搜档网
当前位置:搜档网 › 八年级上第二章(特殊三角形)经典例题

八年级上第二章(特殊三角形)经典例题

八年级上第二章(特殊三角形)经典例题
八年级上第二章(特殊三角形)经典例题

例一:如图,△ABC 是边长为2的等边三角形,点D 是BC 边上的任意点,DE ⊥AB 于E 点,DF ⊥AC 于F 点,则DE+DF=

如图,在四边形ABCD 中,

AB=3,BC=4

,CD=12,AD=13,∠B=90°,那么四边形ABCD 的面积是

如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()

A. 180°

B.360°

C.540°

D.720°

18.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=20°,则∠GEF的度数是

如图,已知AB=A1B ,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4=()°。

如图,钢架中∠A=16°,焊上等长的钢条来加固钢架,若则这样的钢条至多需要()根。

A.4 B.5 C.6 D.7

在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=()

A.4

B.6

C.9

D.8

如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,

CD=5cm,求AB的长。

如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.

2、如图,已知正方体的棱长为2cm (1)求一只蚂蚁从A点到F点的距离。(2)如果蚂蚁从A点到G点,求蚂蚁爬行的距离。(3)如果蚂蚁从A点

到CG边中点M,求蚂蚁爬行的距离。

黑板上写着,那么正对着黑板的镜子里的像是

如图,两个班的学生分别在M、N两处参加植树劳动,现要在道路AB、AC 的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点,(不写作法,保留作图痕迹).

如图:已知四边形ABCD,∠BAD=120°,CB⊥AB,CD⊥AD且AB=AD=3,点E,F分别在BC,CD边上,那么△AEF的周长最短是

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

特殊三角形常见的题目型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; E B C A D P 第2题 B O A P C 第1题 B O A C N 第3题 E

(2)请问点C满足什么条件时,AC+CE的值最小并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式的最小值 二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm和10cm,则它的周长为 (2)已知等腰三角形的两边长分别为8cm和10cm,则它的腰长为 (3)已知等腰三角形的周长为28cm和8cm,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm和7cm,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为 6、在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,则底角∠B的度数为 7、如图,A、B是4×5的网格中的格点,网格中每个小正方形的边长都是单位 B A

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

八年级数学特殊三角形(习题及答案)

特殊三角形(习题) 例题示范 例1:已知:如图,在四边形ABCD 中,∠B =∠D =60°,AB =BC ,AD =CD ,点E 在边BC 上,点F 在边CD 上,且∠EAF =60°. 求证:△AEF 是等边三角形. 【思路分析】 ①读题标注: ②梳理思路: 要证△AEF 是等边三角形,已知∠EAF =60°,只需证△AEF 是等腰三角形即可,考虑证AE =AF ,可以把这两条线段放在两个三角形中证全等. 观察图形,连接AC ,可以把线段AE 和AF 分别放在△ABE 和 △ACF 中.结合题中条件∠B =∠D =60°,AB =BC ,AD =CD ,可知△ABC 和△ACD 均为等边三角形,所以∠B =∠ACF =60°, ∠BAC =∠EAF =60°,因此∠BAE =∠CAF ,进而得证△ABE ≌△ACF ,证明成立. 【过程书写】 证明:如图,连接AC . ∵∠B =∠D =60°,AB =BC ,AD =CD ∴△ABC 和△DAC 是等边三角形 ∴AB =AC ,∠BAC =60°,∠ACF =60° ∴∠1+∠3=60°,∠B =∠ACF ∵∠EAF =60° ∴∠2+∠3=60° ∴∠1=∠2 ∴△ABE ≌△ACF (ASA ) ∴AE =AF ∴△AEF 是等边三角形 巩固练习 1. 如图,以正方形ABCD 的边AB 为一边向外作等边三角形ABE ,连接DE , 则∠BED 的度数为________. 60° 60° 60° F E D C B A F E D B A 3 2160° 60° 60°F E D C B A

2.如图,在△ABC的外部,分别以AB,AC为直角边,点A为直角顶点,作等 腰直角三角形ABD和等腰直角三角形ACE,CD与BE交于点P,则∠BPC 的度数为________. 3.如图,在Rt△ABC中,∠C=90°,∠A=30°,DE是线段AB的垂直平分线, 交AB于点D,交AC于点E,若DE=2,则AC的长是________. 4.如图,在△ABC中,∠ACB=90°,D在BC上,E为AB的中点,AD,CE相 交于F,且AD=DB.若∠B=20°,则∠DFE的度数为________. 5.已知:如图,在△ABC中,AB=AC,∠B=15°,过C作CD⊥AB,交BA的 延长线于点D.求证:AB=2CD.

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

特殊三角形常见的题目型.docx

八年级上册第二章特殊三角形 一、将军饮马 例1如图,在正方形 ABCD 中,AB=9,点E 在CD 边上,且 DE=2CE 点P 是对角 线AC 上的一个动点,则 PE+PD 的最小值是( ) A 3 — B 、10 一 C 、9 D 、9 — 【变式训练】 1、如图,在矩形 ABCD 中,AD=4,∠ DAC=30 ,点 P 、E 分别在 AC AD 上,则 PE+PD 的最小值是( ) 2、 如图,∠ AOB=30,P 是∠ AOB 内一定点,P0=1Q G D 分别是 OA OB 上的动点,则△ PCD 周长的最小 值为 ______________ 3、 如图,∠ AOB=30,C, D 分别在 OA OB 上,且0C=2 0D=6点C, D 分别是 AO BO 上的动点,贝U CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点 B , D 作AB 丄BD, DEl BD 连结 AC, CE (1) 已知AB=3, DE=Z BD=12设CD=X 用含X 的代数式表示 AC+CE 的长; (2) 请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3) 根据(2)中的规律和结论,请构图求出代数式 的 最 小值 二、等腰三角形中的分类讨论 例2 (1)已知等腰三角形的两边长分别为 8cm 和10cm,则它的周长为 ________________ (2) 已知等腰三角形的两边长分别为 ____________ 8cm 和10cm,则它的腰长 为 (3) 已知等腰三角形的周长为 _________________ 28cm 和8cm,则它的底边为 【变式训练】 1、 已知等腰三角形的两边长分别为 3cm 和7cm,则周长为 __________________ 2、 已知等腰三角形的一个角是另一个角的 4倍,则它的各个内角的度数为 _________________ 3、 已知等腰三角形的一个外角等于 150°,则它的各个内角的度数为 _______________________ 4、 已知等腰三角形一腰上的高与另一边的夹角为 25°,则它的各个内角的度数 __________________ 第1题 D 、4 M D B

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

特殊三角形知识点及例题

特殊三角形 一、知识结构 本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示: 等腰Rt 两直角三角形全等的判定 直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形 等腰三角形特殊三角形 二、重点回顾 1.等腰三角形的性质: 等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说这三线为同一条线段;等腰三角形是________图形,它的对称轴有_________条。 2.等腰三角形的判定: 有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。 3.等边三角形的性质: 等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。 4.等边三角形的判定: 有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。 5.直角三角形的性质: 直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。 30°角所对的直角边等于斜边的________ 6.直角三角形的判定:

初中三角形总复习专题典型例题经典测试题2套

三角形资料 一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角. 3.三角形中的三种重要线段 三角形的角平分线、中线、高线是三角形中的三种重要线段. (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线. ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部. ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点. ②画三角形中线时只需连结顶点及对边的中点即可. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段 ②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 三角形内角和性质的推理方法有多种,常见的有以下几种: (四)三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° (1)构造平角 ①可过A点作MN∥BC(如图) ②可过一边上任一点,作另两边的平行线(如图) (2)构造邻补角,可延长任一边得邻补角(如图) 构造同旁内角,过任一顶点作射线平行于对边(如图)

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

特殊三角形知识点及习题

特殊三角形重点知识透视一 等腰三角形的概念与性质

重点知识透视二等腰三角形的判定

重点知识透视三 等边三角形 1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A.12 B.15 C.12或15 D.18 2.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC 的度数是()第6题图D C B A A.18°B.24°C.30°D.36°3.△ABC中,AB=AC,∠B=70°, 则∠A的度数是() A.70° B. 55° C. 50° D. 40° 4.等腰三角形的一条边长为6,另一边长为13,

则它的周长为() A.25 B.25或32 C.32 D.19 5.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,)M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为() A.5 B.6 C.7 D.8 6.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1, 连接DE,则DE=________ 7.若等腰三角形的一个角为50°,则它的 顶角为____________ 8.等腰三角形的周长为16,其一边长为6, 则另两边为___________ 9.如图,在平面直角坐标系中, 矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA

的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时, 点P的坐标为___________________ 重点知识透视四 直角三角形的概念、性质与判定 定义有一个角是________的三角形叫做直角三角形 性质 (1)直角三角形的两个锐角互余 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于______________ (3)在直角三角形中,斜边上的中线等于________________ 勾股定理及逆定理 (1)两个内角互余的三角形是直角三角形 (2)一边上的中线等于这边的一半的三角形是直角三角 形 (3)在一个三角形中,0 30角所对的边是另一边一半时, 这个三角形为直角三角形 (4)一个三角形中其中两边的平方和等于第三边的平方, 那么这个三角形是直角三角形。 S Rt△ABC= 1 2 ch= 1 2 ab,其中a、b为两直角边,c为斜边,h 为斜边上的高。 两直角三角形全等(HL)

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,己知:在MEC 中,"W ^0 = 70, ^=30.求:BC 的长. 思路点拨:山条件= 想到构造含30°角的直角三角形 总结反思: 举一反三【变式1】己知:如图,ZB=ZD=90° , ZA=60° , AB=4, CD=2o 求:四边形ABCD 的面积。 【变式2】在四边形中,如图,A5丄Bjg 丄g ?厶4 = 135O.BC =6 AB =2笛 ?求ABCD 的面积. 2. 已知:如團所示,Rt^ABC 中, Z^4C=90% AB^AC, D 为BC 上任意一点.求证: 2AD 2=BD 2-CD 2 D

如备P 是等边三角形4BC 內一点,BPM, CP=5;求厶的度数. 类型二:方程的思想方法 例1、如图所示,己知AABC 中,ZC=90° , ZA=60° 求金、禺、C 的值。 思路点拨:山a + b=3+語,再找出必、血的关系即可求出金和血的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,ZACB=90° ,CD±AB 于点D,若AD=8,BD=2, 求CD 的长度。 【变式2】 6?如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将拒形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. B

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1 ?如图所示,AABC是等腰直角三角形,AB=AC, D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE丄DF,若BE=12, CF=5.求线段EF的长。 思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD. 总结升华: 【变式1】如图,已知:AM = CM t MP丄的于p. = AP2+BC2 ■ 【变式2】如图,AADC和AfiCE都是等边三角形,ZABC= 30\ 求证:BD2 = AB2 + BC2

特殊三角形专题练习(精.选)

特殊三角形专题练习 一.选择题(共9小题) 1.已知等腰三角形的周长为24,腰长为x,则x的取值范围是() A.x>12 B.x<6 C.6<x<12 D.0<x<12 2.若实数x,y满足﹣40,则以x,y的值为两边长的等腰三角形的周长是() A.12 B.16 C.16或20 D.20 3.如图,在△中,∠90°,,是经过A点的一条直线,且B,C 在的两侧,⊥于D,⊥于E,2,6,则的长为() A.2B.3C.5D.4 4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣120的两个根,则k的值是()A.27 B.36 C.27或36 D.18 5.如图,在△中,,平分∠交于点D,∥交的延长线于点E.若∠35°,则∠的度数为()

A.40°B.45°C.60°D.70° 6.如图,△中,⊥于D,⊥于E,与相交于F,若,则∠的大小是() A.40°B.45°C.50°D.60° 7.如图,,若∠80°,则∠() A.80°B.100°C.140°D.160° 8.已知如图,∥,⊥,⊥,,2,3,则△的面积为() A.1B.2C.5D.无法确定

9.如图,已知△的面积为102,为∠的角平分线,垂直于点P,则△的面积为() A.62B.52C.42D.32 二.填空题(共8小题) 10.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形的顶点E、F、G、H分别在正方形的边、、、上.若正方形的面积=16,1;则正方形的面积= . 11.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,则每个直角三角形的

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

相关主题