搜档网
当前位置:搜档网 › (完整版)历年全国卷高考数学真题汇编学生版

(完整版)历年全国卷高考数学真题汇编学生版

(完整版)历年全国卷高考数学真题汇编学生版
(完整版)历年全国卷高考数学真题汇编学生版

全国卷历年高考真题汇编-三角函数与解三角形

(2019全国2卷文)8.若x 1=4π,x 2=43π

是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2

B .32

C .1

D .

12

(2019全国2卷文)11.已知a ∈(0,

π

2

),2sin2α=cos2α+1,则sin α=

A .

15

B C D (2019全国2卷文)15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.

(2019全国1卷文)15.函数3π

()sin(2)3cos 2

f x x x =+

-的最小值为___________. (2019全国1卷文)7.tan255°=( )

A .-2

B .-

C .2

D .

(2019全国1卷文)11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知

C c B b A a sin 4sin sin =- ,4

1cos -=A ,则b

c =( )

A .6

B .5

C .4

D .3

(2019全国3卷理)18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知

sin sin 2

A C a b A +=.

(1)求B ;

(2)若△ABC 为锐角三角形,且1c =,求△ABC 面积的取值范围.

(2019全国2卷理)15.ABC △的内角,,A B C 的对边分别为,,a b c .若

π

6,2,3

b a

c B ===

,则ABC △的面积为_________. (2019全国2卷理)9.下列函数中,以2

π为周期且在区间(

4

π,

2

π)单调递增的是

A .f (x )=│cos2x │

B .f (x )=│sin2x │

C .f (x )=cos│x │

D .f (x )=sin │x │

(2019全国2卷理)10.已知α∈(0,

2

π),2sin2α=cos2α+1,则sin α=

A .

15

B 5

C 3

D 5

(2019全国1卷理)17.V ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设

22(sin sin )sin sin sin B C A B C -=-.

(1)求A ;

(22b c +=,求sin C .

(2019全国1卷理)11.关于函数()sin |||sin |f x x x =+有下述四个结论:

①f (x )是偶函数 ②f (x )在区间(

2

π

,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④

B. ②④

C. ①④

D. ①③

(2018全国3卷文)11.ABC ?的内角,,A B C 的对边分别为,,a b c ,若ABC ?的面积

为2224

a b c +-,则C =( )

A .

2π B .3π C .4π D .6

π (2018全国3卷文)6.函数()2tan 1tan x

f x x

=

+的最小正周期为( )

A .

4π B .2

π

C .π

D .2π (2018全国3卷文)4.若1

sin 3

α=,则cos2α=( )

A .

89 B .79 C .79- D .89

- (2018全国2卷理)15. 已知,,则

__________.

(2018全国2卷理)10. 若在

是减函数,则的最大值是

A. B. C. D. (2018全国2卷理)6. 在中,,,,则

A.

B.

C.

D.

(2018全国I 卷理)17.(12分)

在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =. (1)求cos ADB ∠;

(2)若22DC =,求BC

(2018全国I 卷理)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.

(2018全国I 卷文)16.(5分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知bsinC +csinB=4asinBsinC ,b 2+c 2﹣a 2=8,则△ABC 的面积为 .

(2018全国I 卷文)11.(5分)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=,则|a ﹣b |=( ) A .

B .

C .

D .1

(2018全国I 卷文)已知函数f (x )=2cos2x ﹣sin2x+2,则( )

A .f (x )的最小正周期为π,最大值为3

B .f (x )的最小正周期为π,最大值为4

C.f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4

1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ?

?=+ ??

?,则下面结论正确的

是()

A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π

6个单位长度,得到曲线2C

B .把1

C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12

个单位长度,得到曲线2C

C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π

6

个单位长度,得到曲线2C

D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π

12

个单位长度,得到曲线2C

2 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC

△的面积为2

3sin a A

(1)求sin sin B C ;

(2)若6cos cos 1B C =,3a =,求ABC △的周长.

3. (2017·新课标全国Ⅱ卷理17)17.(12分)

ABC ?的内角,,A B C 的对边分别为,,a b c ,已知2

sin()8sin 2

B A

C +=. (1)求cos B

(2)若6a c += , ABC ?面积为2,求.b

4 (2017全国卷3理)17.(12分)

ABC ?

的内角A ,

B ,

C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =. (1)求c ;

(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.

5 (2017全国卷文1)14 已知π(0)2a ∈,,tan α=2,则π

cos ()4α-=__________。

6.(2017全国卷2 文) 3.函数π

()sin(2)3

f x x =+的最小正周期为 A.4π B.2π C. π D.

π2

7(2017全国卷2文)13.函数()2cos sin f x x x =+的最大值为 ________。

8(2017全国卷2文)16.ABC ?的内角,,A B C 的对边分别为,,a b c ,若

2cos cos cos bc B a C c A =+,则B =

9(2017全国卷3文) 4.已知4

sin cos 3

αα-=

,则sin 2α=( ) A .79

-

B .29

-

C .

29

D .

79

10 (2017全国卷3文)6.函数f (x )=15sin(x +3π)+cos(x ?6

π

)的最大值为( )

A .65

B .1

C .35

D .15

7.函数y =1+x +2sin x

x

的部分图像大致为( )

A B

D .

C D 【答案】D

1、(2016全国I 卷12题)已知函数ππ

()sin()(0),24

f x x+x ,

ω?ω?=>≤=-为()f x 的零点,π4x =

为()y f x =图像的对称轴,且()f x 在π5π

()1836

,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5 2、(2016全国I 卷17题)(本小题满分12分)

ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =

(I )求C ; (II )若7,c ABC △=的面积为

33

2

,求ABC △的周长.

3、(2015全国I 卷2题)sin20°cos10°-con160°sin10°=

(A )32-

(B )32 (C )12- (D )12

4、(2015全国I 卷8题) 函数()f x =cos()x ω?+的部分图像如图所示,则()f x 的

单调递减区间为

(A)(错误!未找到引用源。),k 错误!未找到引用源。 (b)(错误!未找到引用源。),k 错误!未找到引用源。

(C)(错误!未找到引用源。),k 错误!未找到引用源。 (D)(错误!未找到引用源。),k 错误!未找到引用源。

5、(2015全国I 卷16题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB

的取值范围是

6. (2014全国I 卷8题)设(0,

)2π

α∈,(0,)2

π

β∈,且1sin tan cos βαβ+=,则

A .32

π

αβ-=

B .22

π

αβ-=

C .32

π

αβ+=

D .22

π

αβ+=

7、(2014全国I 卷16题)已知,,a b c 分别为ABC ?的三个内角,,A B C 的对边,a =2,且

(2)(sin sin )()sin b A B c b C +-=-,则ABC ?面积的最大值为 .

8、(2013全国I 卷15题)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______ 9、(2013全国I 卷17题)(本小题满分12分)

如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°

(1)若PB=1

2,求PA ;

(2)若∠APB =150°,求tan ∠P BA

10、(2016全国II 卷7题)若将函数y =2sin 2x 的图像向左平移π

12

个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ

26

k x k =+∈Z (C )()ππ

212

Z k x k =

-∈ (D )()ππ212Z k x k =

+∈ 11、(2016全国II 卷9题)若π3

cos 45

α??-= ???,则sin 2α=

(A )

7

25

(B )15

(C )1

5

-

(D )725

-

12、(2016全国II 卷13题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5

A =,5

cos 13

C =

,1a =,则b = . 13、(2015全国II 卷17题)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求

C

B

∠∠sin sin ;

(Ⅱ) 若AD =1,DC =2

2

求BD 和AC 的长.

14、(2014全国II 卷4题)钝角三角形ABC 的面积是12

,AB=1,BC=2 ,则AC=( )

A. 5

B.

5

C. 2

D. 1

15、(2014全国II 卷14题)函数()()()sin 22sin cos f x x x ???=+-+的最大值为_________.

16、(2013全国II 卷15题)设θ为第二象限角,若1tan 42

πθ?

?

+

= ??

? ,则sin cos θθ+=_________.

17、(2013全国II 卷17题)(本小题满分12分)

△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB 。 (Ⅰ)求B ;

(Ⅱ)若b=2,求△ABC 面积的最大值。

18、(2013全国III 卷5题)若3

tan 4

α=

,则2cos 2sin 2αα+= (A)

6425 (B) 4825 (C) 1 (D)1625

19、(2013全国III 卷8题)在ABC △中,π4B =

,BC 边上的高等于1

3

BC ,则cos A =

(A (B (C )- (D )-

20、(2013全国III 卷14题)函数sin y x x =的图像可由函数sin y x x

=的图像至少向右平移_____________个单位长度得到.

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

历年高考数学真题(全国卷整理版)43964

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A =,B ={1,m} ,A B =A, 则m= A 0 B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D)

(7)已知α为第二象限角,sinα+sinβ =,则cos2α= (A) (B ) (C) (D) (8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2= (A)1 4(B) 3 5 (C) 3 4 (D) 4 5 (9)已知x=lnπ,y=log52, 1 2 z=e,则 (A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x (10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c= (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1 (11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有 (A)12种(B)18种(C)24种(D)36种 (12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=7 3。动点P从 E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为 (A)16(B)14(C)12(D)10 二。填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上。 (注意:在试题卷上作答无效) (13)若x,y 满足约束条件则z=3x-y的最小值为_________。 (14)当函数取得最大值时,x=___________。 (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________。 (16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=50° 则异面直线AB1与BC1所成角的余弦值为____________。 三.解答题: (17)(本小题满分10分)(注意:在试卷上作答无效) △ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

(完整版)2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.已知集合{}|1{|31}x A x x B x =<=<,,则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A . 1 4 B . 8π C .12 D . 4 π 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

新课标数学历年高考试题汇总及详细答案解析

2014年普通高等学校招生全国统一考试 理科(新课标卷Ⅱ) 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 【答案】D 把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。所以选D. 2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i 【答案】B . ,5-4-1-∴,2-,2212211B z z i z z z i z 故选关于虚轴对称,与==+=∴+=Θ 3.设向量a,b 满足|a+b |a-b ,则a ?b = ( ) A. 1 B. 2 C. 3 D. 5 【答案】A . ,1,62-102∴,6|-|,10||2 222A b a 故选联立方程解得,==+=++==+Θ 4.钝角三角形ABC 的面积是12 ,AB=1, ,则AC=( ) A. 5 B. C. 2 D. 1 【答案】B

. .5,cos 2-4 3π ∴ΔABC 4π .43π,4π∴, 22 sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。 为等腰直角三角形,不时,经计算当或=+======???==Θ 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】 A . ,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=?= 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13 【答案】 C ..27 10 π54π34-π54π.342π944.2342π. 546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为== ∴=?+?=∴=?=∴πΘΘ

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

全国卷年高考数学真题

普通高等学校招生全国统一考试全国课标1 理科数学 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.3 2(1)(1) i i +-= A .1i +B .1i -C .1i -+D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :22 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A . B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率

A .18 B .38 C .58 D .78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A .203 B .165 C .72 D .158 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ +=,则 A .32π αβ-=B .22π αβ-=C .32π αβ+=D .22π αβ+= 9.不等式组124x y x y +≥??-≤? 的解集记为D .有下面四个命题: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤,4p :(,),21x y D x y ?∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P 10.已知抛物线C :2 8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ = ,则||QF = A .72 B .52 C .3 D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围 为

历年全国卷高考数学真题汇编解析版定稿版

历年全国卷高考数学真 题汇编解析版精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

全国卷历年高考真题汇编 三角 1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ?? =+ ??? ,则下面结论正确的是() A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π 6 个单位长度,得到曲线2C B .把1 C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12 个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6 个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12 个单位长度,得到曲线2C 【答案】 D 【解析】 1:cos C y x =,22π:sin 23??=+ ??? C y x 【解析】 首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理. 【解析】 πππ cos cos sin 222 ???? ==+-=+ ? ?? ? ? ? y x x x .横坐标变换需将1=ω变成2=ω,

【解析】 即112 πππsin sin 2sin 2224??????=+???????? ?→=+=+ ? ? ?????? ?C 上各坐短它原y x y x x 点横标缩来 【解析】 2ππsin 2sin 233? ?? ??? →=+=+ ? ???? ?y x x . 【解析】 注意ω的系数,在右平移需将2=ω提到括号外面,这时π 4+x 平移至π3 +x , 【解析】 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上 π12,即再向左平移π12 2 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的 面积为2 3sin a A . (1)求sin sin B C ; (2)若6cos cos 1B C =,3a =,求ABC △的周长. 【解析】 本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应 用. 【解析】 (1)∵ABC △面积2 3sin a S A =.且1sin 2S bc A = 【解析】 ∴21 sin 3sin 2 a bc A A = 【解析】 ∴223sin 2 a bc A = 【解析】 ∵由正弦定理得223sin sin sin sin 2 A B C A =,

历年高考数学真题全国卷版

历年高考数学真题全国 卷版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 普通高等学校招生全国统一考试 一、 选择题 1、复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m },B ={1,m} ,A B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24 y =1 D 212x +2 4y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项 和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则

2018年高考全国卷一理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0 B . C . D . 2.已知集合,则 ( ) A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 此卷 只装 订不密封 班级 姓名 准考证号 考场号 座位号

则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则()A.B.C.D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为() A.B.C.D. 6.在中,为边上的中线,为的中点,则() A.B. C.D. 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为, 则在此圆柱侧面上,从到的路径中,最短路径的长度为() A.B.C.D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则() A.5 B.6 C.7 D.8 9.已知函数,,若存在2个零点,则的取值范围是() A.B.C.D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

2018高考全国1卷理科数学试卷及答案

2018 年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1i 1. 设z 2i ,则z 1i 1 A.0 B. C.1 D. 2 2 2. 已知集合A x |x2 x 2 0 ,则C R A A. x | 1 x 2 B. x|1x2 C. x|x 1 x|x2 D. x|x 1 x| x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图: A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记S n为等差数列a n 的前n项和,若3S3 S2 S4,a1 2,则a5 A.-12 B.-10 C.10 D.12 5.设函数f x x3 a 1 x2 ax ,若f x 为奇函数,则曲线y f x 在点0,0 处的切 绝密★启用 前 则下面结论中不正确的 是

线方程为 10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆 的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC , ABC 的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。 在整个图形中随机取一点,此点取自的概率分 别记为 p 1, p 2, p 3 ,则 A. y 2x B.y x C.y 2x D. y x 6.在 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB 3 1 1 3 A. AB AC B. AB AC 4 4 4 4 3 1 1 3 C. AB AC D. AB AC 4 4 4 4 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面 上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视 图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度为 A.2 17 B.2 5 C.3 D.2 则 FM FN A.5 B.6 C.7 9.已知函数 f e x ,x 0 x ,g x ln x,x 0 fx 围是 A. 1,0 B. 0, 2 2,0 且斜率为 的直线与 C 交于 M ,N 两点, 3 D.8 x a ,若 g x 存在 2 个零点,则 a 的取值范 C. 1, D. 1, 8.设抛物线 C: y 2 4 x 的焦点为 F ,过点

历年高考理科数学真题汇编+答案解析(6):解析几何

历年高考理科数学真题汇编+答案解析 专题6 解析几何 (2020年版) 考查频率:一般为2个小题和1个大题. 考试分值:22分 知识点分布:必修2、选修2-1 一、选择题和填空题(每题5分) 1.(2019全国I 卷理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若 22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212x y += B .22 132x y += C .22 143 x y += D .22 154x y += 【解析】由题意,设椭圆C 的方程为22 221(0)x y a b a b +=>>. ∵22||2||AF BF =,2||3||AB BF =,又∵1||||AB BF =,12||3||BF BF =. 由椭圆的定义可知,12||||2BF BF a +=,∵13||2a BF =,2||2 a BF =,2||AF a =,1||AF a =. ∵13||||= 2 a AB BF =,∵1AF B ?为等腰三角形,在1AF B ?中,11||1cos 2||3AF F AB AB ∠= =. 而在12AF F ?中,2222221212122 12||||||22 cos 12||||2AF AF F F a a F AB AF AF a a +-+-∠===-, ∵22113 a -=,解得2=3a . ∵2 =2b ,椭圆C 的方程为22132x y +=. 【答案】B 【考点】选修2-1 椭圆 2.(2019全国I 卷理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1的 直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F B F B ?=u u u r u u u u r ,则C 的离心率为

历年高考数学真题全国卷版修订稿

历年高考数学真题全国 卷版 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (大纲全国卷) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ). A .3 B .4 C .5 D .6 2.(2013大纲全国,理 2)3=( ). A .-8 B .8 C .-8i D .8i 3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ). A .-4 B .-3 C .-2 D .-1 4.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ). A .(-1,1) B .11,2??-- ?? ? C .(-1,0) D .1,12?? ? ?? 5.(2013大纲全国,理5)函数f (x )=21log 1x ?? + ?? ? (x >0)的反函数f -1(x )= ( ). A .121x -(x >0) B .121x -(x≠0) C .2x -1(x ∈R) D .2x -1(x >0) 6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43 -,则{a n }的前10项和等于( ). A .-6(1-3-10) B .1 9(1-310) C .3(1-3-10) D .3(1+3-10)

历年高考试题有机题汇编

历年高考试题有机题汇编Last revision on 21 December 2020

历年高考试题有机题 1有机物合成与推断题汇编: 1.异丙苯()是一种重要的有机化工原料。 根据题意完成下列填空: (1)由苯与2-丙醇反应制备异丙苯属于________反应;由异丙苯制备对溴异丙苯的反应试剂和反应条件为________________。 (2)异丙苯有多种同分异构体,其中一溴代物最少的芳香烃的名称是________。 (3)α-甲基苯乙烯()是生产耐热型ABS树脂的一种单体,工业上由异丙苯催化脱氢得到。写出由异丙苯制取该单体的另一种方法(用化学反应方程式表示)。 (4)耐热型ABS树脂由丙烯腈(CH2=CHCN)、1,3一丁二烯和α-甲基苯乙烯共聚生成,写出该树脂的结构简式(不考虑单体比例)。 2.化合物M是一种治疗心脏病药物的中间体,以A为原料的工业合成路线如下图所示。 己知:RONa+R’X→ROR’+NaX 根据题意完成下列填空: (1)写出反应类型。反应①________反应②________ (2)写出结构简式。 A________________C________________ (3)写出的邻位异构体分子内脱水产物香豆素的结构简式。(4)由C生成D的另一个反应物是____________,反应条件是________________。

(5)写出由D生成M的化学反应方程式。 (6)A也是制备环己醇()OH)的原料,写出检验A已完全转化为环己醇的方法。 答案:1.(本题共8分) (1)取代,Br2/FeBr3(或Br2/Fe) (2)l,3,5-三甲苯 (3) (1)加成氧化 (6)取样,加入FeCl3溶液,颜色无明显变化。 2 有机体合成与推断汇编: 1.丁基橡胶可用于制造汽车内胎,合成丁基橡胶的一种单体A的分子式为C4H8,A氢化后得到2—甲基丙烷。 完成下列填空: 1)A可以聚合,写出A的两种聚合方式(以反应方程式表示)。 2)A与某烷发生烷基化反应生成分子式为C8H18的物质B,B的一卤代物只有4种,且碳链不对称。写出B的结构简式。 3)写出将A通入下列两种溶液后出现的现象。 A通入溴水: A通入溴的四氯化碳溶液: 4)烯烃和NBS作用,烯烃中与双键碳相邻碳原子上的一个氢原子被溴原子取代。分子式为C4H8的烃和NBS作用,得到的一溴代烯烃有种。 2.粘合剂M的合成路线如下图所示: 完成下列填空: 1)写出A和B的结构简式。 A B

历年全国卷高考数学真题汇编(教师版)

全国卷历年高考真题汇编-三角函数与解三角形 (2019全国2卷文)8.若x 1=4π,x 2=4 3π 是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .3 2 C .1 D . 1 2 答案:A (2019全国2卷文)11.已知a ∈(0, π 2),2sin2α=cos2α+1,则sin α= A .15 B C D 答案:B (2019全国2卷文)15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 答案:4 3π (2019全国1卷文)15.函数3π ()sin(2)3cos 2 f x x x =+-的最小值为___________. 答案:-4 (2019全国1卷文)7.tan255°=( ) A .-2 B .- C .2 D . 答案:D (2019全国1卷文)11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 C c B b A a sin 4sin sin =- ,4 1cos -=A ,则b c =( ) A .6 B .5 C .4 D .3 答案:A (2019全国3卷理) 18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=.

(1)求B ; (2)若△ABC 为锐角三角形,且1c =,求△ABC 面积的取值范围. (1)由题设及正弦定理得sin sin sin sin 2 A C A B A +=. 因为sin 0A ≠,所以sin sin 2 A C B +=. 由180A B C ++=?,可得sin cos 22A C B +=,故cos 2sin cos 222 B B B =. 因为cos 02 B ≠,故1 sin =22B ,因此60B =?. (2)由题设及(1)知△ABC 的面积ABC S ?. 由正弦定理得sin sin(120)1 sin sin 2 c A c C a C C ?-= ==+. 由于△ABC 为锐角三角形,故090A ?<

相关主题