搜档网
当前位置:搜档网 › 压电陶瓷变压器的工作模式和结构研究进展

压电陶瓷变压器的工作模式和结构研究进展

压电陶瓷变压器的工作模式和结构研究进展
压电陶瓷变压器的工作模式和结构研究进展

龙源期刊网 https://www.sodocs.net/doc/8e5839980.html,

压电陶瓷变压器的工作模式和结构研究进展作者:吴静

来源:《教育教学论坛》2017年第48期

摘要:本文概述了压电陶瓷变压器的各种振动模式。着重介绍了每种振动模式压电变压器的基本结构和新结构的研究进展,并对压电陶瓷变压器未来的发展方向作了展望。

关键词:压电陶瓷变压器;振动模式;结构;研究进展

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)48-0060-04

压电陶瓷变压器是利用压电陶瓷材料的压电效应来实现机电能量转换的第三代固体电子变压器。结构上基本是由相互耦合的两个机械部分以及相互绝缘的输入和输出电路部分的两个压电陶瓷换能器组成。传统的铁芯线绕式电磁变压器是通过电磁效应实现初级与次级之间的耦合,所以相比传统的电磁变压器,压电陶瓷变压器具有体积小、重量轻、使用时不怕击穿、变压器本身不怕燃烧、耐高温,转换效率高、抗电磁干扰等优点,而且结构简单,能批量生产,可以与其他器件集成实现设备的小型化。已被应用在警用电击器高压电源、液晶显示背景光源、静电复印机高压电源、负离子发生器、小功率激光管电源等场合以及AC-DC转换器、DC-DC转换器等领域。

按照不同的特征可以对压电陶瓷变压器进行分类,一般根据压电陶瓷变压器工作时的机械振动模式分为长度伸缩振动型压电陶瓷变压器、厚度伸缩振动型压电陶瓷变压器、径向振动型压电陶瓷变压器、剪切振动型压电陶瓷变压器、弯曲振动型压电陶瓷变压器以及上述几种振动模式组合而成的复合振动模式压电陶瓷变压器[1]。多年来,研究工作者基于这些工作模式设

计研发出多种结构。本文综述了这几种振动模式压电变压器的基本结构及其新结构的研究进展。

一、长度伸缩振动型压电陶瓷变压器

长度伸缩振动型压电陶瓷变压器(又称为Rosen型压电陶瓷变压器)的典型结构几何示意图如图1所示。整个陶瓷片分成输入和输出部分,输入部分上下面被覆金属电极,按照厚度方向极化;输出部分端面被覆金属电极,按照长度方向极化。

Rosen型压电陶瓷变压器的输入端是驱动部分,输出端是发电部分。当输入端加上交变电压时,驱动部分的压电陶瓷片由于逆压电效应而产生沿长度方向伸缩振动,将输入的电能转化成机械能;当激励电压的频率接近振子共振频率时,位移振幅最大,驱动部分的振动将传输到发电部分,在发电部分由于正压电效应把机械能转化成电能而输出电压。因为发电部分陶瓷片长度远远大于驱动部分陶瓷片的厚度,根据阻抗和尺寸的关系可以得到输出阻抗远远大于输入阻抗,所以输出电压远远大于输入电压。输出交变电压的大小取决于压电变压器各部分的几何

变压器的工作原理讲课教案

第三章变压器 第一节变压器的工作原理、分类及结构 一、结构 1.铁心 如图,分铁心柱、磁轭两部分。 材料:0.35mm的冷轧有取向硅钢片,如:DQ320,DQ289,Z10,Z11等。 工艺:裁减、截短、去角、叠片、固定。 2.绕组 分同心式和交叠式两大类。 交叠式如右图。 同心式包括圆筒式、连续式、螺旋式等,见上图。 材料:铜(铝)漆包线,扁线。 工艺:绕线包、套线包。 3.其它部分 油箱(油浸式)、套管、分接开关等。

4.额定值 额定容量S N 额定电压U 1N U 2N 额定电流I 1N I 2N 对于单相变压器,有N N N N N I U I U S 2211== 对于三相变压器,有N N N N N I U I U S 221133== 注意一点:变压器的二次绕组的额定电压是指一次绕组接额定电压的电源,二次绕组开路时的线电压。 [讨论题]一台三相电力变压器,额定容量1600kV A ,额定电压10kV/6.3kV ,Y ,d 接法,求一次绕组和二次绕组的额定电流和相电流。 自己看[例3-1]。

总结:熟悉变压器额定值的规定。 二、变压器的工作原理 按照上图规定变压器各物理量的参考方向,有 dt d N e dt d N e φ φ2 211,-=-= 定义变比 2 121N N E E k == 工作原理: (1) 变压器正常工作时,一次绕组吸收电能,二次绕组释放电能; (2) 变压器正常工作时,两侧绕组电压之比近似等于它们的匝数之比; (3) 变压器带较大的负载运行时,两侧绕组的电流之比近似等于它们匝数的反比; (4) 变压器带较大的负载运行时,两侧绕组所产生的磁通,在铁心中的方向相反。 总结:牢记变压器的四条原理。 第二节 单相变压器的空载运行 一、空载运行时的物理情况 如图,变压器一次绕组接额定电压,二次绕组开路,称为变压器空载运行。此时,变压器一次绕组流过一个很小的电流,称为空载电流i 0,大约占额定电流的2%~5%,因此空载时变压器的铜损耗是很小的。为什么? 又, 11144.4N f E U m Φ=≈

电力变压器状态评估及故障诊断方法

电力变压器状态评估及故障诊断方法 发表时间:2017-05-26T15:26:45.210Z 来源:《电力设备》2017年第5期作者:李东 [导读] 摘要:电力变压器是我国电力系统中的核心设备,其运行状态直接影响了整个电力系统的运行,是居民和工业用电的可靠保障。 (江苏省电力公司无锡供电公司 214000) 摘要:电力变压器是我国电力系统中的核心设备,其运行状态直接影响了整个电力系统的运行,是居民和工业用电的可靠保障。电力变压器已广泛应用于电力系统中,如何对电力变压器的运行状态和故障的现象进行准确地掌握和判断,并及时采取正确的措施进行处理,对于提高电力系统运行的安全性、可靠性和经济性具有非常重要的意义。因此在建设电力系统时,一定要采购质量过硬,运行可靠的变压器,同时还要对变压器的运行状态参数进行检测,及时发现和预测变压器可能出现的故障,提前采取措施,避免发生事故。 关键词:电力变压器;状态评估;故障诊断方法 1 引言 电力变压器已广泛应用于电力系统中,是电力系统中重要的设备之一。因此,如何对电力变压器的运行状态和故障的现象进行准确地掌握和判断,并及时采取正确的措施进行处理,对于提高电力系统运行的安全性、可靠性和经济性具有非常重要的意义。由于变压器的绝缘材料长期工作在高温高压条件下,其物理、化学和机电等各方面的性能逐渐下降,导致绝缘损坏,进而造成事故的发生。引发变压器故障和事故的原因是多方面的,特别是电力变压器长期运行后造成的绝缘老化、材质劣化,已成为导致变压器发生故障的主要因素。 2 电力变压器评估需要的状态参量 电力系统的变压器运行状态的正常与否,可以通过变压器的运行状态参数来判断,因此研究变压器的运行状态参数,就非常有必要。通过研究分析变压器的运行状态参数,不仅可以判断其运行状态,还能预测变压器的使用寿命,以便于提早做计划。下面介绍几种分析判断变压器运行状态参数的方法:电力变压器的电气试验项目。通过电气试验可以获得系统中变压器的一些绝缘及电气参数,通过这些参数可以判断出设备的运行状态包括电流、电阻、发热量、功耗等。油气中溶解的气体。变压器都是工作在油箱中,被导热油淹没。通过放射性映射功能来检测油的挥发气体可以判断变压器的运行状态,主要是通过空气中油气的比重根据相关的公式来获得变压器参数。其他因素。前面两种方式是监控变压器状态的主要手段,其他的方法都可以归结为其他因素,主要包括设备的备件属性、设备运行记录、设备工作环境记录等。通过对这些参数和数据的收集分析,可以得到变压器的运行状态,预测其可以发生的潜在隐患。 3 电力变压器状态评估方法 3.1 油色谱分析判断 若变压器油色谱分析有异常时,可采用的针对性检测方法有:检测变压器绕组的直流电阻,铁芯的绝缘电阻和铁芯接地电流,空载损耗和空载电流,在运行中进行油色谱和局部放电追踪监测,检查变压器潜油泵及相关附件运行中的状态,用红外测温仪检测运行中变压器的油箱表面温度分布及套管端部接头温度,进行绝缘电阻、吸收比、极化指数、介质损耗、泄露电流等绝缘特性试验,绝缘油的击穿电压、油介质损耗、油中含水量、油中含气量等检测,变压器运行或停电后的局部放电检测,绝缘油中糖醛含量及绝缘纸材聚合度检测,交流耐压试验检测。 3.2 温度检测 通过对变压器本身及辅助设备的温度进行监测,可以及时发现变压器的工作状态是否稳定。变压器的温度最直接可以通过检测导热油色谱来判断。 3.3 测量局部放电量实验 变压器的局部放电量实验主要有两种方式:带电监测和停电监测。不停电监测所采用的方法有超声法和电测法,这两种方法可以在不影响变压器正常运行的情况下进行,超声波法就是通过监测局部放电产生的超声波信号,电测法监测的是局部放电产生的电脉冲信号。停电监测的方法就非常容易理解了,具体方式跟前面提到的试验相似。测量局部放电量实验只能从定性角度进行监测,在定量方面还无法做到足够的准确性。 3.4 变压器振动及噪声异常 若发现变压器振动及噪声异常,则要进行振动检测,噪声检测,油色谱分析,变压器阻抗电压测量,进行空载试验,测量三相空载电流和空载损耗值,以此判断变压器的铁芯硅钢片之间有无故障或磁路有无短路以及绕组短路故障等现象。 4 电力变压器故障的诊断方法 4.1 变压器漏油 变压器漏油是一个对变压器安全运行造成巨大影响的事故,如果发生漏油,将直接导致变压器运行瘫痪,产生环境污染,给企业带来巨大的经济损失,影响国民经济生活。变压器漏油根据大量的经验总结,主要发生在两个位置,一个是油箱的焊接处,一个是油箱的防爆管。防爆管由于结构中存在一个玻璃膜,在变压器运行时产生震动,震动会将玻璃膜震破碎,如果不能及时发现,就会造成漏油的后果。因此后期可以通过加装调压阀来取消安装防爆管所带来的隐患。焊接处漏油往往是因为焊接质量不过关造成,因此一方面要加强焊接工艺,另一方面要加强巡检,及时发现及时处理。 4.2 变压器接头过热 变压器在设计时就按照接头过热,自动熔断的机制进行设计,这是一种保护变压器不被烧坏的方式。但是为了让变压器在发生接头过热后,能继续恢复工作,可以用下面两种方法:普通链接。虽然变压器的设计是过热熔断,但是变压器工作起来难免发热,因此需要对接头的过热熔断机制接头换成普通连接,这样就能保证过热也能连接,使变压器继续工作。铜质或铝质的电线连接变压器的接头都是采用的铜材质,但是铜材质在潮湿的环境内会发生电解反应,所以同接头无法与铝接头相连接,所有可以通过给变压器加装一端铜接头一端铝接头的接线,就可以解决连接问题。 4.3 变压器铁芯多处接地 根据国家标准规定,电力变压器的铁芯位置,只允许有一个位置接地,如果铁芯的接地位置超过一个,就会使铁芯停止工作,导致变压器不能正常运行。针对变压器铁芯出现多处接地的现象,可以通过对铁芯和变压器油箱上施加直流电冲击,将接地线全部烧断,为了确保接地线完全烧断,可以多次电冲击。另外就是停机,打开油箱检测,发现多余的接地线,剪除多余的接地线。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

变电运行技术问答

变电运行技术问答 1、500KV超高压系统有何特点?P18 答:(1)输送容量大,输电线路长,因此,500KV线路采用多分裂导线。 (2)500KV主变压器、并联电抗器容量大、结构复杂、尺寸高大、占地面积大。(3)设置大容量的无功功率补偿装置。(4)长线路的电容效应产生的充电无功,会在线路轻载或空载的情况下产生工频过电压。(5)在线路操作时,易产生操作过电压。(6)无线电干扰大。(7)静电感应大。(8)电晕效应强。(9)继电保护二次接线复杂,保护双重化。(10)500KV变电所的运行噪音大。 2、什么是一次设备?什么是二次设备? 答:一次设备:指直接生产和输配电能的设备,经这些设备,电能从发电厂送到各用户。如发电机、变压器、断路器、隔离开关、电压互感器、电流互感器等。 二次设备:指对一次设备进行监视、测量、控制、调节、保护以及为运行、维护人员提供运行工况或产生指挥信号所需的电气设备。 3、电气设备分为哪些类型?P20 答:(1)生产和转换电能的设备。 (2) 接通或断开电路的开关电器。

(3)限制故障电流和防御过电压的电器。 (4)接地装置。 (5)交流电气一、二次之间的转换设备。 4、什么叫直流系统?直流系统在变电站中起什么作用? P21 答:由蓄电池和硅整流充电器组成的直流供电系统,称为蓄电池组。 直流系统在变电所中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源。它还为操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安全运行的保证。 6、电力系统中有哪些无功电源?P24 答:电力系统中无功电源有:发电机、同步调相机、补偿电容器、静止无功补偿装置等。 7、电力系统中有哪些调压措施?P24 答:电力系统的调压措施有:调节励磁电流以改变发电机端电压UG,适当选择变压器变比,改变线路参数,改变无功功率的分布。 8、在电力系统无功不足的情况下,为什么不宜采用调整变压器分头的办法来提高电压?P24 答:当某一地区的电压由于变压器分头的改变而升高的,该地区所需的无功功率也增大了,这样可能扩大系统的无功缺

压电陶瓷变压器及其应用

压电陶瓷变压器及其应用 压电陶瓷变压器是用铁电陶瓷材料经烧结和高压极化等工艺制成的一种新型电子变压器,其结构和工作原理与电磁绕线式等传统变压器是截然不同的。 人们对压电陶瓷变压器的研究始于20世纪50年代中后期。美国的Rosen于1956年阐述了压电陶瓷变压器的基本原理,并制备出长条形单片压电陶瓷变压器。由于当时的这种变压器采用的是压电性能差和居里温度低的钛酸钡(BaTiO3)材料,功率太小,成本也太高,并且工艺不成熟,因而未能引起人们的重视。在20世纪60年代到70年代初,关于压电陶瓷材料的研究取得了一些进展,在70年代压电陶瓷变压器发展成为一种新型的电子陶瓷变压器,并在80年代被推广应用到电视机、雷达终端显示器等的高压电源领域。这一时期,人们对与压电陶瓷变压器相关的最熟悉的产品就是压电陶瓷蜂鸣器和点火棒。进入90年代中期后,随着信息产业的迅猛发展及电子产品朝轻、薄、短、小方向发展的趋势,使得压电陶瓷变压器技术与产业得到长足进步和发展。 1、压电陶瓷变压器的结构与工作原理 压电变压器的工作原理基于压电材料的压电效应。压电效应是法国的P?Curie和J?Curie兄弟在1880年研究铁电性和晶体对称性的关系时发现的一种物理现象。除了单晶体外,压电陶瓷多晶体和某些非晶固体等也具有压电效应。 压电效应分正和逆两种类型。 正压电效应是指在压电体上加一个机械应力时,会使压电体极化并在一定的表面形成电荷的效应。压电陶瓷棒就是利用正压电效应工作的,给压电棒加上机械压力,在点火棒两端即有高压产生。 逆压电效应是指在压电体上有一个外加电场时,晶体会发生形变和振动,这一现象就是逆压电效应。压电陶瓷蜂鸣器就是利用逆压电效应工作的,给压电陶瓷片加上电压信号,将会使陶瓷片振动并发出声音。 压电陶瓷变压器是利用同一压电陶瓷并同时利用正压电效应和逆压电效应来工作的,即完成电能——机械能和机械能——电能的两次能量转换。 压电陶瓷变压器所使用的压电陶瓷材料除了BaTiO3外,还有PZT系压电陶瓷、三元系压电陶瓷(如铌镁钴钛酸铅系、铌锌锆钛酸铅系、碲锰锆钛酸铅系、锑锰锆钛铅酸系等)及四元系压电陶瓷[如Pb(Sn1/3 Nb2/3)A (Zn1/3 Nb2/3)B TiCZrdO3)等]。 最简单同时也是最为常用的压电陶瓷变压器是长条形单片压电陶瓷变压器(即Rosen型压电变压器),其结构如图1所示。

12v电子变压器工作原理

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4 构成整流桥 把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻 R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。此电子变压器电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电子变压器电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

变压器的工作原理

变压器的工作原理: 变压器是利用电磁感应原理传输电能或电信号的器件, 它具有变压、 变流和变阻抗的作用。 变压器的种类很多, 应用十分广泛。 比如在电力系统中用电力变压器把发电机发出的电压升高后进行远距离输电, 到达目的地后再用变压器把电压降低以便用户使用, 以此减少传输过程中电能的损耗; 在电子设备和仪器中常用小功率电源变压器改变市电电压, 再通过整流和滤波, 得到电路所需要的直流电压; 在放大电路中用耦合变压器传递信号或进行阻抗的匹配等等。 变压器虽然大小悬殊, 用途各异, 但其基本结构和工作原理却是相同的。 变压器由铁心和绕组两个基本部分组成, 如图 2 - 34所示, 在一个闭合的铁心上套有两个绕组, 绕组与绕组之间以及绕组与铁心之间都是绝缘的。 变压器的铁心由0.35~0.5mm 厚的硅钢片交错叠装而成, 图 2 - 35为几种常见的铁心形状。 绕组一般采用绝缘铜线或铝线绕制, 其中与电源相连的绕组称为原绕组(或称为原边、 初级); 与负载相连的绕组称为副绕组Z L (a )(b )图2-34 变压器

(或称为副边、次级)。按铁心和绕组的组合结构可分为心式变压器和壳式变压器, 如图 2 - 36所示。心式变压器的铁心被绕组包围, 而壳式变压器的铁心则包围绕组。 2.变压器原理及应用

1) 空载运行和电压变换如图 2 - 37所示, 将变压器的原边接在交流电压u1上, 副边开路, 这种运行状态称为空载运行。此时副绕组中的电流i 2=0, 电压为开路电压u20, 原绕组通过的电流为空载电流i 10, 电压和电流的参考方向如图所示。图中N1为原绕组的匝数, N2为副绕组的匝数。 副边开路时, 通过原边的空载电流i 10就是励磁电流。磁动势i 10N 1在铁心中产生的主磁通Φ既穿过原绕组, 也穿过副绕组, 于是在原、 副绕组中分别感应出电动势e1和e2。且e1和e2与Φ的参考方向之间符合右手螺旋定则, 由法拉第电磁感应定律可得 e1和e2的有效值分别为 式中f为交流电源的频率, Φm 为主磁通的最大值。 如果忽略漏磁通的影响并且不考虑绕组上电阻的压 降时, 可认为原、 副绕组上电动势的有效值近似等于原、 副绕组上电压的 u 20图2-37 变压器的空载运行dt d N e dt d N e Φ-=Φ-=221 1m m fN E fN E Φ=Φ=221144.444.4

压电陶瓷变压器的工作模式和结构研究进展

龙源期刊网 https://www.sodocs.net/doc/8e5839980.html, 压电陶瓷变压器的工作模式和结构研究进展作者:吴静 来源:《教育教学论坛》2017年第48期 摘要:本文概述了压电陶瓷变压器的各种振动模式。着重介绍了每种振动模式压电变压器的基本结构和新结构的研究进展,并对压电陶瓷变压器未来的发展方向作了展望。 关键词:压电陶瓷变压器;振动模式;结构;研究进展 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)48-0060-04 压电陶瓷变压器是利用压电陶瓷材料的压电效应来实现机电能量转换的第三代固体电子变压器。结构上基本是由相互耦合的两个机械部分以及相互绝缘的输入和输出电路部分的两个压电陶瓷换能器组成。传统的铁芯线绕式电磁变压器是通过电磁效应实现初级与次级之间的耦合,所以相比传统的电磁变压器,压电陶瓷变压器具有体积小、重量轻、使用时不怕击穿、变压器本身不怕燃烧、耐高温,转换效率高、抗电磁干扰等优点,而且结构简单,能批量生产,可以与其他器件集成实现设备的小型化。已被应用在警用电击器高压电源、液晶显示背景光源、静电复印机高压电源、负离子发生器、小功率激光管电源等场合以及AC-DC转换器、DC-DC转换器等领域。 按照不同的特征可以对压电陶瓷变压器进行分类,一般根据压电陶瓷变压器工作时的机械振动模式分为长度伸缩振动型压电陶瓷变压器、厚度伸缩振动型压电陶瓷变压器、径向振动型压电陶瓷变压器、剪切振动型压电陶瓷变压器、弯曲振动型压电陶瓷变压器以及上述几种振动模式组合而成的复合振动模式压电陶瓷变压器[1]。多年来,研究工作者基于这些工作模式设 计研发出多种结构。本文综述了这几种振动模式压电变压器的基本结构及其新结构的研究进展。 一、长度伸缩振动型压电陶瓷变压器 长度伸缩振动型压电陶瓷变压器(又称为Rosen型压电陶瓷变压器)的典型结构几何示意图如图1所示。整个陶瓷片分成输入和输出部分,输入部分上下面被覆金属电极,按照厚度方向极化;输出部分端面被覆金属电极,按照长度方向极化。 Rosen型压电陶瓷变压器的输入端是驱动部分,输出端是发电部分。当输入端加上交变电压时,驱动部分的压电陶瓷片由于逆压电效应而产生沿长度方向伸缩振动,将输入的电能转化成机械能;当激励电压的频率接近振子共振频率时,位移振幅最大,驱动部分的振动将传输到发电部分,在发电部分由于正压电效应把机械能转化成电能而输出电压。因为发电部分陶瓷片长度远远大于驱动部分陶瓷片的厚度,根据阻抗和尺寸的关系可以得到输出阻抗远远大于输入阻抗,所以输出电压远远大于输入电压。输出交变电压的大小取决于压电变压器各部分的几何

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

压电陶瓷变压器基本工作原理及特点.

独石(多层)压电陶瓷变压器基本工作原理及特点 在现代,压电陶瓷 制品对我们并不陌 生。 正压电效应的应用主要用于燃气点火器,如燃气灶.燃气打火机等的点火系统。基本工作原理为:由外力压缩一个弹簧,压到顶点后释放,弹簧力推动一个重锤打击压电陶瓷柱产生一数千伏的高压火花,点燃可燃气体。 逆压电效应的应用主要用于压电蜂鸣器,例如音乐贺卡、门铃.寻呼机.移动电话机振铃等。基本工作原理为:当在压电陶瓷片上施加一交变电场时,压电陶瓷片产生一相对应的形变即振动,当振动频率在音频波段内时就会发出对应的音响。 应用此特性配合机械谐振原理还大量用于制造谐振器、选频器、延迟线、滤波器等电子组件。 压电陶瓷变压器的基本构成则是将一压电蜂鸣器的应用与一压电点火器的应用组合起来,组成压电谐振子。在蜂鸣器的一端(称为驱动端)输入一个与压电变压器谐振频率一致的正弦交变电压,压电谐

振子产生振动,传导至点火器的一端(称为发电端),产生连续的正弦波电压,视乎于压电变压器的结构特征,可以是输入低电压、输出高电压(升压型),也可以是输入高电压、输出低电压(降压型)。若在高频驱动电压上通过调制解调器加入低频调制,则可实现信号传输。 压电陶瓷变压器的基本结构形式如图(一)所示 压电陶瓷是一种脆性材料,为保障其机械强度,压电变压器必须有一定的厚度,上述变压器的驱动电压就受到了相当的限制。为此独石(多层)压电陶瓷变压器项目应运而生。独石(多层)压电陶瓷变压器的基本结构形式如图(二)所示。

采用了独石(多层)结构后每一单层厚度和层数均可调,驱动电压不再受到限制,因而可以使压电变压器无论处在何种驱动电压下都能工作在最佳状态。 此项目的核心技术为亚微米低温烧结压电陶瓷材料、内电极共烧技术,极化处理技术及结构设计。 独石(多层)压电陶瓷变压器制备的工艺流程为

运行中变压器的状态评估与状态检修 张堂松

运行中变压器的状态评估与状态检修张堂松 发表时间:2018-01-06T20:58:43.093Z 来源:《电力设备》2017年第26期作者:张堂松 [导读] 摘要:电力变压器是电网中能量转换、传输的核心,是电网安全第一道防御系统中的关键枢纽设备。变压器一旦发生事故可能会造成设备资产和大停电等巨大损失,甚至会产生严重的社会影响。 (贵州电网有限责任公司都匀供电局贵州省都匀市 558000) 摘要:电力变压器是电网中能量转换、传输的核心,是电网安全第一道防御系统中的关键枢纽设备。变压器一旦发生事故可能会造成设备资产和大停电等巨大损失,甚至会产生严重的社会影响。因此,对电力变压器进行有效的状态评估和深入的故障诊断研究,指导变压器的运行维护和状态检修,预防和降低故障的发生几率,具有重要的理论和实际意义。 关键词:变压器;状态评估;状态检修 引言 变压器是电力技术和电力结构的集合体,有了变压器的稳定工作,电力的传输、转化就有了结构性和功能性的节点,对变压器的维护、检修和保养成为电力系统核心性和关键性的基础型工作。 一、状态检修的提出 输变电设备的检修工作,随着产业技术的发展,经历了不同的发展阶段,分别为事后检修方式、预防检修方式、经济检修方式、预知检修方式。 随着科学技术的发展,电力变压器数量急剧增加,对电力设备安全性、可靠性要求不断提高,传统的周期检修模式已明显满足不了新要求,提出了状态检修的模式。状态检修就是通过在线的和离线的监测手段,收集电气设备的运行的工况信息,通过系统科学的分析诊断,判断设备的健康状态,在设备接近损坏或对设备的安全性有怀疑时,决定设备的检修对策,进行大修或小修,可在设备检修周期到来之前根据设备状况提前进行检修,也可以根据设备的状况,延长检修周期,真正做到“应修必修”。 二、状态检修的思路 2.1数据收集:建立在线监测系统,包括变压器绝缘在线系统、变压器油色谱分析系统、变压器运行中的温度监视、负荷监视等。 离线采集设备信息,主要包括预防性试验数据:如变压器的线圈绝缘电阻、吸收比、介质损耗、绕组变形测试结果等。 2.2综合分析状态数据:总结归纳设备运行信息,包括在线和离线采集获取的数据信息、经受短路情况、最大负荷电流、设备缺陷情况、环境温度情况、同类设备运行状况等。 2.3检修的判定:根据不同设备的运行要求及国家、行业、部门法律、法规、规程要求,制定状态分级标准,通过计算机网络系统对收集到的各类信息综合分析,人工加智能分析得出设备的检修判定,进行检修或例外放行,可以继续运行,加强监视。 2.4决策实施:对于需要检修的设备,拟订检修方案,实施检修作业,进行评估分析;对于不须检修的设备,加强运行监视,定期进行评估分析。 2.5评估分析:对依据设备状态判定做出的检修决策的执行结果进行评估,对实施检修作业的设备和未实施检修作业的设备都进行分析评估,评估检修策略的有效性和合理性。 2.6改进方法,实现PDCA循环,根据设备评估分析的结果,改进状态分级的依据、调整搜集的运行信息、改变检修策略,进入新的循环,保证输变电设备始终处于健康运行状态。 三、变压器状态的评估和分析 实施状态检修的关键是正确实施对设备的状态的评估和确定,它是状态检修的依据,是能否保证设备安全可靠运行的关键。变压器的状态可分为四种,即正常状态、可疑状态、可靠性下降状态、危险状态。 3.1变压器的状态资料分析 (1)运行资料分析。运行中资料包括变压器的负载、变压器的密封、渗漏情况、变压器近区短路情况、瓦斯保护动作、变压器差动保护动作情况、铁芯是否存在多点接地,变压器的附件净油器、套管、潜油泵、风冷却器、有载分接开关、压力释放阀、储油柜、呼吸器等运行中所表观的信息。 (2)试验数据分析。试验数据包括:绝缘电阻、吸收比或极化指数试验、绕组的介质损耗测量、直流电阻试验、绝缘油的定期试验分析(简化试验)、油中溶解气体的气相色谱分析等。变压器油中各组份气体含量有增加趋势或已超过注意值时,应观察产气率,根据三比值法或其它经验,初步判断可能存在的过热或放电性故障,并确定故障的严重程度及故障部位,为检修提供更详细可靠的依据。各种故障表现出的特征气体及查找方法。 油中溶解气体的分析是检测变压器内部故障的较有效的方法,应根据实际情况,确定是否跟踪观察或停电检查。 3.2变压器的状态评定及对策 根据各种运行、试验数据的综合分析,可以得出变压器的健康状态。 (1)正常状态。指运行正常,试验数据正常或其中个别试验参数表明可靠性稍有下降,但数据稳定的变压器。处于正常状态下的变压器,应维护正常的周期性试验及巡视监督。 (2)可疑状态。可疑状态,指在试验周期内发现某些参数反映变压器内部可能有异常现象,但仍有很多不确定因素的变压器。凡有下列诸因素之一均属此状态:在试验周期内首次发现绝缘电阻下降到初始值70%以下,且值(20℃时)对于220kV及以下变压器大于1000MΩ,极化指数不小于1.25;变压器本体介损值、油介损值在同一温度下与初始值比较增值大于30%,其值不大于标准值或超标但数值稳定;套管介质损耗有增大趋势或电容量变化明显;色谱试验H2含量超注意值,烃类气体含量接近或超过注意值,用三比值法或其它方法判断为150~300℃低温范围过热,三比值法判断为低能量火花放电;在运行中变压器偶有突然增大的噪音,但不明显。 在可疑状态下,变压器可继续运行,但应缩短试验周期并跟踪观察,在观察期间没有进一步劣化趋势并稳定在某一合格值内,变压器可不进行检修。凡属此类变压器,应作出分析,定出缩短周期期限及跟踪项目。 (3)可靠性下降状态。此状态指历次周期试验或跟踪测试结果分析存在故障,且基本确定故障部位及故障原因,判断这种故障在长期内不会发生事故的变压器。凡有下列因素之一,均属此状态;铁芯多点接地,环流可控制在0.1A左右,色谱跟踪烃类气体再无上升趋

基于压电变压器的高压发生器的研究

收稿日期:2011-05- 30 作者简介:龚旭(1986-),男,四川成都人,硕士生,主要从事电磁伺服驱动及控制技术的研究。E-mail:lazylolily @yahoo.com.cn 文章编号:1004-2474(2012)03-0411- 03基于压电变压器的高压发生器的研究 龚 旭,王丛岭,常 波 (电子科技大学电力电子系,四川成都6111731 ) 摘 要: 该文提出了一种用于离子风枪的基于压电变压器实现高压发生器的设计方法,此法有利于高压发生器的小型化。描述了压电变压器相关特性,并给出了压电变压器外围电路(输入驱动电路、输出倍压电路、反馈电路)相关设计的理论基础和设计方法。利用软件仿真验证此法的可行性。 关键词:高压发生器;压电变压器;驱动电路;反馈控制电路;脉宽调制和锁相环控制联合控制中图分类号:TM51 文献标识码:A Study  on HV Generator Based on Piezoelectric TransformerGONG Xu,WANG Congling ,CHANG Bo(Dept.of Power Electronics,University of Electronic Science and Technology  of China,Chendu 611731,China) Abstract:A HV generator based on piezoelectric transformer for the ionizer gun has been designed in thiswork.This method is favorable to realizing the miniaturization of HV generator.The properties of the piezoelectrictransformer have been discussed.The design theory and method of the external circuit including the driving circuit,output doubling circuit and feed-back circuit have been presented.The feasibility of the method has been verified byusing  the software simulation.Key words:HV generator;piezoelectric transformer;driving circuit;feed-back circuit;combin PWM and PLLcontrol  0 引言 一直以来,人们在各种高压发生器中大量采用传统的电磁变压器。随着电子系统的小型化和集成化发展,高压发生器也面临着小型化的要求,而传统变压器的体积大,笨重,易受干扰等缺点开始限制其在此领域的发展。压电变压器的出现为高压发生器的小型化提供了条件。 压电变压器是一种利用压电材料的正逆压电效应实现电能到机械能再到电能的转换的固体电子器件。现传统的铁芯线绕电磁变压器相比,压电变压器具有体积小,质量轻,使用时不击穿,变压器本身耐高温,不怕燃烧,无电磁干扰且结构简单,制作工 艺简便,易批量生产等优点[1- 2]。目前,压电变压器 已在冷阴极萤光灯管(CCFL)、负离子发生器、小功率激光管电源等领域得到应用。本文将提供一种在离子风枪中利用压电变压器实现高压发生器的方法。 1 压电变压器特性[3 ] 压电变压器与传统变压器不同,它一般工作频 率范围在104~1 07  Hz。其等效电路图如图1(a)所示。图中,C0和Cin为等效输入输出电容,Lr和Cr为等效串联电感和电容,Rm为机械等效电阻,R0为负载电阻,n为变比,T为等效输出变压器。若将二次侧电路等效转换到一次侧,如图1(b)所示;进一步简化,如图1(c )所示 。图1 压电变压器等效电路图 第34卷第3期压 电 与 声 光 Vol.34No.32012年0 6月PIEZOELECTRICS &ACOUSTOOPTICS  June  2012

第二章—变压器风冷系统工作原理

第二章变压器风冷系统的工作原理 2.1 电力变压器发热及冷却原理 2.1.1 变压器发热过程 电力变压器运行时,由于在铁芯和线圈上产生损耗,产生的热量经过其所处介质散发到周围空气中,这一过程将引起变压器发热,以及变压器温度升高。为了保护变压器及其元器件的正常运行,必须采取有效的冷却措施限制变压器的温升。变压器运行时,线圈和铁芯温度升高,起初,温度上升速度较快,随着温度升高到一定程度,线圈和铁芯与其周围的冷却介质形成温度差,将温度传递给介质,介质吸收热量温度增高,线圈和铁芯的温升减缓,在这个过程中,线圈和铁芯温度达到稳定状态,形成动态的热平衡。 2.1.2 变压器冷却过程 变压器的冷却过程需要经过多重传热。包括变压器油与铁芯表面传热,变压器油与冷却器箱体内表面传热,空气与冷却器箱体外表面传热三个过程。 线圈和铁芯产生的热量,由内部最热点传到与油接触和外表面,热量传到表面后,与周围介质油产生温度差,通过对流作用将部分热量传给附近的油,从而使油温逐渐上升。 当油温升高后,热油向上流动与油箱相接触将热量传导油箱外壁,散热后的油再向下流动重新流入线圈,形成闭合的对流回路,这一过程中,变压器油箱外壁温度逐渐升高。 油箱内壁吸收热量后,热量从壁的内侧传导到外侧(箱壁的内外温差不大,一般不超过3℃)与周围环境形成温差,通过与空气对流和辐射,将热量散发到周围空气中。 在强迫油循环系统中,潜油泵在冷却器中就是采用施加压力的作用,加速变压器油的流动,增强热对流。变压器油的热对流包括两种形式,即热传导和热辐射,两个过程同时进行。变压器箱壁内侧的热量从变压器油中以热传导和热辐射的形式传给冷却器,变压器箱壁外测热量从箱壁以热传导和热辐射的形式传给空气。冷却器—风扇的作用就是加速吹变压器箱壁外侧的空气流动,加快变压器的散热过程,如图2-1所示。

基于压电陶瓷变压器高压直流电源设计___毕业论文

编号淮安信息职业技术学院毕业论文 学生姓名朱贤德 学号42911113 系部电气工程系 专业机电一体化技术班级429111 指导教师李瑞年 顾问教师宋指宏 二〇一三年十月

摘要 摘要 压电陶瓷变压器是一种新型的压电换能器件,具有尺寸小,结构简单,不可燃,耐辐射,高可靠等优点。压电变压器在电视显像管、雷达显示管、静电复印机、静电除尘、小功率激光管、离子发生器、高压极化等设备中得到广泛的应用。 本课题是研究压电变压器设计出10kV的直流高压电源。当在压电陶瓷变压器输入端(驱动部份)加入交变电压时,通过逆压电效应,瓷片产生沿长度方向的伸缩振动,将输入电能转变为机械能;而发电部分则通过正压电效应将机械能转换为电能从而输出电压因瓷片的长度远大于厚度,故输出端阻抗远大于输入端阻抗,输出端电压远大于输入端电压.一般输入几伏到几十伏的交变电压,可以获得几千伏以上的高压输出。 关键词:压电陶瓷变压器直流高压阻抗

ABSTRACT ABSTRACT Piezoelectric ceramic transformer is a new type of piezoelectric transducer device, the size is small, simple structure, non-combustible, resistance to radiation, high reliability. Piezoelectric Transformers in a television picture tube, radar showed tube, electrostatic copier, electrostatic dust, small power laser diodes, ion generator, high voltage polarization, and other equipment was widely used. The topic is the study piezoelectric transformer design of the 10 kV DC high voltage power supply. When the piezoelectric ceramic transformer input (some drivers) by adding alternating voltage, reverse piezoelectric effect. have artifacts along the length direction of the stretching vibration, the input energy into mechanical energy; and some power is through piezoelectric effect of converting mechanical energy to electrical energy so the output voltage for artifacts than the length of thickness, Therefore, the output impedance than input impedance, the output voltage than input voltage. General Fu few to a few tens of volts of alternating voltage, available thousands of volts above the high pressure output. Keywords:Piezoelectric Ceramic Transformer DC high voltage Impedance

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

浅析变压器运行方式

变压器按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。那么变压器如何操作呢,变压器操作有什么秘诀吗?本文讲简述下。 1.变压器的停、送电操作顺序的规定及变压器工作状态分类 1.1变压器停送电操作顺序 主变压器停、送电操作顺序是:停电时先停负荷侧,后停电源侧;送电时先送电源侧,后送负荷侧,原因是: a.多电源时,按上述顺序停电,可以防止变压器反充电,若先停电源侧,遇有故障可能造成保护误动或拒动,延长故障切除时间,扩大停电范围。 b.从电源侧逐级送电,如遇故障便于按送电范围检查。 c.当负荷侧母线电压互感器带有低频减载装置,且未装电流闭锁时,停电先停电源侧,可能由于大型同步电动机的反馈,使低频减载装置误动作。 1.2变压器工作状态分类 运行后的变压器工作状态分四种状态,即运行状态、热备用状态、冷备用状态和检修状态。运行状态:变压器的断路器、隔离开关都处在合闸位置的运行工作状态; 热备用状态:变压器只断开断路器,隔离开关仍在合闸位置的非运行工作状态; 冷备用状态:变压器的断路器、隔离开关都在分闸位置的非运行工作状态; 检修状态:变压器所有断路器、隔离开关已断开,并完成了装设地线,悬挂标示牌,设置临时遮栏等安全技术措施的非运行状态。 2.变压器的运行电压规定 2.1运行电压的范围规定 运行电压一般不应高于运行分接额定电压的105%,对于特殊的使用情况,允许不超过110%的额定电压运行。 2.2电流与电压的关系 电流与电压的关系按下式: 当负荷电流/额定电流=K,(0≤K≤1)时,按 对运行电压U进行限制。 2.3电压过高对变压器的影响和危害 电源电压升高,磁通Фm增加,从而使励磁电流Im增加,励磁电流是无功电流,因而无功增加,变压器允许通过的有功功率降低。 另外电压升高,磁通增大,使铁心饱和产生过激磁,造成变压器的电压、磁通波形畸变(形成峰波),高次谐波分量增加,因而增加电机和线路的附加损耗,产生系统的谐振过电压,破坏电气设备绝缘,同时高次谐波要干扰附近的通讯线路。 对变压器本身,由于电压升高会对变压器产生过激磁,变压器的过激磁必然引起变压器铁心过热,使铁心绝缘老化,降低变压器寿命甚至将变压器烧毁。 2.4变压器产生过电压的原因 电力系统因事故解列后,部分系统的甩负荷过电压、铁磁谐振过电压、变压器分接开关档位调整不当,长线路末端带空载变压器或其他操作,发电机频率不到额定值过早加励磁电流,发电机自励磁等情况。

相关主题