搜档网
当前位置:搜档网 › 高中数学三角函数的周期性、奇偶性及对称性训练题

高中数学三角函数的周期性、奇偶性及对称性训练题

高中数学三角函数的周期性、奇偶性及对称性训练题
高中数学三角函数的周期性、奇偶性及对称性训练题

三角函数的周期性、奇偶性及对称性训练题

A 级——保大分专练

1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x

2

B .y =sin 2x

C .y =tan 2x

D .y =sin 2x +cos 2x

解析:选A y =sin 2

x 为偶函数;y =tan 2x 的周期为π

2

;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A.

2.已知函数f (x )=sin ? ?

???3x +π6-1,则f (x )的图象的一条对称轴方程是( )

A .x =π

9

B .x =π6

C .x =π3

D .x =

π2

解析:选A 令3x +π6=k π+π

2

,k ∈Z , 解得x =

k π3

π9,k ∈Z ,当k =0时,x =π9

. 因此函数f (x )的图象的一条对称轴方程是x =

π

9

. 3.(2018·南宁二中、柳州高中联考)同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称;③在??????

-π6,π3上是增函数;④图象的一个对称中心为

? ??

??

π12,0”的一个函数是( ) A .y =sin ? ????

x 2+π6

B .y =sin ? ?

???2x +π3

C .y =sin ?

?

???2x -π6

D .y =sin ?

?

???2x -π3

解析:选C 因为最小正周期是π,所以ω=2,排除A 选项;当x =π

3

时,对于

B ,y =sin ? ????2×π3+π3=0,对于D ,y =sin ? ?

???2×π3-π3=32,因为图象关于直线x =

π3对称,所以排除B 、D 选项,对于C ,sin ? ????2×π3-π6=1,sin ? ?

???2×π12-π6=0,且在

????

??

-π6,π3上是增函数,故C 满足条件. 4.函数f (x )=cos ? ?

???ωx +π6(ω>0)的最小正周期为π,则f (x )满足( )

A .在? ?

???0,π3上单调递增

B .图象关于直线x =π

6

对称 C .f ? ????

π3=32

D .当x =

12

时有最小值-1 解析:选D 由函数f (x )=cos ?

?

???ωx +π6(ω>0)的最小正周期为π,得ω=2,则

f (x )=cos ? ?

???2x +π6.当x ∈? ??

??0,π3时,2x +π6

∈? ??

??π6,

5π6,显然此时f (x )不单调递增,故A 错误;当x =π6时,f ? ????π6=cos π2=0,故B 错误;f ? ????

π3=cos 5π6=-32,故C 错

误;当x =5π12时,f ? ????5π12=cos ?

????

5π6

+π6=cos π=-1,故D 正确. 5.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)? ?

???ω>0,|φ|<π2的最小正周期为

π,且f (-x )=f (x ),则( )

A .f (x )在? ?

???0,π2内单调递减

B .f (x )在? ????

π4,4π3内单调递减

C .f (x )在? ?

???0,π2内单调递增

D .f (x )在? ????

π4

,4π3内单调递增

解析:选A 由题意知f (x )=2sin ?

?

???ωx +φ+π4. ∵f (x )的最小正周期为π,∴ω=2,

∴f (x )=2sin ? ?

???2x +φ+π4.

由f (x )=f (-x )知f (x )是偶函数, 因此φ+

π4=k π+π

2(k ∈Z). 又∵|φ|<

π2,∴φ=π4

, ∴f (x )=2cos 2x . 当0<2x <π,即0

2

时,f (x )单调递减.故选A.

6.(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点? ????

2π3,0对称,且f (x )在?

??

???0,π4上为增函数,则ω=( )

A.32 B .3 C.92

D .6

解析:选A 因为函数f (x )=sin ωx 的图象关于点? ??

??

2π3,0对称,所以2ω3π=

k π(k ∈Z),即ω=3

2

k (k ∈Z),①

又因为函数f (x )=sin ωx 在区间???

???0,π4上为增函数,

所以π4≤π

2ω且ω>0,所以0<ω≤2,②

由①②得ω=3

2

.

7.若函数f (x )=cos ? ????ωx +π6(ω∈N *)的一个对称中心是? ????

π6,0,则ω的最小

值为________.

解析:因为f ? ????π6=0,所以cos ? ????π

6ω+π6=0,

即πω6+π6=π

2+k π(k ∈Z),故ω=2+6k (k ∈Z),

又因为ω∈N *,故ω的最小值为2. 答案:2

8.若函数y =2sin(3x +φ)? ?

???|φ|<π2图象的一条对称轴为x =π12,则φ=

________.

解析:因为y =sin x 图象的对称轴为x =k π+π

2(k ∈Z),

所以3×π12+φ=k π+π

2(k ∈Z),

得φ=k π+π

4(k ∈Z).

又因为|φ|<

π2

, 所以k =0,故φ=π4

. 答案:π4

9.若函数f (x )=??????sin ? ????ωx +π3(ω>0)的最小正周期为π,则f ? ????

π3=________.

解析:由题设及周期公式得T =πω=π,所以ω=1,即f (x )=??????sin ?

?

???x +π3,所

以f ? ????π3=?

??

???sin 2π3=32.

答案:

32

10.设函数f (x )=3sin ?

????π

2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.

解析:f (x )=3sin ? ????π

2

x +π4的周期T =2π×2π=4,

f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T

2=2. 答案:2

11.已知函数f (x )=2sin ? ?

???2x -π4.

(1)求函数的最大值及相应的x 值集合; (2)求函数f (x )的图象的对称轴与对称中心.

解:(1)当sin ? ?

???2x -π4=1时,2x -π4=2k π+π2,k ∈Z ,

即x =k π+3π

8

,k ∈Z ,此时函数取得最大值为2.

故f (x )的最大值为2,使函数取得最大值的x 的集合为????

??

x ???

x =3π

8+k π,k ∈Z . (2)由2x -

π4=π2+k π,k ∈Z ,得x =3π8+1

2

k π,k ∈Z , 即函数f (x )的图象的对称轴为x =

3π8+1

2

k π,k ∈Z. 由2x -π4=k π,k ∈Z ,得x =π8+1

2k π,k ∈Z ,

即对称中心为? ??

??

π8+12k π,0,k ∈Z.

12.已知函数f (x )=sin(ωx +φ)? ?

???ω>0,0<φ<2π3的最小正周期为π.

(1)求当f (x )为偶函数时φ的值;

(2)若f (x )的图象过点? ????

π6,32,求f (x )的单调递增区间.

解:由f (x )的最小正周期为π,得T =2π

ω=π,

所以ω=2,所以f (x )=sin(2x +φ).

(1)当f (x )为偶函数时,有φ=π

2+k π(k ∈Z).

因为0<φ<

2π3,所以φ=π2

. (2)因为f ? ????

π6=32,

所以sin ?

????2×π6+φ=32

, 即π3+φ=π3+2k π或π3+φ=2π

3+2k π(k ∈Z), 故φ=2k π或φ=π

3+2k π(k ∈Z),

又因为0<φ<2π3,所以φ=π

3,

即f (x )=sin ?

????2x +π3. 由-π2+2k π≤2x +π3≤π

2+2k π(k ∈Z),

得k π-

5π12≤x ≤k π+π

12

(k ∈Z), 故f (x )的单调递增区间为??

?

???k π-5π12,k π+π12(k ∈Z).

B 级——创高分自选

1.若函数f (x )=cos(2x +φ)的图象关于点?

????

4π3,0成中心对称,且-π2<φ<π2,则函数y =f ?

?

???x +π3为( )

A .奇函数且在? ?

???0,π4内单调递增

B .偶函数且在?

?

???0,π2内单调递增

C .偶函数且在? ?

???0,π2内单调递减

D .奇函数且在?

?

???0,π4内单调递减

解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点? ????

4π3,0成中心对称, 所以8π3+φ=k π+π

2,k ∈Z ,

即φ=k π-

13π

6

,k ∈Z. 又因为-π2<φ<π2,所以φ=-π

6

则y =f ? ????x +π3=cos ??????2? ????x +π3-π6=cos ? ?

???2x +π2=-sin 2x ,

所以该函数为奇函数且在?

?

???0,π4内单调递减,故选D.

2.已知函数f (x )=sin ? ?

???ωx +π4(ω>0,x ∈R).若函数f (x )在区间(-ω,ω)

内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为( )

A.1

2 B .2 C.π2

D.π2

解析:选D 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,

所以有ω·ω+π4=2k π+π

2

,k ∈Z , 所以ω2=

π

4

+2k π,k ∈Z. 又ω-(-ω)≤12·2π

ω

即ω2

≤π2,即ω2

=π4,所以ω=π2

.

3.已知函数f (x )=2sin 2? ?

???π4+x -3cos 2x -1,x ∈R.

(1)求f (x )的最小正周期;

(2)若h (x )=f (x +t )的图象关于点? ????

-π6,0对称,且t ∈(0,π),求t 的值;

(3)当x ∈??????

π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.

解:(1)因为f (x )=-cos ? ????

π2+2x -3cos 2x

=sin 2x -3cos 2x =2? ????12sin 2x -3

2cos 2x

=2sin ? ?

???2x -π3,

故f (x )的最小正周期为T =

2

=π. (2)由(1)知h (x )=2sin ? ?

???2x +2t -π3.

令2×? ????

-π6+2t -π3=k π(k ∈Z),

得t =

k π2

π

3

(k ∈Z), 又t ∈(0,π),故t =

π3或5π6

. (3)当x ∈??????

π4,π2时,2x -π3∈??????π6,2π3,

所以f (x )∈[1,2]. 又|f (x )-m |<3, 即f (x )-3

故实数m 的取值范围是(-1,4).

三角函数的周期性

1.4.1三角函数的周期性 一、导学目标 1.引导学生从单位圆中,得出正弦、余弦函数值呈现周期性变化 2.函数周期性定义 3.能求三角函数的周期 二、知识回归 1.任意角的三角函数 sin y α= cos x α= 2.终边与α角相同 2απ+ 2απ- L L 2()k k Z απ+∈ 三角函数值相同 三、新知导学 由观察可知 1.三角函数值出现周期性变化的特点 sin(2)sin cos(2)cos x k x x k x ππ+=+= (k Z ∈) 2.函数定义 对于函数()f x ,如果存在一个非零常数T ,使定义域内每一个x ,都有()()f x T f x +=,则函数()f x 叫周期函数,非零常数T 叫做这个函数的周期。 3.正弦函数sin y x =,余弦函数cos y x =的周期 2,4,6,2,4,6,ππππππ---L L 2(,0)k k Z k π∈≠ 都是它们的周期 2π是所有周期中最小的正数,是sin ,cos x x 的最小的 正周期 周期函数()f x ,如果它所有的周期中存在一个最小的正数,这个最小正数就是()f x 的最小正周期,一般,函数周期都是指最小正周期 sin ,cos y x y x ==的周期是T=2π 四、例题分析与巩固训练

(1)()sin 3f x x = 1(2)()2cos()23 g x x π=- 分析:由sin ,cos x x 周期都是2π,设周期T 即可 (1) 设()f x 周期为T ,()()f x T f x += ∴sin3()sin3x T x += sin(33)sin 3x T x += 32T π∴= 23 T π= (2) 设()g x 周期为T ()()g x T g x += 2cos()2cos()2323 x T x ππ+-=- 即2cos ()2cos()23223x T x ππ??- +=-???? 22 T π∴= 巩固训练 A 1. 求下列函数的周期 (1)2sin 2y x =- (2)cos 3 x y = 2.判断下列说法是否正确,并说明理由 (1)76x π=时,2sin()sin 3x x π+=,则23 π一定是函数sin y x =的周期 B 思考 sin()cos() y A x y A x ω?ω?=+=+ (其中,,A ω?为常数,0,0A ω≠>) 的周期为2T π ω= 例2 若钟摆高度()h mm 与时间()t s 之间的函数关系如图所示 (1) 求该函数的周期

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

三角函数的单调性、奇偶性、单调性练习

三角函数的图像性质:奇偶性、单调性、周期性 例题1:判断下列函数的奇偶性 (1)()()sin f x x x π=+ (2)21sin cos ()1sin x x f x x +-=+ 例题2:求下列函数的单调区间 (1)()sin 33f x x π?? =- ??? (2)()cos(2)3f x x π=- [](0,)x π ∈ 例题3:求下列函数的值域 (1)32cos 6y x π? ?=-+ ?? ?,[](0,)x π∈ (2)x x y sin sin += (3)sin sin y x x =+ 例题4:已知函数3cos 216y x π? ?=++ ?? ?,请写出该函数的对称轴、对称中心;用五点作图法作 出该函数的图像. 同步练习: 1、写出下列函数的周期: (1)5sin 23y x π? ?=--+ ?? ?(2)tan(2)y x π=+(3)7cos2y x =+(4)2tan 33y x π??=- ???

2、(1)求函数2sin 25y x x =+-的定义域.(2)解不等式1sin 42x π? ?-≥ ?? ?. 3、比较下列各数的大小:sin1?、sin1、sin π? 4、已知()cos 4 n f n π =,*n N ∈,则(1)(2)(3)(2011)f f f f ++++=__________. 5、方程lg sin 3x x π? ?=+ ?? ?实数根的个数为___________. 6、如果4 x π ≤,求2()cos sin f x x x =+的最值,并求出取得最值时x 的值. 7、写出函数1 3tan 2 3y x π??=+ ???的对称中心,并用作出该函数在[]0,x π∈的图像. 8、对于函数()f x 定义域,22ππ?? - ??? 中的任意()1122,x x x x ≠,有如下结论: (1)()()f x f x π+=. (2) ()()f x f x -= (3)(0)1f =. (4) 1212 ()() 0f x f x x x ->- (5) 1212()()22x x f x f x f ++??> ??? 当()tan f x x =时,以上结论正确的序号为________________. 能力提高: 1、()2sin f x wx =(01w <<),在区间0,3π?? ???? 上最大值是2,求w . 2、若2()sin sin 1f x x a x =--+的最小值为-6,求实数a 的值. 3、设定义在R 上的奇函数()f x ,满足(2)()f x f x +=-.当02x ≤≤时,2()2f x x x =-. (1)当20x -≤≤时,求()f x 的表达式;(2)求(9)f 与(9)f -的值; (3)证明()f x 是奇函数. 三角函数的图象变换 例题1:由函数sin y x =的图象经过怎样的变换,得到函数π2sin 216y x ? ?=--+ ?? ?的图象.

三角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。 三角函数图像的对称轴与对称中心 特级教师 王新敞 对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和 tan()y A x ωφ=+的简图容易画错, 一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心. 1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2x k π π=+、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k π ωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数 sin()y A x ωφ=+的图象的对称轴方程. 对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1 ()x k πφω=- ()k Z ∈, 这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1 ((),0) k k Z πφω-∈. 2.余弦函数cos y x =图像的对称轴与对称中心: 对称轴为x k π=、对称中心为(,0)2k π π+ k Z ∈. 对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω= - ()k Z ∈,这就是函数cos() y A x ωφ=+的图象的对称轴方程. 对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z π πφω+-∈.

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

三角函数的奇偶性测试题(人教A版)(含答案)

三角函数的奇偶性(人教A版) 一、单选题(共15道,每道6分) 1.下列函数中是偶函数的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 2.下列函数中是奇函数的是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 3.下列函数中是偶函数的是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:三角函数的奇偶性 4.函数,( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数 答案:C 解题思路:

试题难度:三颗星知识点:余弦函数的奇偶性 5.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数 答案:B 解题思路: 试题难度:三颗星知识点:余弦函数的奇偶性 6.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数

答案:C 解题思路: 试题难度:三颗星知识点:正切函数的奇偶性 7.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数又不是偶函数 D.既是奇函数又是偶函数 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 8.已知函数,,则( )

A.与都是奇函数 B.和都是偶函数 C.是奇函数,是偶函数 D.是偶函数,是奇函数 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 9.已知函数,,则( ) A.与都是奇函数 B.和都是偶函数 C.是奇函数,是偶函数 D.是偶函数,是奇函数 答案:C 解题思路:

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

三角函数对称性习题

k (k Z),则 x - ,所以函数y Acos( )的图象的对称轴方程 习题: 最大负值是 n 8、f (x ) =sin2x+acos2x 关于 x= 对称,求 a 的值 8 、正弦曲线和余弦曲线都是轴对称图形 y Asin( x )对称轴方程的求法是:令 sin( x ) 1,得 k i (k Z),则x (2k 2 2 ,所以函数 Asin( x )的图象的 (2k 1) 2 对称轴方程为x 2 y Acos( x )对称轴方程的求法是:令 cos( x ) 1,得 1、 函数 y 3si n(2x R 图象的对称轴方程为 2、 函数 5 y=s in (2x+q n) 图象的对称轴方程为 3、 函数 4、 函数 1 f (x) cos(3x 2 n y=cos(2x-—) 3)的图象的对称轴方程是 的图象的对称轴方程是 5、 n y=sin(2x+ )的一条对称轴为( 4 n n n A.x=- B.x= ■ C.x=- 4 8 8 D.x= 6、 n y=cos(2x-—)的一条对称轴为 n 5 n n x=§ B.x= 了C.x= 12 71 7、 y =sin(2x+ $ )的一条对称轴为 n x=- y ,贝打= ,y 的最小正值是

、正弦曲线和余弦曲线都是中心对称图形 y Asin( x )的对称中心求法是:令sin( x ) 0,得x k (k Z), nt k k 则x (k Z),所以函数y Asin( x )的图象关于点(,0) (k Z)成中心对称; y Acos( x )对称中心的求法是:令cos( x ) 0,得 (2k 1) 2 x k -(k Z) ,则x ---------------------------- 扌------ (k Z),所以函数y Acos( x )的 图象关于点(__ ,0) (k Z)成中心对称; 2 习题: 1、函数y 4sin(2x -)的图象的一个对称中心是_____________________________ 6 1 2、函数y 2cos(—x —)的图象的对称中心是____________________________ 2 8 n 3、y=sin(2x+ —)的一个对称中心为( ) n 5 n n n A.( — ,0) B.( 石,0) C.( 12 ,0) D.( ,0) n 4、y=2cos(2x- ■—)的一个对称中心为( ) 3 n n n A. (n ,0 ) B. (,0 ) C. ( — ,0 ) D.(乜,0) n 5、y=cos(2x+ $ )的对称中心为(■— ,0) 则$ = ___________ , y的最小正值是___________ , y的最大负值是__________ 。 三、正切曲线和余切曲线都是中心对称图形 k k 2 y Atan( x )对称中心的求法是:令x (k Z),则x ,所 k 2 以函数y Atan( x )的图象关于点(,0) (k Z)成中心对称;

三角函数的对称性

三角函数的对称性 一、对称性规律: 1、 对称轴: 若 x a =是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ的对 称轴,则 ()f a A =± 2、 对称中心: 若 (,0) a 是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ或 ()tan()f x A x ω=+Φ的对称中心,则()0f a = 解题思路:解选择题的思路即代入法。 二、基础检测 (会考说明)1、 )(62sin 3π +=x y 的一条对称轴可以是: ( ) A .Y 轴; B . 6π = x .; C .12π -=x . D .. 3π =x .。 (会考说明)2、)(43sin 3π -=x y 的一个对称中心可以是: ( ) A .),(012π -; B .),(0127π-.; C .. ),(012 7π; D .),(01211π. 3、已知函数(文)函数y = cos (2x -4π )的一对称方程是 ( ) A .x = 2π - B .x = 4π - C .x = 8π - D .x = π 4、函数πsin 23y x ? ?=+ ? ? ?的图象( ) A.关于点π03?? ???,对称 B.关于直线π4x =对称

C.关于点π04?? ???,对称 D.关于直线π3x =对称 5、22.(山东卷)已知函数)12cos()12sin(π -π-=x x y ,则下列判断正确 的是( ) (A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π (B )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,12(π (C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π (D )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,6(π 6、(4) 给定性质:①最小正周期为π,②图象关于直线3x π =对称, 则下列函数中同时具有性质①、②的是 ( ) (A) sin()26x y π=+ (B) sin(2)6y x π =- (C) sin y x = (D) sin(2)6y x π =+

三角函数周期性公式

设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα

关于《三角函数的周期性》的教案

关于《三角函数的周期性》的教案 一、目标与自我评估 1掌握利用单位圆的几何作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 分类计数原理与分步计数原理、排列 一.教学内容:分类计数原理与分步计数原理、排列

三角函数对称性习题

一、正弦曲线和余弦曲线都是轴对称图形 )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 )(2Z k k x ∈+=+π π?ω,则ω ?π22)12(-+=k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω ?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得 π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω? π-=k x 。 习题: 1、函数)62sin(3π +=x y 图象的对称轴方程为 2、函数y=sin (2x+52 π)图象的对称轴方程为 3、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 4、函数y=cos(2x- π4 ) 的图象的对称轴方程是 5、y=sin(2x+π4 )的一条对称轴为( ) =-π4 =π8 =-π8 =π3 6、y=cos(2x-π6 )的一条对称轴为( ) A .x=π3 =5π12 =π12 D.π4 7、y=sin(2x+φ)的一条对称轴为x=-π8 ,则φ=________,y 的最小正值是________,y 的最大负值是________。 8、f (x )=sin2x+acos2x 关于x=π8 对称,求a 的值

二、正弦曲线和余弦曲线都是中心对称图形 )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得π?ωk x =+)(Z k ∈,则ω? π-=k x )(Z k ∈,所以函数)sin(?ω+=x A y 的图象关于点)0,(ω? π-k )(Z k ∈成 中心对称; )cos(?ω+=x A y 对称中心的求法是:令0)cos(=+?ωx ,得 )(2Z k k x ∈+ =+ππ?ω,则ω?π22)12(-+=k x )(Z k ∈,所以函数)cos(?ω+=x A y 的图象关于点)0,22)12(( ω ?π-+k )(Z k ∈成中心对称; 习题: 1、函数)62sin(4π -=x y 的图象的一个对称中心是 2、函数)8 21 cos(2π-=x y 的图象的对称中心是 3、y=sin(2x+π6 )的一个对称中心为( ) A.( π3 ,0) B.(5π12 ,0) C.(π12 ,0) D.(π6 ,0) 4、y=2cos(2x-π3 )的一个对称中心为( ) A.(π,0)B.(π3 ,0)C. (π6 ,0)D. (π12 ,0) 5、y=cos(2x+φ)的对称中心为(π6 ,0) 则φ=________,y 的最小正值是________,y 的最大负值是________。 三、正切曲线和余切曲线都是中心对称图形 )tan(?ω+=x A y 对称中心的求法是:令)(2Z k k x ∈= +π?ω,则ω?π22-=k x ,所以函数)tan(?ω+=x A y 的图象关于点)0,22(ω ?π-k )(Z k ∈成中心对称;

三角函数的周期性数学教案

三角函数的周期性数学教案 一、学习目标与自我评估 1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。

三角函数的对称性测试题(人教A版)(含答案)

三角函数的对称性(人教A版)一、单选题(共10道,每道10分) 1.函数在上对称轴的条数为( ) A.1 B.2 C.3 D.0 答案:B 解题思路: 令,解得,. ∴,解得,, ∴,即共2条对称轴. 故选B. 试题难度:三颗星知识点:正弦函数的对称性 2.方程(是参数,)表示的曲线的对称轴的方程为( ) A. B. C. D. 答案:B 解题思路: ∵, ∴.

∴方程表示的曲线为:. 令,解得,. ∴对称轴的方程为. 故选B. 试题难度:三颗星知识点:正弦函数的对称性 3.已知,函数的一条对称轴为直线,一个对称中心为 ,则有( ) A.最小值2 B.最大值2 C.最小值1 D.最大值1 答案:A 解题思路: 由题意, (1), 则,解得,. ∴可取: (2), 则,解得,. ∴可取: 由题意知,必须同时满足(1)(2), 则有最小值2.

故选A. 试题难度:三颗星知识点:余弦函数的对称性 4.函数()图象的一条对称轴在内,则满足此条件的一个值为( ) A. B. C. D. 答案:A 解题思路: 由题意, 令,解得. ∴对称轴为直线,, ∵该对称轴在内, ∴, 解得,. 又, ∴当时,,可取,满足题意, 故选A. 试题难度:三颗星知识点:正弦函数的对称性

5.已知函数图象在区间上仅有两条对称轴,且,那么符合条件的值有( )个 A.1 B.2 C.3 D.4 答案:D 解题思路: 由题意,,作出的大致图象如下: 由图知, ①,②, 由①得,;由②得,. ∵, ∴. 故选D. 试题难度:三颗星知识点:正弦函数的对称性 6.设函数与函数的对称轴完全相

精解三角函数的周期性

精解三角函数的周期性 一、正弦函数的周期 三角函数,以正弦函数y = sin x为代表,是典型的周期函数. 幂函数y = xα 无周期性,指数函数y = a x无周期性,对数函数y =log a x 无周期, 一次函数y = kx+b、二次函数y = ax2+bx+c、三次函数y = ax3+bx2 + cx+d 无周期性. 周期性是三角函数独有的特性. 1、正弦函数y=sin x的最小正周期 在单位圆中,设任意角α的正弦线为有向线 段MP. 正弦函数的周期性 动点P每旋转一周,正弦线MP的即时位置 和变化方向重现一次. 同时还看到,当P的旋转量不到一周时,正 弦线的即时位置包括变化方向不会重现. 因此,正弦函数y=sin x的最小正周期2π. 2、y=sin(ωx)的最小正周期 设ω>0,y =sin(ωx)的最小正周期设为L . 按定义y= sin ω(x+L)= sin(ωx+ ωL)= sinωx . 令ωx = x则有sin (x+ ωL)= sin x 因为sin x最小正周期是2π,所以有 例如sin2x的最小正周期为 sin的最小正周期为 3、正弦函数y=sin(ωx+φ)的周期性 对正弦函数sin x的自变量作“一次替代”后,成形式y = sin (ωx+φ). 它的最小正周期与y = sinωx的最小正周期相同,都是.

如的最小周期与y = sin(3x)相同,都是. 于是,余弦函数的最小正周期与sin x的 最小正周期相同,都是2π. 二、复合函数的周期性 将正弦函数y = sin x进行周期变换x→ωx,sin x→sinωx 后者周期变为 而在以下的各种变换中,如 (1)初相变换sinωx→si n(ωx+φ); (2)振幅变换sin(ωx+φ)→A sin(ωx+φ); (3)纵移变换A si n(ωx+φ)→A si n(ωx+φ)+m; 后者周期都不变,亦即A si n(ωx+φ)+m与si n(ωx)的周期相同,都是 . 而对复合函数f(sin x)的周期性,由具体问题确定. 1、复合函数f(sin x)的周期性 【例题】研究以下函数的周期性: (1)2 sin x;(2) (2)的定义域为[2kπ,2kπ+π],值域为[0,1],作图可知,它是最小正周期为 2π的周期函数. 【解答】(1)2sin x的定义域为R,值域为,作图可知,它是最小正 周期为2π的周期函数. 【说明】从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x,sin x,, sin(sin x)都是最小正周期2π的周期函数. 2、y= sin3x的周期性

三角函数的奇偶性和对称性

三角函数的奇偶性和对称性 奇偶性 判断一个三角函数既不是奇函数又不是偶函数和判断函数奇偶性是一样的, 都是有两个条件(1)函数的定义域要关于原点对称(这是一个奇函数或偶函数的前提条件) (2)在(1)成立的基础上判断f(-x)=-f(x)成立,那函数一定是奇函数,若f(-x)=f(x),那函数一定是偶函数 你所问的三角函数既不是奇函数又不是偶函数方法:上边(1)不满足的情况下,三角函数既不是奇函数又不是偶函数;(1)条件满足就要看(2)条件当f(-x)=-f(x)f(-x)=f(x)这两个等式都不成立时,三角函数既不是奇函数又不是偶函数。 1 设函数f(x)=sin2x,若f(x+t)是偶函数,则t的一个可能值是_________ f(x+t)=sin(x+t)=sin(2x+2t) 若要使f(x+t)为偶函数则: 2t=kπ+π/2 所以: t=(1/2)*kπ+π/4 2 (1)若f(x)=sin(x+a)为偶函数,求a的值; (2)已知函数sin(x+a)+更3cos(x+a)为偶函数,求a的值 1.f(x)是偶函数,则有f(x)=f(-x),即sin(x+a)=sin(-x+a), 所以sinxcosa+cosxsina=- sinxcosa+cosxsina, ∴sinxcosa=0对x∈R恒成立.∴cosa=0 ∴a=π÷2+kπ,其中k∈Z. 2.同上,f(x)=f(-x),且f(x)=sin(x+a)+√3cos(x+a)=2sin(x+a+π÷3), 则同1,有a+π÷3=π÷2+kπ,k∈Z, 即a=π÷6+kπ,k∈Z。 3 已知f(x)是定义在(-1,1)上的偶函数,且在(0,1)上为增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围。 我光列了一个, a-2|<|4-a2| 应该能用两边平方来解但我不会 应该还有别的不等式我认为是 |a-2|>-1 |4-a2|<1 对不?说说你们的做法 a-2|<|4-a2| a-2|<|(a-2)(a+2)| 当a不等于2时候可以消去(a-2) 1<|a+2| 下面的|a-2|>-1 |4-a2|<1 就不对了

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

三角函数的周期性问题

三角函数的周期问题求法 一.选择题(共7小题) 1.(2014?天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π 2.(2014?新课标I)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan (2x﹣)中,最小正周期为π的所有函数为() A.①②③B.①③④C.②④ D.①③ 3.(2014?南阳三模)若函数f(x)=2sinωx(ω>0)的图象在(0,2π)上恰有一个极大值和一个极小值,则ω的取值范围是() A.B.C.D. 4.(2005?黑龙江)函数f(x)=|sinx+cosx|的最小正周期是() A.B.C.πD.2π 5.(2009?江西)函数的最小正周期为() A.2πB.C.πD. 6.(2014?宝坻区校级模拟)已知函数y=sin在区间[0,t]上至少取得2次最大值,则正整数t的最小值是()

A.6 B.7 C.8 D.9 7.(2015?广西校级学业考试)函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则() A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ= 二.填空题(共1小题) 8.(2013?江西)函数y=最小正周期T为. 三.解答题(共3小题) 9.(2004?山东)求函数的最小正周期、最大值和最小值. 10.(2012?四川)函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形. (Ⅰ)求ω的值及函数f(x)的值域; (Ⅱ)若f(x0)=,且x0∈(﹣),求f(x0+1)的值.

相关主题