搜档网
当前位置:搜档网 › 脱硫系统吸收塔除雾器结垢原因及处理

脱硫系统吸收塔除雾器结垢原因及处理

脱硫系统吸收塔除雾器结垢原因及处理
脱硫系统吸收塔除雾器结垢原因及处理

新型脱硫塔高效除雾器的应用

新型脱硫塔高效除雾器的应用 北极星节能环保网来源:德创环保2016/4/1 12:03:01 我要投稿 所属频道: 大气治理关键词:脱硫湿法脱硫除雾器北极星节能环保网讯:1. 前言 国内的烟气脱硫目前大都采用的是湿法工艺,其核心装置就是吸收塔,由于吸收塔内的反应大部分都采用喷淋管喷射洗涤,处理过的烟气中含有大量的浆液滴,因此烟气在经过洗涤后要通过除雾器,目的是将烟气中夹带的浆液滴通过撞击除雾器叶片分离出来,顺着除雾器叶片通道流向塔内,以免随烟气排除塔外污染环境。 除雾器是湿法脱硫中必不可少的设备。目前广泛使用的除雾器(包括屋脊式、平板式和烟道式),但是从现运行的脱硫系统中,可以发现除雾器主要存在以下2点问题。 (1)除雾效率不高,致使烟囱下“石膏雨” 石膏雨产生的原因是除雾器出口烟气携带的液滴超标,现大多数脱硫系统都不设GGH 的脱硫系统,由于排烟温度较低,烟气扩散条件不利,烟气携带的液滴会在烟囱出口形成“石膏雨”(即脱硫塔浆液池内的大量石膏浆液随上升烟气从烟囱口飘出,严重影响周围环境)。 目前两级平板或屋脊除雾器只能保证出口雾滴浓度不大于75mg/Nm3已经远远不能满 足主流环保公司和电厂出口雾滴浓度不大于20mg/Nm3的目标,改进势在必行。 (2)除雾器板片结垢堵塞,冲冼失常,造成除雾器坍塌 当除雾器冲洗系统受吸收塔液位影响不能按正常程序运行时,除雾器板片上结垢往往得不到及时冲洗,恶性循环愈演愈烈,塔内布置的除雾器板片上的亚硫酸钙与硫酸钙堆积物越来越多,最终使得除雾器不堪重负而坍塌。 我公司最新研发的高效除雾器叶片在福建华电可门2号烟气脱硫EPC项目上的应用,显示出在脱水除雾方面的高效性。该技术为脱硫塔的脱水除雾带来了新的技术理论和应用思路,有利于跟上日益严苛的环保要求。 2 . 脱硫项目概况

湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用

通道的能力。 3结语在煤炭行业所运用的多级安全数据库系统,其经典的BLP 模型的“向上写”违反了数据库的完整性,而随之带来的是会产生隐通道问题。事务间的提交和回退依赖也会产生隐通道。然后,通过分析隐通 道的产生的原因,提出了利用并发控制上锁机制进行隐蔽通信的方式,通过提出算法,来消除用户通过并发控制上锁机制泄漏信息的途径。算法中当高安全级事务将数据读入私有区后,低安全级事务更新数据后,系统将通知用户,由用户自行处理。文中对于事务并发执行时事务间的安全问题,只讨论了隐通道问题这个方面,而如何去提高避免 隐通道算法的性能将是未来研究的主力方向。 参考文献: [1]谷千军,王越.BLP 模型的安全性分析与研究[J].计算机工程,2006 (22):157-158.[2]肖卫军, 卢正鼎,洪帆.安全数据库系统中的事务[J].小型微型计算机系统,2004(4):591-594.[3]朱虹,冯玉才.避免隐通道的并发控制机制[J].小型微型计算机系统,2000(8):844-846. (责任编辑赵勤)收稿日期:2012-08-18;修订日期:2012-10-22 基金项目:河北省教育厅自然科学计划项目(Z2012198) 作者简介:闫志谦(1973-),男,河北晋州人,副教授,硕士,研究方向:化学工程。0前言 锅炉烟气中的SO 2与氧化镁反应后生成的亚硫酸镁,再氧化反应生成为硫酸镁(MgSO 4)溶液。氧化镁湿法烟气脱硫,具有脱硫效率高,操作简单,不易结垢等优点[1],以氧化镁(MgO)作为脱硫剂,可有效防止沉淀、积垢、堵塞、结块;运行可靠性高,电耗低,取得了较高的脱硫效率。1吸收塔装置设计脱硫吸收塔选用逆流喷淋结构,塔身为圆柱体,底部为锥形的循环浆液池。吸收塔的上部为喷淋洗涤区,共布置了3层喷嘴。氢氧化镁/亚硫酸镁/硫酸镁浆液通过喷嘴向吸收塔下方成雾罩形状喷射,形成液雾高度叠加的喷淋区,含有SO 2的烟气与浆液中悬浮的氧化镁微粒发生化学反应而被洗涤吸收。为了避免烟气和喷淋浆液在接触区形成沉淀,采用 工业水定期喷水,清洗吸收塔入口部分的内壁。吸收塔下部的浆池与吸收塔体为一体的结构。吸收塔内所有部件能承受最大入口气流及最高进口烟气温度的冲击。 吸收塔体为碳钢加防腐衬里的结构,在烟气进口处采取预冷却喷水的防高温措施。 1个吸收塔共配有3台离心式浆液循环泵,整个脱硫区配有罗茨型强制氧化风机,吸收塔选用的材料适合工艺过程的特性,并且能承受烟气飞灰和脱硫工艺固体悬浮物的磨损。所有部件包括塔体和内部结构设计上都考虑了腐蚀度。吸收塔设计成气密性结构,防止液体泄漏。为保证壳体结构的完整性,使用焊接连接,法兰和螺栓连接仅在必要时使用。塔体上的入孔、通道、连接管道等需要在壳体穿孔的地方进行密封,防止泄漏。 第32卷第2期2013年2期煤炭技术Coal Technology Vol.32,No.02February,2013湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用 闫志谦,程艳坤,张 滨,霍鹏(河北化工医药职业技术学院化工与环境工程系,石家庄050026)摘要:介绍了湿法氧化镁烟气脱硫技术应用的原理及工艺,对吸收氧化反应所在的吸收塔系统进行了装置的设 计与应用,并提供理论依据和参考影响吸收因素。 关键词:氧化镁;烟气脱硫;吸收塔 中图分类号:X701.3文献标识码:A 文章编号:1008-8725(2013)02-0181-03 Application of Absorbing Tower System in Wet Process of Magnesium Flue Gas Desulfurization YAN Zhi-qian ,CHENG Yan-kun ,ZHANG Bin ,HUO Peng (Department of Chemical and Environmental Engineering,Hebei Chemical and Pharmaceutical Vocational Technology College,Shijiazhuang 050026,China ) Abstract:Introduced the application of the principle of wet magnesia flue gas desulphurization technology and process,this paper absorption oxidation reaction in which the absorber tower system design and application of the device,and provides a theoretical basis and reference. Key words:magnesium oxide;flue gas desulfurization;absorbing tower system !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

脱硫塔吸收塔安装方案

脱硫塔吸收塔安装方案 Prepared on 22 November 2020

华电国际莱城发电厂 1号机组烟气脱硫增容改造工程 1号机组吸收塔安装方案 编制: 审核: 批准: 青岛华拓科技股份有限公司 莱城项目部 2014年5月 目录 1、工程概况 (3) 2、施工前的准备 (3) 3、编制依据 (5) 4、吸收塔安装 (5) 5、喷淋层安装 (14) 6、附件安装 (15) 7、吸收塔焊接 (15) 8、脚手架搭拆 (15)

9、充水试验 (15) 10、表面处理 (16) 11、补底漆 (17) 12、质量保证措施 (17) 13、安全生产保证措施 (18) 14、安全风险控制计划 (21) 15、环境控制计划 (22) 1、工程概况 1.1.1、工程名称:华电国际莱城发电厂#1~#4机组4×300MW烟气脱硫改造工程 1.1.2、工程性质:改造工程 1.1.3、工程规模:四套烟气脱硫改造装置 1.1.4计划工期:1号系统自2014年05月20日~2014年09月13日竣工。 工程简介 华电国际莱城发电厂#1机组1×300MW烟气脱硫改造工程,由青岛华拓科技股份有限公司总承包。内容包括完整范围内的设计、工程服务、建筑工程、制造、供货、运输、安装、调试、试验和培训等。本次是吸收塔安装工程(包括喷淋层3层,除雾器1层安装)。

本项目烟气脱硫吸收塔塔体内径12000mm,高度34275mm,内部装有喷淋层、除雾器等系统组件,塔体内壁防腐为玻璃鳞片。 工作范围 1.3.1脱硫岛吸收塔本体安装。 1.3.2吸收塔基本条件 2、施工前的准备 作业人员应经过三级安全教育和考试合格后方可上岗。 焊工需持有焊接有效合格证件。 施工前应熟悉了解图纸和有关规程规范,参加作业前的技术交底工作,未经技术交底不得上岗。 焊工应有良好的工艺作风,严格按照给定的焊接工艺施焊,并认真实行质量自检。 作业人员应严格按图纸、有关规程规范及作业指导书要求进行施工。 、施工人员准备 注:由工地统一调派人员 、施工机具准备

脱硫塔

第一章运行管理 一、工艺流程及流程简介 1.1工艺流程 1.1 工艺流程图 1.2工艺流程简介 锅炉烟气经引风机、多管除尘器、后,首先进入脱硫除尘塔内与经喷嘴雾化后的脱硫液进行脱硫反应;烟气在塔内通过三层喷淋装置进行三级脱硫除尘反应,SO2总脱除率可达99%以上,除尘效率达到99%以上;脱硫塔内 NaOH吸收SO2发生中和反应生成NaHSO3与Na2SO3,然后流入下游水池进行循环使用,完成对烟气中SO2的吸收净化。 经一级除尘脱硫后的干净烟气通过塔上部的弯头、管道进入二级脱硫除尘塔经过收水器进一步净化脱水,,除去烟气中夹带的水,经过脱硫除雾后的烟气进入烟囱排放。随着脱硫反应的进行,循环池内pH值不断下降,当循环池内pH值降低到10以下时,要及时向循环池补充钠碱以防pH值过低影响脱硫效果。 二、人员配备 1、脱硫控制室配室操作人员3人,负责脱硫工程的日常工作。 2、脱硫工程配机修人员1人,负责站区日常的设备维修工作。 三、各主要处理单元运行控制参数 1、循环池中有关参数的控制 循环池中pH应控制在10以上,低于10时脱硫效果不理想。 2、脱硫塔内有关参数的控制 脱硫塔出口pH应控制在7.0以上。 第二章操作规程 一、循环泵房及泵房内循环水泵、冲洗水泵、排液泵 1、循环泵作用 向脱硫塔供脱硫液。 1.1、开泵前准备 (1)检查循环池内水位,确保循环池内水位不低于池深的2/3。

(2)检查管路系统是否有跑、冒、滴、漏现象存在,如有要及时处理。 (3)检查水泵及系统零部件是否齐全完好。如:所有紧固件是否紧固;连轴器间隙是否合适;水泵注油孔是否已按规定注油;仪表、阀门是否完好等。 (4)进行手动盘车旋转两周看是否正常,应不卡不重,无异常声音。否则应查明原因进行处理。 (5)检查循环泵有无冷却水,是否打开。 (6)检查机械部分时,不得将水泵电路开关合闸使电机处于带电状态,且在配电柜上挂有“有人操作,不许合闸”标牌。 1.2.操作顺序 (1)开启循环泵 打开泵进口管路的碟阀,开启循环泵。当压力表显示压力达到额定压力 0.3-0.4MPa后即为所需工况。 (2)关闭循环泵 循环泵停止工作后,慢慢关闭进水管路上的碟阀 1.3.泵在运行中,应注意以下事项: (1)开启水泵后,如压力表指针不动或剧烈摆动,有可能是泵内积有空气,停泵后排净泵内空气再启动。 (2)检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大、过小应立即停机检查。 (3)注意轴承温度,轴承最大温度不得大于95度。 (4)按动停泵按钮后,严禁马上再按启泵按钮,否则会发生水击造成设备管路损坏等重大事故。因此,特别规定,停泵10分钟后才允许按启动按钮,待无异常情况后方允许离开开关柜。 (5)泵电动机在不允许连续起动,启动间隔时间至少为10分钟。 2冲洗水泵的作用 向脱硫塔除雾器提供冲洗水,冲洗除雾器,防止除雾器积灰致使除雾器压降过大。建议每小时冲洗时间不低于10分钟。 2.1、开泵前准备

湿法脱硫除雾器除垢方法

湿法脱硫除雾器除垢方法 我国85%以上烟气脱硫采用湿法脱硫技术。在湿法脱硫装置长期运行中,除雾器结垢问题普遍存在。除雾器结垢会使除雾器叶片间通道变窄,叶片表面不光滑,造成流场不均匀,除雾器效率降低,引起“石膏雨”。结垢严重时,会局部堵塞除雾器通道,一定程度时造成整体塌陷,有的甚至将除雾器底部冲洗水管和支撑梁压断。 除雾器掉落若发现不及时,还可能堵住循环浆液泵入口滤网,造成循环泵振动过大。除雾器结垢给脱硫系统的安全运行带来隐患。因此研究解决除雾器结垢问题可提高脱硫系统运行稳定性。 1除雾器结垢原因分析 除雾器结垢根据垢淀质地及其清理程度可分为软垢和硬垢。 1.1软垢 软垢呈叶状,柔软,相对来说较易处理。究其成分,为CCS垢和碳酸钙垢。CCS垢即CaSO3˙1/2H2O和CaSO4˙2H2O2种物质的混合结晶物。CaSO3˙1/2H2O在水中溶解度小,脱硫系统在较高pH下运行时,浆液中的硫多以SO2-3形式存在,易使亚硫酸钙达到饱和并超过临界饱和值,当烟气夹带浆液通过除雾器时,在其表面结晶沉积,形成软垢。此外,碳酸钙是一种难溶物质,但碳酸钙垢易清理,属于软垢。由石灰石-石膏法脱硫中未参与反应的碳酸钙或石灰-石膏法脱硫中Ca(OH)2在较高pH下与烟气中CO2反应生成的碳酸钙在除雾器表面沉积生成。美国EPA和TV A中试结果表明,当浆液pH大于6.2时,易发生软垢堵塞[1]。 1.2硬垢 硬垢为坚硬的结晶垢,无法通过降低pH或高压冲洗的方法清除,必须使用机械方法。究其成分,为石膏垢和灰垢。当吸收塔浆液石膏过饱和度大于1.4时,溶液中石膏会析出结晶,沉积形成硬垢。亚硫酸钙软垢在除雾器表面若不及时清理会逐渐氧化,在较高温度烟气作用下,干湿交界面处易形成硬垢。 烟气中携带的飞灰、浆液中含有硅、铝、铁等物质,在除雾器表面沉积形成的硅酸盐垢极其坚硬,且飞灰中金属氧化物黏性较强,所形成的垢难以清理。 2除雾器减缓垢方法 2.1控制脱硫运行参数 脱硫运行条件不仅影响脱硫效率,还会影响脱硫系统稳定性。不良的运行条件会造成系统内结垢。为防止结垢,宜控制主要参数:浆液pH不高于6,氧化风量充足,浆液密度宜运行在1080~1180kg/m3。苏大雄等[2]对石灰湿法脱硫过程中pH变化对结垢的影响做了研究,通过饱和指数法判断结垢趋势。 研究表明,pH7~8时,结垢严重;pH4~6时,不易结垢。强制氧化可促使CaSO3溶液向CaSO4溶液转化,消除CaSO3的过饱和度,有效降低其结垢风险,而CaSO4的过饱和度可通过控制停留时间和浆液固体含量得到有效控制。 在一定浆液停留时间条件下,适当增加浆液中固体石膏含量可增大CaSO4结晶表面,提高结晶速率,从而将石膏过饱和度降低在不易发生结垢的程度[3]。监控浆液密度,合理运行石膏脱水系统,将浆液密度控制在合理范围内,可保障浆液良性运行。 2.2除雾器冲洗控制 为防止除雾器结垢,需在除雾器上下布置冲洗喷嘴对除雾器进行冲洗。适当的冲洗水压力、水量、冲洗频次、覆盖率及冲洗水品质对减缓结垢有很大作用。冲洗水压力宜0.15~0.30MPa,下层除雾器冲洗水量及频次宜较大,冲洗水覆盖率300%,冲洗水不溶物含量及硬度应控制在低值。冲洗水压力、水量过小则不足以将软垢冲洗完全,若冲洗水压力、水量过大则会造成二次夹带。

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

脱硫塔除雾器结垢与堵塞的原因分析及解决方案

脱硫塔除雾器结垢与堵塞的原因分析及解决方案 一、故障现象 除雾器运行压差高于700Pa,阻力过大。 一般而言两级屋脊式除雾器设计阻力不超过200Pa,三级屋脊式除雾器设计阻力不超过300Pa。 经检查发现,除雾器结垢现象非常严重,并且垢样比较坚硬、光滑。除雾器一边结垢堵塞现象比较严重,另一边比较轻微,推测脱硫塔烟气流场分布非常不均匀。起初怀疑是浆液品质的问题。对于该故障的解决,我们的思路是:首先分析结垢和堵塞的原因,然后有针对性地从工艺设计、设备改造、操作控制等方面着手解决故障。 二、故障危害: 脱硫塔除雾器的结垢与堵塞是脱硫塔常见的故障之一。①除雾器的结垢,严重的会造成堵塞,使得烟气流通面积减少,烟气流速增加,降低除雾器去除雾滴的效率,进而带来一系列的问题,比如烟囱石膏雨等;②除雾器的结垢和堵塞,会使得除雾器的阻力大大增加,增加增压风机(或引风机)的出力,增加电耗,更严重的会引起风机的失速现象,影响机组的安全性和可靠性。 三、分析故障原因的方法: ⒈首先在机组停机时,对脱硫系统进行严格的静态检查:打开浆液池及除雾器处的人孔门,用目测和拍照的方式对喷淋层、吸收塔喷嘴、除雾器、喷淋层区域衬胶以及除雾器冲洗水进行静态检查。

检查除雾器时主要关注以下几个方面:除雾器的变形情况(可能会由于结垢或堵塞的原因引起,也可能与安装质量和高温烟气进入吸收塔引起的除雾器局部受热不均匀有关);检查除雾器的堵塞及结垢情况;检查除雾器的冲洗喷嘴及冲洗效果(需要开启冲洗水)。 ⒉其次还需要进行以下工作:①对垢样的成分进行化学分析; ②煤质、石灰石、浆液品质的分析;③浆液PH值、浆液密度的分析;④分析氧化风量控制是否合适等。 四、故障解决方法: ①控制煤质(尤其是煤质的灰含量); ②加强除尘器的除尘效率; ③控制石灰石的品质(主要是控制杂质的含量:MgCO3、iO2、Al2O3、Fe2O3等); ④解决除雾器冲洗水系统存在的一些问题:喷嘴堵塞;喷嘴冲洗角度小;冲洗水压力不足;冲洗水流量不够;冲洗频率不合理(脱硫塔除雾器冲洗系统是非常重要的); ⑤解决氧化风量不足或氧化效果较差的状况(亚硫酸钙黏度比较大,较难冲洗); ⑥PH值控制在合适范围内(5.5-5.8 之间); ⑦改善浆液品质; ⑧检查是否有设计、安装和施工的缺陷,进行整改。 五、结果:

除灰、脱硫、湿除工艺流程

1、正压飞灰工艺流程 电袋除尘器收集、分离的烟气中的粉煤灰落入灰斗,通过仓泵入口进料阀进入仓泵中等待输送,完成进灰过程;各进料阀关闭到位后,按照程序顺序逐个打开出料阀、管道助吹阀、仓泵补气阀、主进气阀,系统开始吹灰,管道压力降至20KPA 时,系统停止吹灰,阀门关闭,按照设定时间开始下一次进料,完成吹灰过程。 2、电袋除尘器工艺流程 由锅炉来的烟气通过电袋除尘器入口气流均布板均流后进入电区,即含尘烟气通过高压静电场时(阳极板和阴极线),与电极间的正、负离子和电子发生碰撞或在离子扩散运动中荷电,带上电子和离子的尘粒在电场力作用下向异性电极运行并吸附在异性电极上,通过振打方式使阳极板和阴极线上的灰层落入下部灰斗中。 通过电区分离后的烟气进入袋区,飞灰颗粒在滤袋表面形成一层稳定稠密的灰层(一般称为滤饼或滤床),这层滤床起到了主要的过滤作用。在滤袋上收集到的粉尘通过周期性的机械抖动,即通过压缩空气的脉冲喷吹使滤袋变形呈波浪形向下抖动而将滤袋表面吸附的灰层分离,在重力的作用下落入下部灰斗中。过滤后的洁净烟气进入布袋内部通过净气室进入引风机。 3、脱硫系统工艺流程 由引风机来的烟气由吸收塔入口进入吸收塔内部向上流动时,吸收塔浆液循环泵自浆池吸入浆液,同时在泵入口加入石灰石混合排至喷淋层,通过喷嘴向下雾状喷出的石灰石浆液逆流接触并进行吸收反应,反应物落入吸收塔浆池内,与氧化风机排入的空气进行强制氧化,进而得到脱硫副产品二水石膏,处理完毕后的烟气进入除雾器,通过除雾板的阻挡进行进一步汽水分离,分离后的烟气排出吸收塔进入湿除,分离后的水落入吸收塔浆池。同时一部分石膏浆液通过导流板进入AFT塔,通过AFT塔浆液循环泵入口加入石灰石浆液后排入吸收塔喷淋层重新与烟气混合反应,进一步提高脱除效率。 4、湿式除尘工艺流程 由吸收塔排出的净烟气通过湿除入口气流均布板均流后进入湿除电场区域,含尘烟气通过高压静电场时(阳极板和阴极线),与电极间的正、负离子和电子发生碰撞或在离子扩散运动中荷电,带上电子和离子的尘粒在电场力作用下向异性电极运行并吸附在异性电极上,通过水冲洗方式使阳极板和阴极线上的灰层落入下部集灰斗中自流入吸收塔,处理后的烟气进入湿除尾部除雾器进行汽水分离,分离后的烟气进入烟尘排出。湿除电场采用断电冲洗方式,先将该电场停运、停电后,才能启动冲洗泵打开冲洗阀冲洗该电场阳极板,否则会引起电场因大量带水造成放电,损坏变压器。 5、正压飞灰运行监视主要内容 1)各电场仓泵进料时间,一电场进料不能低于15秒,进料时间过于低容易造成灰斗存灰不能及时排出,长时间会造成满灰。 2)每排仓泵每次吹灰时间2-5分钟内完成,否则因吹灰时间长造成灰斗逐步满灰。 3)检查仓泵壁温是否正常,判断每个仓泵的下灰是否正常 4)监视灰斗料位,正常应显示0-2米以下 5)吹灰压力应在100-300KPA之间,过低说明下灰不畅,过高容易堵管。 6、电袋除尘器运行监视 1)各电场一次电流、一次电压、二次电流、二次电压大小及波动范围、火花率、变压器温度等 2)振打、加热投入自动运行,监视加热温度。 3)布袋吹扫压力200-400KPA. 4)各室喷吹阀程序运行正常 5)布袋差压700PA以下,超过900PA时应结合机组负荷情况全面检查喷吹动作情况 6)出口粉尘浓度低于30 mg/m3 7)电袋除尘器入口温度低于170℃ 7、脱硫系统运行监视 1) 原、净烟SO2浓度不超过设计值 2) 除雾器差值:100-200Pa 3)吸收塔液位8米以下,PH:5 4)AFT塔液位22米以下,PH:6-7 5)石灰石箱液位、密度,石膏密度 6)设备温度、电流、压力 7)各地坑、水箱液位 8、湿式除尘器运行监视 1)各电场一次电流、一次电压、二次电流、二次电压大小及波动范围、火花率、变压器温度等 2)绝缘子加热运行情况,加热温度60-90℃ 3)水冲洗时的压力180-220KPA,水箱液位 4)各室冲洗阀程序运行正常 5)除雾器差压200PA以下, 6)出口粉尘浓度低于5 mg/m3 7)密封风温度60-90℃,风机压力4KPA

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

电厂脱硫吸收塔的改造方案

XX电厂吸收塔的改造方案 一、工程概况 1.1XXX烟气脱硫装置增容改造工程安装工程。本次脱硫改造对象为#1、#2机组配套的脱硫装置及公用系统。 1.2 原吸收塔为(16.5米*37.8)分两次截塔。一是从吸收塔浆池底部截塔加高4m,相应修改调整搅拌器、循环泵、安装门、液位计等各接口及吸收塔进出口烟道;二是从顶层喷淋层上方截塔加高2m,也就是在原塔标高27.5米处。本机组脱硫系统原增压风机已设置了增压风机旁路,改造后保留原增压风机旁路烟道和增压风机,只需根据要求拆除脱硫大旁路及旁路挡板门。 二、编制依据 1.1本次吸收塔改造增容招标文件以及设计图纸。 1.2 GB50205-95《钢结构工程施工及验收规范》 1.3 GB150-98《钢制压力容器》 1.4 DL/T869-2004《火力发电厂焊接技术规程》 1.5 DL/T5047-95《电力建设施工及验收技术规范》(锅炉机组篇) 1.6 GBJ128-90《立式圆筒型钢制焊接油罐施工及验收规范》 1.7 SH3530-93《石油化工立式圆筒型钢制储罐施工工艺标准》 1.8 JB4708-2000《钢制压力容器焊接工艺评定》 1.9 JB/T4709-2000《钢制压力容器焊接规程》 1.10 JB4735-97《压力容器无损检测》 1.11 吸收塔设备改造技术协议及规范书 1.12国电龙源FGD制作验收规范 1.13现场踏勘记录等 三、项目管理组织机构和人员配置 我公司对本工程非常重视,经领导班子研究,为了按期保质圆满完成本工程任务,由管理经验丰富的国家建造师 XXX、副经理XXX 组建现场项目部。

四、施工综合进度 4.1 工程里程碑进度 里程碑计划 工程项目完工时间 施工准备10天 浆液池部分改造15天 喷淋层改造25天包括交叉施工 移交防腐10天 其他工作完善20天 4.2 图纸交付进度(分项工程开工前20天应提供相应图纸,详见施工进度计划)

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

脱硫除雾器的主要性能、特性及设计参数

脱硫除雾器的主要性能、特性及设计参数 1 主要性能参数 (1) 除雾性能 除雾性能可用除雾效率来表示。除雾效率指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。除雾效率是考核除雾器性能的关键指标。影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。对于脱硫工程,目前用于衡量除雾性能的参数主要是除雾后烟气中的雾滴含量。一般要求,通过除雾器后雾滴含量一个冲洗周期内的平均值小于75mg/Nm3。该处的雾滴是指雾滴粒径大于15μm的雾滴,烟气为标准干烟气。其取样距离为离除雾器距离1-2m 的范围内。 目前国内尚无脱硫系统除雾器性能测试标准,根据AEE公司提供的资料采用以下方法: I 在除雾器出口烟道上用烟气采样仪采集烟气,记录采样时间,同步测量烟气流速、标准干烟气量、烟温、烟气含湿量、烟气含氧量等。 II 在除雾器出口,用带加热采样管和尘分离器的标准除尘设备对气体进行等速采样。采样体积为5m3,采样后用超纯水对采样管和采样设备进行反复冲洗,洗液倒入250ml容量瓶中定容。混匀后用EDTA法测定Mg2+含量。 III 用稀释的高氯酸和超纯水对采样后的微纤维过滤器进行反复冲洗,洗液用慢速厚型定性层析滤纸过滤到250ml容量瓶中,定容。混匀后用EDTA法测定Mg2+含量。另取1个新的微纤维过滤器作空白样。 IV 用烟尘采样仪测定吸收塔进口烟尘浓度,然后计算除雾器出口液滴质量浓度。 (2)压力降 压力降指烟气通过除雾器通道时所产生的压力损失,系统压力降越大,能耗就越高。除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。当除雾器叶片上结垢严重时系统压力降会明显提高,所以通过监测压力降的变化有助把握系统的状行状态,及时发现问题,并进行处理。湿法脱硫系统除雾器的压力降一般要求小于200Pa。 2 除雾器的特性参数 (1) 除雾器临界分离粒径dcr 波形板除雾器利用液滴的惯性力进行分离,在一定的气流流速下,粒径大的液滴惯性力大,易于分离,当液滴粒径小到一定程度时,除雾器对液滴失去了分离能力。除雾器临界分离粒径是指除雾器在一定气流流速下能被完全分离的最小液滴粒径。除雾器临界分离粒径越小,表示除雾器除雾能力越强。 应用于世法脱硫系统屋脊式除雾器,其除雾器临界分离粒径在20-30μm。 (2) 除雾器临界烟气流速 在一定烟速范围内,除雾器对液滴分离能力随烟气流速增大而提高,但当烟气流速超过一定流速后除雾能力下降,这一临界烟气流速称为除雾器临界烟气流速。临界点的出现,是由于产生了雾沫的二次夹带所致,即分离下来的雾沫,再次被气流带走,其原因大致是:① 撞在叶片上的液滴由于自身动量过大而破裂、飞溅;② 气流冲刷叶片表面上的液膜,将其卷起、带走。因此,为达到一

湿法脱硫时效率不高的处理方法

湿法脱硫时效率不高的处理方法 石灰石-石膏湿法烟气脱硫(Wet Flue Gas Desulfurization,简写为FGD)技术因其脱硫效率高、脱硫反应速度快、煤种适应性强、吸收剂利用率高以及可靠性高等优势,已经成为 我国热电厂应用最为广泛的烟气脱硫技术。 1 湿法脱硫工艺概述 如图1所示为湿法脱硫装置的工艺流程图,来自锅炉的烟气经过增压风机(BUF)的增压后,进入到烟气换热器(GGH)与水交换热能后被冷却,冷却后的烟气进入吸收塔(ABS),和从吸收 塔上部与工艺水喷淋而下的石灰石浆液相混合,浆液吸收烟气中的热能而升温,使其中的部 分水分蒸发,烟气得到进一步的冷却,烟气通过循环石灰石浆液的洗涤,其中绝大部分的硫 份发生如下的化学 经过以上的化学反应,烟气中的硫份生成了较为稳定的CaSO4˙2H2O而随喷淋液落入到 吸收塔底部的沉淀池内,同时其中接近全部的HCl也被除去。在吸收塔的上部一般会设置有2~3级的除雾器,并用工艺水定期对其冲洗,经过净化的烟气穿过除雾器(ME),使其中水雾被吸收。经过处理的烟气从吸收塔出来后,需要再次经过换热器(GGH),使其温度相对升高而达到国家相关的气体排放标准的要求。 2 容易导致脱硫效率降低的因素分析 2.1 液气比 液气比决定着气相和液相接触几率的高低,从吸收塔顶部喷淋而下的石灰石浆液和烟气 中含有的SO2等气体成分接触得越充分,则SO2等气体的去除率也将越高;反之当吸收塔喷嘴被堵塞或浆液循环泵投入数量不足时,石灰石浆液循环量不足,这使得液气比下降,石灰石 浆液和烟气中的SO2难以充分接触而反应,使其中的一部分SO2来不及参与反应就逃逸而出,从而使脱硫效率降低。 2.2 烟气流速 烟气流速的提高会使气液两相的湍动增强,同时高速的烟气会使喷淋液滴的下降速度相 对降低,使气液接触的几率增大,这样同样也会使脱硫效率提升。但如果增压风机叶片、烟 气换热器换热面或除雾器组件结垢时,就会导致烟气流速提不起来,使气液接触率减少而导 致脱硫效率的降低。 2.3 吸收剂质量 决定吸收剂的质量的因素主要有石灰石的粒度和纯度,概括地说石灰石的颗粒越细,则 其表面积越大,其从吸收塔喷淋而下时和烟气接触的机会将越多,和烟气中SO2等气体成分 的反应也将越充分,脱硫效率也将越高,同时石灰石也能被充分利用。反之如果石灰石浆液 颗粒度大或纯度不足时,其与SO2等气体的反应将会被阻滞,使脱硫效率降低。 2.4 吸收液的pH值

相关主题