制角α=90°时,中性线电流甚至和各相电流的有效值接近。因此,选用(2.3-a)三相三线连接效果更好。

三相三线图3

三相四线图4

第三章主电路的设计

3.1 主电路的原理分析

(1)三相调压电路如下图所示

三相调压电路图5

由三相交流电源供电的电路,简称三相交流电路。三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,三相交流电各相电压的相位互差120°。它们之间各相电压超前或滞后的次序称为相序,使用三相电源时必须注意其相序。

在对三相交流调压电路工作原理分析的基础上,建立了基于MATLAB的三相交流调压电路的仿真模型,修改相应的参数,并对其进行了仿真分析和研究。通过仿真分析和参数的修改,验证所建模型的正确性,加深对三相交流调压电路理解。最后,对仿真实验进行总结。

三相交流调压器的触发信号应与电源电压同步,其控制

角是从各自的相电压过零点开始算起的。三个正向晶闸管1VT 、3VT 、5VT 的触发信号应互差?120,三个反向晶闸管2VT 、4VT 、6VT 的触发信号也应互差?120,同一相的两个触发信号

应互差?180。总的触发顺序是1VT 、

2VT 、3VT 、4VT 、5VT 、6VT ,其触发信号依次各差?60。Y 联接时三相中由于没有中线,所以在工作时若要负载电流流通,至少要有两相构成通路。为保证启动时两个晶闸管同时导通,及在感性负载与控制角较大时仍能保证不同相的正反向两个晶闸管同时导通,要求采用大于?60的宽脉冲(或脉冲列)或采用间隔为?60双窄脉冲触发电路。

单相交流调压电路仿真图6

根据单相绘制的三相的仿真图

三相的仿真图7

3.2 参数设置

1)三相电源的设置

幅值:100 频率:50HZ

(2)脉冲的设置

频率:50HZ,同时选择双脉冲

(3)负载

电阻R:10,电感L:0.001,电容C无穷小(inf)

3.3 仿真结果及示波器输出波形

注:此次仿真采用5个示波器,其中第一个为脉冲输出波形,第二个为输入三相线电压波形,第三个为输入三相线电流波形,第三个为输出线电压波形,第五个为输出相电压波形。

(1)当a=0°时的示波器输出波形。如图8

图8

(2)当a=30°时的示波器输出波形。如图9

图9

(3)当a=90°时的示波器输出波形。如图10

图10

第四章课程设计心得

随着科学技术发展的日新日异,电子技术已经成为当今世界空前活跃的领域,在生活中可以说得是无处不在。因此作为二十一世纪的我们来说掌握电子的开发技术是十分重要的。同时学会运用电脑技术与软件,能更好的帮助我们去研究与学习。

回首这次的学习和实践,发现自己还是收获颇丰。通过对课设的研究,让自己不只是对本门学科的知识有了更加深刻的印象,课题中涉及到一些我们学过的知识,也有还未曾接触的学科,让我们有机会复习了以前的知识,也主动去了解相关的一些的资料,将不同书本上的知识结合到了一起。然而要完成课题团队的合作也是必不可少的,设计的过程中也遇到了很多问题都是一个人解决不了的,在最初的课题思路的设计中就感觉到课题有一定的难度,觉得无从下手,相关的知识也不知道要怎样融合,所以久久没有开始。之后经过查阅资料,认真思索,将问题逐个解决,最后完成了任务。

参考文献(资料)

[1] 谢希仁. 计算机网络(第五版)[M]. 北京:电子工业出版社,2008年2月

[2] 胡小强计算机网络[M] 北京:北京邮电大学出版社2005年1月

[3] 贺益康电力电子技术(第二版)北京:科学出版社

[4] 吴文辉电气工程基础[M] 武汉:华中科技大学出版社

三相晶闸管交流调压电路的设计与仿真

目录 1设计任务及分析 (1) 1.1 电路设计任务 (1) 1.2 电路设计的目的 (1) 2.1 主电路的原理分析 (2) 3 MATLAB建模与仿真 (5) 3.2 参数设置 (6) 3.3 仿真结果及分析 (7) 总结 (8) 参考文献 (9)

三相晶闸管交流调压电路的设计与 仿真 1设计任务及分析 1.1 电路设计任务 (1)用simulink设计系统仿真模型;能够正常运行得到仿真结果。 (2)比较理论分析结果与仿真结果异同,总结规律。 (3)设计出主电路结构图和控制电路结构图。 (4)根据结构图设计出主电路图和控制电路图,对主要器件进行选型。 1.2 电路设计的目的 电力电子装置及控制是我们大三下学期学的一门很重要的专业课,课本上讲了很多电路,比如各种单相可控整流电路,斩波电路,电压型逆变电路,三相整流电路,三相逆变电路,等各种电路,通过对这些电路的学习,让我们知道了如何将交流变为直流,又如何将直流变为交流。并且通过可控整流调节输出电压的有效值,以达到我们的目的。而本次三相交流调压电路的设计与仿真,我们需要用晶闸管的触发电路来实现调节输入电压的有效值,然后加到负载上。本次课程设计期间,我们自己通过老师提供的Matlab仿真技术的资料和我们在网上搜索相关的资料,到图书馆查阅书籍,以及同学之间的相互帮助,让我们学到了很多知识。通过对主电路的设计与分析,对晶闸管触发电路的设计与分析,了解了他们的工作原理,知道了该电路是如何实现所要实现的功能的,把课堂所学知识运用起来,使我更能深刻理解所学知识,这让我受益匪浅。通过写课程设计报告,电路的设计,提高了我的能力,为我以后的毕业设计以及今后的工作打下了坚实的基础。 2 主电路的设计

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

电力电子课程设计+三相交流调压电路研究

电力电子技术课程设计 班级建电1101班 学号111705135 徐瞳 大学能源与动力工程学院建筑电气与智能化 二零一四年一月

目录 一.课程设计题目 二.课程实际目的 三.课程设计容 四.所设计电路的工作原理(包括电路原理图、理论波形) 五.电路的设计过程 六.各参数的计算 七.仿真模型的建立,仿真参数的设置 八.进行仿真实验,列举仿真结果 九.对仿真结果的分析 十.结论 十一.课程设计参考书

一、课程设计题目 三相交流调压电路研究 二、课程设计目的 (1)了解三相交流调压触发电路的工作原理。 (2)加深理解三相交流调压电路的工作原理。 (3)了解三相交流调压电路带不同负载时的工作特性。 (4)掌握三相交流调压电路MATLAB的仿真方法,会设置各模块的参数。 三、课程设计容 1 主电路方案确定 2 绘制电路原理图、分析理论波形 3 器件额定参数的计算 4 建立仿真模型并进行仿真实验 6 电路性能分析 输出波形、器件上波形、参数的变化、谐波分析、故障分析等 四、所设计电路的工作原理(包括电路原理图、理论波形) 交流调压器应采用宽脉冲进行触发。实验装置中使用后沿固定、前沿可变的宽脉冲链。实验电路如图A所示。 它由三个单项晶闸管交流调压器组合而成,三相负载接Y形,公共点为三相调压器中线,其工作原理和波形与单相交流调压想通。图中晶闸管触发导通的顺序为VT1→VT2→…→VT6。由于存在中性线,每一相可以作为一个单相调压器单独分析,各相负载电压和电流仅与本相的电源电压、负载参数及控制角有关。 整流电压平均值的计算分如下两种情况: (1)α≤30°时,负载电流连续,有

实验三 单相和三相交流调压电路实验(软件仿真)1

实验三单相和三相交流调压电路实验 一、实验目的 (1).加深理解交流调压电路的工作原理。 (2).加深理解单相交流调压感性负载时对移相范围要求。 (2).加深理解三相交流调压阻性负载时的工作情况。 二、实验设备及仪器 (1).计算机 (2).MATLAB软件 三、注意事项 (1)在电阻电感负载时,当α

交流电源:simpowersystem\Electrical sources\AC Voltage Source 晶闸管: simpowersystem\Power Electronics\thyristor 电阻: simpowersystem\Elements\series RLC Branch (b)设置参数 根据已知条件设置电源和负载参数,晶闸管可用默认参数。 图2电阻负载主电路部分 步骤二:搭建触发电路 (a)触发电路利用脉冲发生器实现,如图3所示 图3 脉冲触发电路 触发脉冲提取路径为: simulink\Sources\Pulse Genetator (b)设置参数 脉冲类型:Time based 时间:Use simulation time 脉冲幅值:1.0 脉冲宽度:5 脉冲周期:(自己思考) 脉冲延时:(单位:秒;触发角不同,延时不同。注意:两个触发脉冲的延时是否一样?应差多少?) 步骤三:搭建测量电路

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

三相调压器

引言 三相电路在工业领域中有广泛使用,但工业需求的电压大多不是直接的380V,经常需要用到变流装置。目前普遍采用的是三相全控桥式晶闸管变流电路。在三相变流控制电路中最主要的是晶闸管的触发电路,晶闸管的模拟触发技术已经很成熟,这类电路具有精度高、抗干扰能力较强、快速、性能显著、成本较低等优点。晶闸管触发器是以晶体管等为主要元件分立式元件所组成的电路,这种电路需使用6个这样功能上基本相同但触发控制相位角不同的电路组成。虽然晶闸管触发电路的集成化已逐渐普及,目前国内常用的有 KJ系列和 KC系列,但由这种集成电路组成的触发器仍需用几个集成块共同组成三相全控桥式电路中6个晶闸管的脉冲触发电路。三相全控制桥式变流电路的触发控制系统,不仅制作工艺繁杂,电路调试复杂,而且体积大,某些技术性能不是很好。个别有采用单片大规模高性能晶闸管三相触发器集成电路。但模拟触发器存在电路较复杂脉冲对称度差、调试困难、元器件受温度等环境因素影响较大而稳定性较差的缺点。 本三相调压器采用 AT89C2051单片机,利用三个过零检测变压器,防止误触发,借助巧妙的软件设计便实现了模拟触发器的所有功能,组成了以晶闸管触发的全数字智能化三相调压器。它仅用一片单片机就具有相序自适应,电压控制直观化、初始电压自动设置等功能。而且可根据晶闸管触发器在三相半控、半波电路和三相全控桥、三相交流调压电路等电路的需要选择触发脉冲为单列宽脉冲和双窄脉冲,并可以利用电位器和键盘联合使用来控制输出的电压,实时显示当前电压。 采用以单片机为核心控制的晶闸管脉冲触发器电路简单,操作方便,整个控制面板集成度高,面积比以往的控制电路缩减了许多。目前采用以单片机为核心控制晶闸管触发器的三相调压器的生产厂还很少,还处于研发阶段,因此具有较广阔的应用前景。 第一章AT89C2051性能参数简介 AT89C2051是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,片内含2k bytes的可反复擦写的Flash只读程序存储器和128 bytes 的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度,非易失性存储技术生产,兼容标准MCS-51 指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大AT89C2051单片机可为您提供许多高生价比的应用场合[1]。 AT89C2051主要性能参数: ⑴与MCS-51产品指令系统完全兼容;

无中线星形联结三相交流调压电路

实验报告 实验项目:无中线星形联结三相交流调压电路专业班级: 姓名:学号: 实验室号:402实验组号: 实验时间:2014.12.27 批阅时间: 指导教师:成绩:

1.熟悉 Matlab 仿真软件和 Simulink 模块库。 2.掌握无中线星形联结三相交流调压电路的工作原理、工作情况和工作波形。 二.实验器材: 计算机、matlab 软件。 三.实验原理: 三相交流调压电路有星形联结和三角形联结等多种方案。其中星形联结又有无中线和有中线两种电路,三角形联结有线路控制、支路控制和中点控制的不同电路。无中线星形联结三相交流调压电路的原理图如图所示。 无中线星形联结三相交流调压电路 uc ub ua Uct ut p1p2 pulse56 Uct ut p1p2 pulse34 Uct ut p1p2 pulse12 Continuous pow ergui g1g2m AI A2VT1,3 g1g2m AI A2 VT1,2 g1g2m AI A2VT1,1 v +-v +-v + -U 输出 U 输入 Rc Rb Ra 6 Multimeter (10*u[1]/180) Fcn 30@

无中线星形联结三相交流调压电路的仿真模型如图所示,该模型实际上由三个单相交流调压电路组成,图中VT12、VT34和VT56分别为双向晶闸管开关模块,pulse12、pulse34和pulse56是相应晶闸管的触发模块。为了观察方便,在触发模块的移相控制输入端接入了一个控制角与移相控制电压 Uct 的变化函数Uct = 10u1/180 式中,u1为控制角(度),由常数模块@设定。 五.实验数据: 1.电阻负载α = 30°无中线星形联结三相交流调压电路的输出电压和波形 2.电阻负载α = 60°无中线星形联结三相交流调压电路的输出电压和波形

单相交流调压电路课程设计

新疆工业高等专科学校电气系课程设计说明书 题目:单项交流调压电路(反并联)设计(纯电阻负载) 专业班级: 学生姓名: 指导教师: 完成日期:2012-6-8

新疆工业高等专科学校 电气系课程设计任务书 2012学年2学期2012年6月6日专业供用电技术班级课程名称电力电子应用技术 设计题目单项交流调压电路(反并联)设计(纯电阻 负载) 指导教师 起止时间2012-6-4至2012-6-8周数一周设计地点新疆工程学校设计目的: 设计任务或主要技术指标: 设计进度与要求: 主要参考书及参考资料: 教研室主任(签名)系(部)主任(签名)年月日

新疆工业高等专科学校电气系 课程设计评定意见 设计题目:单相交流调压(反并联)设计(纯电阻负载) 学生姓名:专业班级供电 评定意见: 评定成绩: 指导教师(签名):年月日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

一种简单实用的三相交流调压电路

一种简单实用的三相交流调压电路 内容提要对于采用集成元件实现双向可控硅过零触发方式工作的三相交流调压电路的组成及工作过程进行了介绍。 关键词脉宽调制过零光隔双向可控硅驱动双向可控硅交流调压电路:输入的是交流电压,而输出电压波形是交流电源电压波形的一部分,并且是可调的,这样输出电压的有效值就成为可调。一般交流调压电路采用的是可控硅控制,其触发方式有二种:过零触发和移相触发。 可控硅过零触发是对可控硅过零的通——断控制。可控硅导通时,交流电源与负载接通,输出若干个周波电压以后,可控硅被关断,停止交流电压输出;经过一定周波数后,再使可控硅通,如此重复进行。通过改变导通时间对固定重复周期的比值,从而改变输出电压有效值的大小。 可控硅的移相触发是对可控硅的导通角控制。在交流电压的正、负半周都以一定的延迟角去触发可控硅的导通,经过改变可控硅的导通角达到输出电压可调的目的。可控硅的移相触发往往在可控硅导通的瞬间使电网电压出现畸变,带来高次谐波,给电网中的其它用电设备和通讯系统的工作带来不良影响,并且对于电阻性负载在可控硅导通时有较大的冲击电流。 可控硅过零触发方式是把可控硅导通的起始点限制在电源电压过零处,它能很好的抑制移相触发所产生的高次谐波和避免因较大冲

击电流引起的电压瞬时大幅度下降。一般的三相交流可控硅过零触发开关电路由同步电路、检零电路等组成,结构复杂,可靠性低,采用分离元件故障率高。本文介绍一种用集成元件构成的三相交流可控硅过零触发调压电路。 该电路主要由电源电路、PWM脉冲形成电路、过零触发光隔离双向可控硅驱动等组成,电路如图1所示。 图1调压电路原理图 1 PWM脉冲形成及脉宽调制电路 利用在开关电源中应用较多的TL494双端脉宽调制器集成元件实现可控硅触发脉冲的形成及导通比控制。将集成元件TL494的5、6脚分别接振荡器的电阻(R T)、电容(C T),通过改变电阻电容的大小,既可调节触发脉冲的频率(为保证频率的稳定性应采用金属膜电阻和漏电流小的电容),将TL494的1、2、3、15、16、13脚接地,

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验 实验报告 电子与信息工程学院自动化科学与技术系

(5)可调电阻(NMCL—03) (6)电机导轨及测速发电机(或光电编码器) (7)三相线绕式异步电动机 (8)双踪示波器 (9)万用表 (10)直流发电机M03 四.实验原理 1.系统组成及原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图6-1所示。 图6-1 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

(2)空载电压为200V时 n/(r/min) 1281 1223 1184 1107 1045 I G/A 0.10 0.11 0.12 0.13 0.13 U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.2831 2.闭环系统静特性 n/(r/min) 1420 1415 1418 1415 1416 1412 电子与信息工程学院自动化科学与技术系

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

单相交流调压电路设计

1 设计目的和要求分析 设计一个单相交流调压电路,要求触发角为45 度. 反电势负载E=40伏,输入交流U2=210伏。分有LB和没有LB两种情况分析.L足够大,C足够大要求分析: 1. 单相交流调压主电路设计,原理说明; 2.触发电路设计,每个开关器件触发次序与相位分析; 3.保护电路设计,过电流保护,过电压保护原理分析; 4.参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数) ; 由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。下面分别做详细的介绍。 2 设计方案选择采用两个普通晶闸管反向并联设计单相交流调压电路 3 单相交流调压主电路设计及分析 所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。 1

图1、图2分别为反电势电阻负载单相交流调压电路图及其波形。图中的晶 闸管VT1 和VT2 也可以用一个双向晶闸管代替。在交流电源U2的正半周和负半周,分别对VT1 和VT2 的移相控制角进行控制就可以调节输出电压。 图1 反电势电阻负载单相交流调压电路图图2 输入输出电压及电流波形图 正、负半周起始时刻(=0),均为电压过零时刻。在t 时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在 t 时,电源电压过零,因电阻性负载,电流也为零,VT1 自然关断。在 t 时,对VT2 施加触发脉冲,当VT2正向偏置而导通时,负载电压波形 与电源电压波形相同;在t 2 时,电源电压过零,VT2自然关断。 当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角的大小,不但与控制角有关,而且与负载阻抗角 有关。两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流) 和负载电压的波形相似。 4 触发电路设计

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

相控式单相交流调压电路设计

集美大学 电力电子课程设计报告题目:相控式单相交流调压电路设计 姓名: 学号: 学院: 专业班级: 指导教师: 时间:

2015年6月19日 目录: 0 概述-------------------------------------------------------------1 1 设计的目的-------------------------------------------------------1 2 设计的任务及要求-------------------------------------------------2 2.1 设计任务--------------------------------------------------- 2 2.2 设计要求--------------------------------------------------- 2 3主电路总体方案设计------------------------------------------------ 2 3.1 总体方案设计思路--------------------------------------------2 3.2 主电路工作原理----------------------------------------------3 3.2.1 主电路工作情况分析------------------------------------3 3.2.2 负载电流分析------------------------------------------4 3.3 主电路参数计算及元器件选择----------------------------------6 3.3.1 主电路参数计算----------------------------------------6 3.3.2 主电路元器件的选型------------------------------------7 3.3.3 芯片的详细介绍----------------------------------------8 4 基于MATLAB/Simulink的仿真设计-----------------------------------9 4.1 仿真模型建立------------------------------------------------9

电工电子学实验报告_实验三_三相交流电路

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图3-2接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1))。 表3-1 (2)按表3-2内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三只

表3-2 2.三相负载三角形联结 按图3-3连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3-4所示。接好实验电路后,按表3-3内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不对称负载的开灯要求与表3-2中相同。 图3-3 三相负载三角形联结 图3-4 两瓦特表法测功率 表3-3

四、实验总结 1.根据实验数据,总结对称负载星形联结时相电压和线电压之间的数值关系,以及三角形联结时相电流和线电流之间的数值关系。 (1).星形连结: 根据表3-1,可得:星形联结情况下,不接负载时,各路之间的线电压和各分电源的相电压都分别相同,即U UV = U VW =U WU =(218+219+220)/3=219V ;U UN =U VN =U WN =127V(本次实验中这三个电压为手动调节所得)。可以计算:219/127=1.7244≈3,即:线电压为相电压的3倍,与理论相符。 根据表3-2,可得:星形联结情况下,接对称负载时,线电压不变,仍为表3-1中的数据;而相电压在有中线都为124V ,在无中线时分别为125V 、125V 、123V ,因此可认为它们是相同的。由此,得到的结论与上文相同,即:有中线时,219/124=1.7661≈3,线电压为相电压的3倍;无中线时,(125+125+123)/3=124.3,219/124.3=1.7619≈3,线电压为相电压的3倍。 综上所述,在对称负载星形联结时,不论是否接上负载(这里指全部接上或全部不接)、是否有中线,线电压都为相电压的3倍。 (2).三角形联结 2.根据表3-2的数据,按比例画出不对称负载星形联结三相四线制(有中线)的电流向量图,并说明中线的作用。 3.根据表3-3的电压、电流数据计算对称、不对称负载三角形联结时的三相总功率,并与两瓦特表法的测量数据进行比较。 根据本实验电路,可知负载电路均为电阻性,不对电流相位产生影响,因此功率因素为1,由此,可得:P= I UV ×U UV +I VW ×U VW +I WU ×U WU 因而据表3-3得: 不对称负载星形联结三相四线制(有中线)电流向量 图如左图所示,根据I U +I V +I W =I N ,且根据对称关系三个 相电流之间的夹角各为120o,因而根据几何关系画出I N 。 可见,I N 在数值的大小上和三个相电流并不成线性关系, 而在角度(相位)上也没有直观的规律。这是因为I N 是由三 个互成120o的相电流合成的电流,是矢量的,与直流电 路的电流有很多不同性质,因而要讲大小与方向结合计算 才有意义。 中线的作用:由左图可知,在不对称负载星形联结(有 中线)电路中,中线电流不为0,因而如若去掉中线必会 改变电路中电流的流向,导致各相负载电压不同(即表3-2 中不对称且无中线的情况),这时部分负载可能会由于电 流过大而烧毁。因此中线起到了电路中作为各相电流的回 路的作用,能够保证各相负载两端的电压相同(据表3-2 也可看出),就能够保证负载正常运行,不致损坏。因此 中线在星形联结中是至关重要的,因而在通常的生产生活 中的星形联结三相电路都是有中线的。

实验三 单相交流调压电路实验

北京信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相范围要求。 二.实验内容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

三相交流调压电路设计..

课程设计报告书 所属课程名称电气工程设计软件计算机操作 题目三相交流调压电路设计 分院 专业班级 学号 学生姓名 指导教师 2013年6月28日

目录 第一章课程设计内容及要求 (3) 第二章单相交流调压电路的分析 (3) 第三章三相交流调压电路设计 (7) 3.1三相交流调压电路的比较 (7) 3.2三相三线交流调压电路的原理分析 (8) 3.3 仿真电路设计 (11) 第四章电路仿真效果图 (14) 第五章课程设计心得体会 (20) 参考文献(资料) (22)

第一章课程设计内容及要求 根据单相交流调压电路的原理,设计一个三相交流调压电路。通过MATLAB/SIMULINK仿真分别得到控制角α=0°、α=30°和α=90°时的输出电压和电流波形,以及各相触发脉冲波形。负载考虑纯电阻情况,触发脉冲可通过脉冲宽度调制技术得到。仿真电路设计步骤如下: A.根据设计要求设计方案,对要求进行分析。提出初步的设计方案。 B.然后对方案进行比较,选定合适设计方案。 C. 完成单元电路的设计和主要元器件的参数选择,完成主电路的原理分析。 D.把各个元器件和单元电路连接成我们所需要的仿真电路图,对搭建的仿真的进行检验。 E.如果仿真电路图无误,对所需的结果进行仿真。 最后,把仿真出来的效果图,写到课程设计报告里。 第二章单相交流调压电路的分析 所谓单相交流调压就是将两个晶闸管反并联后串联在交流

电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出交流电压的有效值。其输出波形是对称的,设正、负半波的控制角均为α。当负载电阻为R,输入的电源电压有效值为U1,则此电路的基本电气参数如下: 1.负载电阻R上的交流电压有效值: 2.负载电阻R上的电流有效值: 3.功率因数λ: 4.晶闸管的电流平均值: 5..晶闸管电流有效值I及其通态平均电流:

三相交流电路-电工电子学实验报告

实验报告 课程名称:电工电子学指导老师:张伯尧成绩:___ _实验名称:三相交流电路 一、实验目的和要求二、实验设备 三、实验内容四、实验结果 五、心得 一、实验目的 一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3. 掌握三相电路功率的测量方法。 二、主要仪器设备 1. 实验电路板 2. 三相交流电源(220V) 3. 交流电压表或万用表 4. 交流电流表 5. 功率表 6. 单掷刀开关 7. 电流插头、插座 三、实验内容 1. 三相负载星形联结 按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图1

1) 测量三相四线制电源各电压(注意线电压和相电压的关系)。 U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0218.0217.0127.0127.0127.3 2)按表2内容完成各项测量,并观察实验中各电灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。 测量值 负载情况相电压相电流中线电 流 中点电 压 U UN’/V U VN’/ V U WN’/ V I U/A I V/A I W/A I N/A U N’N/V 对称负载有中线1241241240.2630.2630.26500无中线126.1126.8126.50.2630.2630.2660 1.1 不对称负载有中线1241251240.0920.1760.2660.1560无中线168144770.1050.1880.216051.9 2. 三相负载三角形联结 按图2接线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。 表3中对称负载和不对称负载的开灯要求与表2中相同。 三相负载三角形联结记录数据

电力电子实验指导书完全版

电力电子技术实验指导书 目录 实验一单相半波可控整流电路实验 (1) 实验二三相桥式全控整流电路实验 (4) 实验三单相交流调压电路实验 (7) 实验四三相交流调压电路实验 (9) 实验装置及控制组件介绍 (11)

实验一单相半波可控整流电路实验 一、实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用; 2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析; 3.了解续流二极管的作用; 二、实验线路及原理 熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。 图1-1 单结晶体管触发的单相半波可控整流电路 三、实验内容 1.单结晶体管触发电路的调试; 2.单结晶体管触发电路各点电压波形的观察; 3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定; 4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察; 四、实验设备 1.电力电子实验台 2.RTDL09实验箱 3.RTDL08实验箱 4.RTDL11实验箱 5.RTDJ37实验箱 6.示波器; 7.万用表; 五、预习要求 1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱; 2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,

电路各部分的电压和电流波形; 3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。 六、思考题 1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决? 七、实验方法 1.单相半波可控整流电路接纯阻性负载 调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT 波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。 表1-1 2.单结晶体管触发电路的调试 RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。 4.单相半波可控整流电路接电阻电感性负载 将负载改接成阻感性负载(由滑动变阻器Rd与平波电抗器串联而成,RTDL08实验箱提供电感)。不接续流二极管VD,在不同阻抗角(改变Rd的电阻值)情况下,观察并记录α=30o、60o、90 o、120o时的Ud及U VT的波形。 接入续流二极管VD,重复上述实验,观察续流二极管的作用记录于下表1-2中。 计算公式:Ud=[0.45*U2*(1+cosα)]/2 表1-2

相关主题