搜档网
当前位置:搜档网 › 8下方法技巧训练之比例系数k的几何意义

8下方法技巧训练之比例系数k的几何意义

8下方法技巧训练之比例系数k的几何意义
8下方法技巧训练之比例系数k的几何意义

比例系数k的几何意义(方法技巧训练)

知识点

反比例函数的比例系数k具有一定的几何意义,|k|等于反比例函数图象上任意一点向两坐标轴所作垂线段与两坐标轴所围成的矩形的面积.在反比例函数的图象中,涉及三角形或矩形的面积时,常用比例系数k的几何意义解决问题.

经典例题

一、反比例函数的比例系数k与面积的关系

1.如图,点P在反比例函数y=(x>0)的图象上,横坐标为3,过点P分别向x轴,y轴作垂线,垂足分别为M,N,则矩形OMPN的面积为( )

A.1 B.2 C.3 D.4

2.如图,P是反比例函数y=的图象上一点,过点P分别向x轴,y轴作垂线,所得到的图中阴影部分的面积为6,则这个反比例函数的解析式为( )

A.y=-B.y=C.y=-D.y=

3.如图,A,C是函数y=的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )

A.S1>S2B.S1<S2 C.S1=S2D.S1和S2的大小关系不能确定

(第1题) (第2题) (第3题)

4.如图,正比例函数y=x与反比例函数y=的图象相交于A,B两点,BC⊥x轴于点C,

则△ABC的面积为( )

A.1 B.2 C.3 D.4

5.如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,则四边形ACBD的面积为( )

A.2 B.4 C.6 D.8

6.如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD =9,则S△OBD=________.

(第4题) (第5题) (第6题) 7.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.

(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.

(第7题)

8.如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.

(第8题)

二、已知面积求反比例函数解析式

已知三角形面积求函数解析式

9.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)在第一象限的图象交于C,D两点,点O为坐标原点,△AOB的面积为,点C的横坐标为1.

(1)求反比例函数的解析式;

(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.

10.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若S△AOB=4.

(1)求该反比例函数的解析式和直线AB对应的函数解析式;

(2)若直线AB与y轴的交点为C,求△OCB的面积.

(第10题)

已知四边形面积求函数解析式

11.如图,矩形ABOD的顶点A是函数y=-x-(k+1)的图象与函数y=在第二象限的

图象的交点,B,D两点在坐标轴上,且矩形ABOD的面积为3.

(1)求两函数的解析式;

(2)求两函数图象的交点A,C的坐标;

(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.

(第11题)

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

绝对值几何意义和绝对值方程

绝对值几何意义和绝对值方程 Ⅰ重点突破 重点针对复习 【重点知识点1】绝对值的几何意义 [针对训练1] (南雅-15)1.阅读材料,回答下列问题: 数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2; 在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7; 在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5; 在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;…… 如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|. (1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于; (2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x. ①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=; ②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.

2.先阅读,后探究相关的问题 【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离. (1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为; (3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等; (4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是. 3.结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=. (2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为; (3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是. (4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.

反比例函数比例系数k的几何意义探究教学设计

通过师生互动的形式再次呈现本节课的主要知识。概括是课堂教学的核心,适时的总结利于学生对知识学习的升华。 反比例函数系数k 的几何意义探究 教学任务分析 流程、思路与理念 流程思路 通过简单题目复习回顾反比 例函数的图像和性质,为本 节课的学习做准备。并以最 后一题面积问题,有特殊到 一般引入新课。 分两点位于反比例函数图像 同一支和不同支,及函数在 一、三象限和二、四象限等 不同情况进行分类探究反比 例函数系数的几何意义。 通过两个不同类型的例题 让学生灵活运用反比例函 数的几何意义。 理念 从旧知识到新知识,充分运用已学过 的反比例函数的图像和性质,为本节 课的探究做好准备,并以最后一题面 积的求解引入新课。让学生感受从特 殊到一般的数学思考方法。 让学生通过讨论和探究过程体会反比 例函数系数的几何意义,进一步体 会分类讨论和数形结合的数学思 使学生正确理解反比例函数系数的几 何意义及函数交点的意义,规范学生 的解题步骤,让学生进一步体会数形 结合和转化的思想。 通过技能的训练,巩固反比 例 函数系数的几何意义。 通过分层递进练习,让每个学生都有可 以做的题目,使不同程度的学生通过练 习得到不同程度的发展和提高。体现人 人学不同数学的新课程理念。

教学过程设计

k 探究二.如图,若A,C 为y=x k(k为常数,k≠ 0)上的 任两点 过A,C 分别作x轴(或y 轴) 的垂线, 垂足分别为B, D , 则AOB 和 COD 的面积相等吗?为什么? k 小结:从反比例函数y=x(k 为常数,k≠ 0)的图象上任选 x 点向一坐标轴作垂线,这一点和垂足及坐标原点所构成 的 三角形的面积S=1 2 xy 三、典型例 题 例一: 已知反比例函数y= m-7 m-7的图象的一支位于第一 x 象限.(1)判断该函数 图象的另一支所在的象限,并 求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,若△ OAB 的面积为6,求m 的值. 例二:如图,反比例函数k y 的图象与一次函数x y mx b 的图象交于两点A(1,3),B(a, 1). 1)求反比例函数与一次函数的函数关系 式; 2)根据图象,直接回答:当x 取何值时,一次函数的值大于反比例函数的 值; (3)连接AO、BO, 求△ ABO 的面积; 教师提问,学生独 立思考,教师引导学生 正确运用反比例函数系 数的几何意义解决问 题。 教师应关注: (1)学生是否直接应 用反比例函数系数的几 何意义解决解答题; (2)学生是否理解函 数交点要同时满足一次 函数和反比例函数的解 析式,并将几何问题转 化为代数问题,从而求 函数解析式;(2)学 生是否灵活运用数形结 合的思想解决问题。 使学生正 确理解反比 例函数系数 的几何意义 及函数交点 的意义,规范 学生的解题 步骤,让学生 进一步体会 数形结合和 转化的思想。

反比例函数k的几何意义

反比例函数k 的几何意义 一、教学目标 1.理解反比例函数y=k/x(k ≠0)中比例系数k 的几何意义; 2.通过由特殊到一般,再由一般到特殊的探究方法,感受知识的形成过程,能够根据反比例函数表达式求出相关图形的面积,会根据图形的面积确定反比例函数中k 的值; 3.通过反比例函数与矩形的对应关系渗透数形结合的思想,使学生感受到代数与几何的内在联系,矩形的两条邻边的长度变化而面积不变,渗透了整体思考的数学思想方法。 二、教学过程 (一)、情境引入 1、平面直角坐标系内一点P (x ,y )到x 轴的距离为______,到y 轴的距离为______. 2、反比例函数的定义是什么?如何确定系数k 的值? 3、反比例函数的系数k 能决定函数图像的什么? 反比例函数的比例系数k 有一个很重要的几何意义,这节课我们来共同研究一下: (二)、探究新知 1、已知反比例函数 x y 2 -=图象上任一点A 作x 轴、y 轴的垂线AB 、AC ,垂足为 B 、 C (如下图所示), (1)则矩形ABOC 的面积是否发生变化?若不变,请求出其面积;若改变,请说明理由。 (2)则△AOB 的面积呢? (3)当k=5时呢? 学生自己先完成,在合作讨论展示,最后老师补充; 2、归纳总结: 过双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所 围成的矩形面积为常数 。

过双曲线上任意一点作x 轴(或y 轴)的垂线,连接这点和原点 的线段,它们与x 轴(或y 轴)所围成的三角形的面积为常数21。 在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。现举例说明。 (三)、应用 1、基础练习 (1)若P 点为反比例函数(k <0)上任意一点,过P 点向x 轴作垂线交于A 点,已知S△AOP=4,则反比例函数的解析式为__________ (变式)如下图,在平面直角坐标系中,O 为坐标原点,菱形OABC 的对角线OB 在x 轴上,菱形面积为8,函数的图象经过点A ,则k 的值是_____. (2).如下图所示,设A 为反比例函数图象上一点,且长方形ABOC 的面积为3,则这个反比例函数解析式为______. (变式).如上图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为________. 2、提升练习 (1)、如下图,函数的图象与矩形?OABC 的边AB 、BC 交于M 、N 两点,O 为坐标原点,A 点在x 轴上,C 点在y 轴上,B (4,2),那么四边形OMBN 的面积为_________

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

椭圆的参数方程中参数的几何意义

椭圆: 椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。 椭圆的周长等于特定的正弦曲线在一个周期内的长度。 椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

知识点反比例函数意义,比例系数k的几何意义

一、选择题 1.如果反比例函数(k是常数,k≠0)的图象经过点(-1,2),那么这个函数的解析式是y=- . 考点:待定系数法求反比例函数解析式. 专题:待定系数法. 分析:根据图象过(-1,2)可知,此点满足关系式,能使关系时左右两边相等. 解答:解:把(-1,2)代入反比例函数关系式得:k=-2, ∴y=- , 故答案为:y=- , 点评:此题主要考查了用待定系数法求反比例函数的解析式,是中学阶段的重点. 2.(2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是() A. (-3,2) B. (3,2) C.(2,3) D.(6,1) 考点:反比例函数图象上点的坐标特征。 专题:函数思想。 分析:只需把所给点的横纵坐标相乘,结果是(﹣1)×6=﹣6的,就在此函数图象上. 解答:解:∵所有在反比例函数上的点的横纵坐标的积应等于比例系数, ∴此函数的比例系数是:(﹣1)×6=﹣6,∴下列四个选择的横纵坐标的积是﹣6的,就是符合题意的选项; A、(﹣3)×2=6,故本选项正确; B、3×2=6,故本选项错误; C、2×3=6,故本选项错误; D、6×1=6, 故本选项错误; 故选A. 点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数. 3.(2011重庆江津区,6,4分)已知如图,A是反比例函数 k y x =的图象上的一点,AB丄x轴于点B,且△ABC 的面积是3,则k的值是() A、3 B、﹣3 C、6 D、﹣6 考点:反比例函数系数k的几何意义。 分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值, 即S=1 2 |k|. 解答:解:根据题意可知:S△AOB=1 2 |k|=3, 又反比例函数的图象位于第一象限,k>0,则k=6. 故选C. 点评:本题主要考查了反比例函数 k y x =中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角 形面积为1 2 |k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

K的几何意义

一、 回顾复习 1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质 练习:1、若反比例函数y =(k ≠0)的图象经过点P (﹣2,3) ,则该函数的图象的点是( ) 2、在反比例函数y x = 的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .2 3、已知点),1(1y -,),2(2y ,),3(3y 在反比例函数x k y 1 2--=的图像上. 下列结论中正确的是( ) A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >> 4、如果A (m ,y 1) 、B(-3,y 2) 是函数2y x =的图象上的点,且y 1 > y 2 则m 的取值范围是 【思考】比较大小的三种常用方法: 、 、 。 二、新课学习 (一)k 的几何意义 1、例1:自学课本21页例3,尝试在练习本上写出解答过程。 2、【思考】反比例函数y =k x (k ≠0)中比例系数k 的几何意义: 即过双曲线y = k x (k ≠0)上任意一点P 作x 轴、y 轴的垂线,设垂足分别为A 、B , 则所得矩形OAPB 的面积为 :Rt △OAP 或Rt △OBP 的面积为 。 练习: 1、 如图是反比例函数y = k x 在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =

2、如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( ) 3、反比例函数y x = 在第一象限的图象如图所示,则k 的值可能是( )A .1 B .2 C .3 D .4 (二)拓展与延伸 例2、如图,A 、B 是函数2y x =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面 积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S > 例3、如图,已知双曲线)0k (x k y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若 △OBC 的面积为3,则k =____________. 练习: 1、如图,双曲线)0(>k x k y = 经过矩形QABC 的边BC 的中点E ,交AB 于点D 。若梯形ODBC 的面积为3,则双曲线的解析式为( )(A )x y 1= (B )x y 2=(C ) x y 3= (D )x y 6 = 2、如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y =(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为 .

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0);

(7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b| 【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

直线的参数方程的几何意义

课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程? ?? ? ?x = x 0 +at ,y = y 0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是? ????x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q (?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ? ?? ??x = ?1 ? 2 13 t , y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 5 13 , ∴ t = AA ' = 10 13 , 代入直线的参数方程得A ' (? 3313,413 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为( t 为参数)

绝对值几何意义知识点经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

《反比例函数》微专题——比例系数k的几何意义

《反比例函数》微专题 ——比例系数k 的几何意义 姓名: 一、课前热身,提炼模型 1.如图,点P 是双曲线x y 4 =上一点,经过点P 分别向x 轴、y 轴作垂线段,则阴影部分面积为 。 第1题图 第2题图 第3题图 2.如图,点P 是双曲线x y 4 - =上一点,x PD ⊥轴于点D ,则POD Δ的面积为 。 3.如图,点P 是双曲线x k y = 上一点,x PD ⊥轴于点D ,POD Δ的面积为2,则k 的值为 。 二、探索新知,深化模型 例1.如图,点A 是反比例函数图象上一点,过点A 作y AB ⊥轴于点B ,点P 在x 轴上,ABP Δ的面积为2,则这个反比例函数的解析式为 。

变式1.如图,已知点A 在双曲线的图象上,x AP ⊥轴于点P ,点Q 为y 轴上的一点,若APQ Δ的面积是3,则反比例函数的解析式为 。 变式2.如图,点A 是双曲线x y 4 - =上一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为 。 三、巩固提高,运用模型 例2.如图,已知四边形OCED 为矩形,点B 为ED 的中点,双曲线x k y =(0>x )过点B ,交CE 于点A 。若四边形OAEB 的面积为2,则k 的值为 。

变式.如图,反比例函数x k y = (x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为 。 四、课堂小结,知识升华 通过本堂课,你有哪些收获或者疑问?

五、中考链接,能力提升 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数 x k y = (k 为常数,且k>0)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若 BE :BF=1: m (m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则 1S :2S =________. (用含m 的代数式表示)

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 例题精讲 绝对值的性质及化简

反比例函数比例系数k的几何意义

反比例函数比例系数k的几何意义 反比例函数y= k/x (k≠0)中比例系数k的几何意义,即过双曲线y=k/x (k≠0)上任意一点引x轴、y轴垂线, 所得矩形面积为│k│ 1、如图,反比例函数4 y x =-的图象与直线 1 3 y x =-的交点为A,B,过点A作y轴的平行线与过点B作x轴的 平行线相交于点C,则ABC △的面积为() A.8 B.6 C 2、如图,点A是y轴正半轴上的一个定点,点B是反比例函数y= 2 x(x>0)图象上的一个动点,当点B的纵坐 标逐渐减小时,△OAB的面积将() A.逐渐增大B.逐渐减小C.不变D.先增大后减小 3、如图12,A、B是函数2 y x =的图象上关于原点对称的任意两点,BC∥ x轴,AC∥y轴,△ABC的面积记为 S,则() A.2 S=B.4 S=C.24 S < 4、如图,已知双曲线)0 k( x k y> =经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC 的面积为3,则k=____________. 5、如图5所示,P1(x1,y1)、P2(x2,y2),……P n(x n,y n)在函数y= x 9 (x>0)的图象上,△OP1A1,△P2A1A2, △P3A2A3……△P n A n-1A n……都是等腰直角三角形,斜边OA1,A1A2……A n-1A n,都在x轴上,则y1+y2+… y n= 。 6、如图,已知点A、B在双曲线 x k y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点,若△ABP的面积为3,则k=. 7、如图,在第一象限内,点P(2,3),M()2,a是双曲线)0 (≠ =k x k y上的两点,PA⊥x轴于点A,MB⊥x轴 于点B,PA与OM交于点C,则△OAC的面积为 8、如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数 1 y x =(0 x>)的图象上,则点E的坐 标是(,). 9、如图,点A、B是双曲线3 y x =上的点,分别经过A、B两点向x轴、y轴作垂线段,若1 S= 阴影 ,则 12 S S +=. 10、如图,已知双曲线(0) k y k x =<经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若 点A的坐标为(6 -,4),则△AOC的面积为() A.12 B.9 C.6 D.4 11、如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则这个 反比例函数的解析式为 12、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点 D,点E、F、G分别是CD、BD、BC的中点.以O为原点,直线OB为x轴建立平面直角坐标系,则G、 E、D、F四个点中与点A在同一反比例函数图象上的是(A) A.点G B.点E C.点D D.点F 13、已知点A在双曲线y= 6 x 上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B.(1)则△AOC 的面积=,(2)△ABC的周长为 14、如图,一次函数y ax b =+的图象与x轴,y轴交于A,B两点,与反比例函数 k y x =的图象相交于C,D 两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论: ①△CEF与△DEF的面积相等;②△AOB∽△FOE; ③△DCE≌△CDF;④AC BD =. 其中正确的结论是.(把你认为正确结论的序号都填上) (第11题) 第3题 第5题图第6题图 第8题图9题图

相关主题