搜档网
当前位置:搜档网 › 土壤中可溶性有机氮含量的影响因素分析

土壤中可溶性有机氮含量的影响因素分析

土壤中可溶性有机氮含量的影响因素分析
土壤中可溶性有机氮含量的影响因素分析

摘要:可溶性有机氮的含量对土壤有一定的影响,可解决土壤中的污染问题,还能提高作物的产量。为了提高可溶性有机氮的使用量,必须明确其含量的影响因素,因此,本研究重点对此开展相关实验,旨在为作物生长提供优质的土壤环境。

关键词:土壤; 可溶性有机氮; 含量; 影响因素

土壤中可溶性有机氮的来源较多,其在可溶性总氮中占有90%以上的含量。可溶性有机氮对土壤的影响比较大,受外部因素的干扰,会导致土壤中可溶性有机氮的含量不同。而作物种植中,土壤中可溶性有机氮的含量影响着作物的产量和品质,因此明确影响其含量的因素,才能维护可溶性有机氮在土壤中处于平衡状态。

1 土壤中可溶性有机氮含量影响因素的实验设计

分析土壤中可溶性有机氮的含量影响因素,需开展相关实验。本研究以实验室分析为例,在实验室中,选取待检测的土壤样本,提供可变的条件,明确土壤中可溶性有机氮含量的相关影响因素。首先,实验室内,土壤样本的环境气温平均在13

℃左右,提供500~650 mm的降水,保持土壤样本的湿度;其次,待检测的土壤样本中,有机质总量约为13.79 g/kg,其中铵态氮约为241.00

mg/kg、硝态氮约为5.45

mg/kg。记录土壤样本的实验数据,分别进行覆草设计、改变温度、施加氮肥等条件控制,观察实验条件下土壤样本中可溶性有机氮含量的变化。

试验共设4组,其中1组为对照组,实验组按照覆草设计、改变温度、施加氮肥的条件控制(其他条件一致)设计3组实验组,来完成含量检测的实验。土壤样本的规格为5~10 cm,主要检测土壤中可溶性有机氮(son)、铵态氮和硝态氮,实验3次,记录结果。由于可溶性有机氮含量影响因素实验是在实验室中进行的,所以各项条件的控制必须准确,排除不良因素的干扰,既要保障该实验的环保性,又要确保实验的可实施性。

2 土壤中可溶性有机氮含量影响因素的测量方法

针对土壤样本中不同形态氮含量进行测试,便于找出影响可溶性有机氮含量的因素。

2.1 铵态氮、硝态氮测量铵态氮、硝态氮可以总称为无机氮,在实验室测量土壤样本中此形态氮的含量时,可选用氯化钾浸提的方法,混合并振捣,测量时间1.0

h,过滤实验溶液中的杂质,使用仪器检测样本中铵态氮、硝态氮的实际含量。

2.2 可溶性总氮测量测定可溶性总氮(tsn)含量时,需先过滤掉混合的无机氮,使用0.45μm滤膜,全面过滤无机氮[1]。可溶性总氮通过氧化法进行测量,试剂为氢氧化钠与过硫酸钾的混合物,氧化时间控制在0.5

h,待溶液稳定后,利用光度法完成测量。

2.3 可溶性有机氮测量可溶性有机氮含量=可溶性总氮测量含量-无机氮测量含量,即可计算出准确的结果。

3 土壤中可溶性有机氮含量的影响因素分析

结合实验室土壤样本实验,测定可溶性有机氮的含量,分析影响可溶性有机氮含量的因素如下。

3.1 覆草实验室中的覆草设计,代表了植物种植的一种栽培模式,与之类似的还有覆膜栽培,经实验分析发现,覆草对土壤中可溶性有机氮含量的影响较为明显,属于一类比较重要的影响因素。实验室中,对照组与覆草实验组中的可溶性有机氮含量,土壤样本中可溶性有机氮的含量分别是29.81

mg/kg、61.88

mg/kg,含量明显提升。土壤样本的覆草实验设计,表明此类栽培模式有利于提高土壤内可溶

性有机氮的含量,实际栽培中,覆草产生的秸秆,能产生水溶性的氮、碳,而且覆草长期在土壤中,增加了土壤中的有机物含量,促进了养分循环。

3.2 温度实验室中,对照组的温度恒定,延长实验组土壤样本的光照时间,温度由原来的13 ℃上升到25

℃,实验数据表示可溶性有机氮的含量提高,实验数据如表1所示,实验组中的可溶性有机氮含量高于对照组。

3.3 氮肥影响氮肥是作物种植时所需的一类养分,对照组中本身没有施加过氮肥,在实验组中施加适量的氮肥,最终测定实验组数据:可溶性总氮50.03~5

4.51

mg/kg、可容性有机氮41.38~44.33 mg/kg,对照组数据:可溶性总氮53.24~59.32 mg/kg、可溶性有机氮42.03~49.38

mg/kg,可溶性有机氮含量的比例均在75%~85% [2]。经过实验对比发现,氮肥对土壤中的可溶性有机氮含量并无太大影响。

4 结语

可溶性有机氮在土壤中的含量,必须处于平衡状态,才能满足作物的实际需求。因此,应深入分析土壤中可溶性有机氮含量的影响因素,为有机氮的固定提供可靠的方法,解决影响因素对可溶性有机氮含量的干扰,发挥可溶性有机氮在土壤中的潜力,为作物生长提供优质的土壤环境,以保障有机氮的含量符合作物生长的需求。

土壤速效氮磷钾、有机质测定方法

土壤水解性氮的测定(碱解扩散法) 土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。其测定结果与作物氮素吸收有较好的相关性。测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。 测定原理 在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持1.2mol/L的浓度)。水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。 操作步骤 1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。 3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。同时要做空白试验,滴定所用盐酸量为V0。 结果计算 水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100 式中: N—标准盐酸的摩尔浓度; V—滴定样品时所用去的盐酸的毫升数; V0—空白试验所消耗的标准盐酸的毫升数;

土壤有机质含量测定

土壤有机质的测定 一重铬酸钾容量法——外热法 1原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易 变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g,溶于600~800ml 蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免急剧升温,每加约100ml硫酸后稍停片刻,并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.5 0.1 mol·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶 解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~800ml水中,加浓硫 酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍把土块压细,使之通过 1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到0.0001g。置入150ml三角 瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬酸钾-硫酸溶液10ml混匀。

土壤全氮含量测定

土壤全氮含量测定 土壤全氮含量测定 一、方法原理 土壤样品用浓H2S04—催化剂加热消煮,使各种形态的氮都转化为NH4+—N,然后加碱蒸馏 ,用硼酸吸收NH3,用标准酸滴定,计算样品含N量。 主要反应: 含N化合物+H2S04———(NH4)2S04+CO2+SO2+ H20 (NH4)2S04+2NaOH——2NH3+ Na2S04+2H20 NH3+H3B03———————NH4·H2B03 2NH4·H2B03 +H2S04一(NH4)2S04+2H3B03 二、试剂 1,混合催化剂:1g硒(Se)粉,10gCuS04.5H20,100gK2S04磨细混匀。 2.浓H2S04。 3.40%NaOH:400gNaOH,加水至1000ml。 4.硼酸吸收液(2%):60g硼酸(H3B03)溶于2500ml水,加60ml混合指示剂,用0.1mol NaOH调节pH为4.5~5.0(紫红色),然后加水至3000ml。 5.混合指示剂:0.099g溴甲酚绿和0.066g甲基红,溶于100ml乙醇。 6.0.01~0.02MOL.L-1标准酸(1/2H2SO4):3ml浓H2S04加入10000ml水中,混匀。 标定:准确称取硼砂(Na2B204)1.9068g,溶解定容为100ml,此为硼砂溶液。取此液10ml,放人三角瓶中,加甲基红指示剂2滴,用所配标准酸滴定由黄色至红色止,计算酸浓度。 三、仪器。 开氏瓶、电炉、定N蒸馏器、滴定管(半微量)。 四、操作步骤 1.称土样(100目)0.5~1g,放入开氏瓶底。加入混合催化剂2g,加几滴水湿润,再加入 浓H2S04 5ml,摇匀。 2,在通风柜内加热消煮,至淡兰色(无黑色)后再消煮0.5~1小时。取下冷却后,加水约 50ml。 3.取20ml硼酸吸收液(2%H3B03)放人250ml三角瓶中,三角瓶置于定N蒸馏器冷凝管 下,管口浸入吸收液中。 4.开氏瓶(内有消煮液)接在定N蒸馏器上,由小漏斗加人20~25ml 40%浓度的NaOH 溶液,夹紧不使漏气。 5.通水冷凝,通蒸气蒸馏15分钟左右。在临近结束前,使冷凝管口离开吸收液,再蒸馏2分钟,并用纳氏试剂或pH试纸检查是否蒸馏完全。如已蒸馏完毕,用少量水冲洗冷凝管下 口,然后取出三角瓶。 6.用0.01 MOL.L-1标准酸溶液滴定,由兰绿色滴暮紫红色为终点。 五、计算 土壤全N(g.Kg-1)=[(V-V0)*C*14*10-3*103]/W

土壤各种氮的测定

土壤铵态氮的测定 2 mol·L-1KCl浸提—蒸馏法 1方法原理用2mol·L-1KCl浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。取一份浸出液在半微量定氮蒸馏器中加MgO(MgO是弱碱,有防止浸出液中酰铵有机氮水解的可能)蒸馏。蒸出的氨以H3BO3吸收,用标准酸溶液滴定,计算土壤中的NH4+—N含量。 2主要仪器振荡器、半微量定氮蒸馏器、半微量滴定管(5mL)。 3试剂 (1)20g·L -1硼酸—指示剂。20gH3BO3(化学纯)溶于1L水中,每升H3BO3 溶液中加入甲基红—溴甲酚绿混合指示剂5mL并用稀酸或稀 碱调节至微紫红色,此时该溶液的pH为4.8。指示剂用前与硼酸混 合,此试剂宜现配,不宜放。 (2)0.005 mol·L-11/2H2SO4标准液。量取H2SO4(化学纯)2.83mL,加蒸馏水稀释至5000mL,然后用标准碱或硼酸标定之,此为 0.0200 mol·L-1 (1/2H2SO4)标准溶液,再将此标准液准确地稀释4倍, 即得0.005mol·L-11/2H2SO4标准液(注1)。 (3)2 mol·L-1KCl溶液称KCl(化学纯)14901g溶解于1L水中。 (4)120g·L–1MgO悬浊液 MgO12g经500~600℃灼烧2h,冷却,放入100mL水中摇匀。 4操作步骤

取新鲜土样10.0g(注2),放入100mL三角瓶中,加入2mol·L-1KCl 溶液50.0mL。用橡皮塞塞紧,振荡30min,立即过滤于50mL三角瓶中(如果土壤NH4+—N含量低,可将液土比改为2.5:1)。 吸取滤液25.0mL(含NH4+—N25μg以上)放入半微量定氮蒸馏器中,用少量水冲洗,先把盛有20g·L–1硼酸溶液5mL的三角瓶放在冷凝管下,然后再加120g·L–1 MgO悬浊液10mL于蒸馏室蒸馏,待蒸出液达30~40mL 时(约10min)停止蒸馏,用少量水冲洗冷凝管,取下三角瓶,用 0.005mol·L-11/2H2SO4标准液滴至紫红色为终点,同时做空白试验。 5结果计算 土壤中铵态氮NH4+—(N)含量(mg·kg-1) = 式中:c——0.005mol·L-11/2H2SO4标准溶液浓度; V——样品滴定硫酸标准溶液体积(mL); V0——空白滴定硫酸标准溶液体积(mL); 14.0——氮的原子摩尔质量(g·mol-1); ts——分取倍数;

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化 过程 This model paper was revised by the Standardization Office on December 10, 2020

土壤氮素的形态及其转化过程 摘要:氮是植物生长发育所必需的大量元素,对植物的产量和品质影响很大。土壤中氮素的形态及其转化过程和结果则直接决定了氮对植物生长的有效性的大小,了解土壤中氮素存在的形态和其转化过程,对于科学合理经济的肥料施用具有现实的启示作用。 关键词:氮素;形态;转化过程 土壤中氮素的含量受自然因素和人为因素的双重影响,较高的氮素含量表明土壤肥力也较高。自然条件下,土壤没有受到人为因素的影响,有机质日积月累,土壤中氮的含量也较高。耕地土壤氮素含量及转化过程则更强烈的受到人为耕作、施肥、不同作物等因素的影响,因而相对表现的复杂一些。 一、土壤中氮素的形态 1.无机态氮 无机态氮包括固定态NH4+、交换性NH4+、土壤溶液中的NH4+、硝态氮(NO3-)、亚硝态氮等,这其中以NH4+离子和NO3-离子最容易被植物吸收利用,农业生产中常常用到的碱解氮,也叫水解氮或速效氮,就属于无机态氮中的一部分。无机态氮并不是全部都能被植物所直接吸收利用,它们中的大部分是被粘土矿物晶层所固定了的固定态铵,不能作为速效氮存在。固定态铵只有在土壤中经过相

应的转化,转化为铵离子或硝酸离子、硝酸盐类的含氮物,才能为作物利用。 2.有机态氮 有机态氮构成了土壤全氮的绝大部分。它们与有机质或粘土矿物相结合,或与多价阳离子形成复合体。有机态氮大都难以分解,并不能为作物所直接吸收利用。但有机态氮的含量高低依然是衡量土壤肥力高低的重要指标,有机态氮的含量高,可被转化的氮素水平也相应的高,其作为植物氮素营养‘库’的存在是有很大的作用的。 二、土壤中氮素的转化过程 1.氮素的矿化与生物固持作用 氮素的矿化作用,简单的说就是有机态的、不易分解的氮素及含氮化合物在土壤中微生物的参与下分解转化为无机态氮的过程,是一个氮的速效化的过程,也是一个可利用氮素增加的过程。氮的固持作用,就是土壤中的无机态氮在土壤微生物的作用下转化为细胞体中有机态氮的过程,其对于农业生产上的实质就是可利用的速效氮的减少过程。 2.铵离子的固定与释放 铵离子的固定,其实质就是土壤溶液中的能自由移动的、可交换的铵离子被土壤胶体所吸附,变成不可交换的铵离子的过程,固定了的铵离子不能再被交换到土壤溶液

土壤铵态氮的测定

土壤铵态氮的测定 A 纳氏试剂比色法 1方法提要 土壤样品中的NH4+用氯化钾溶液提取,在碱性条件下与纳氏试剂络合生成黄色络合物,进行比色测定。 2适用范围 本方法适用于各类土壤铵态氮含量的测定。 3主要仪器设备 3.1 分光光度计; 3.2 往复式或旋转式振荡机,满足180r/min±20r/min的振荡频率或达到相同效果; 3.3 塑料瓶,200mL。 4试剂 4.1氯化钾提取液[c(KCl)=2mol·L-1]:称取149.1g氯化钾溶于水,稀释至1L; 4.2酒石酸钠溶液[ρ(Na2C4H4O4·2H2O)=250g·L-1]:称取25g酒石酸钠(Na2C4H4O4·2H2O)溶于水,稀释至100mL; 4.3 纳氏试剂:称取10.0g碘化钾溶于5mL水中,另称取3.5g二氯化汞溶于20mL水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。然后加70mL 300g·L-1氢氧化钾溶液,并搅拌均匀,再滴加二氯化汞溶液至出现红色沉淀为止。搅匀,静置过夜,倾出清液贮于棕色瓶中,放置暗处保存; 4.4 阿拉伯胶溶液[10g·L-1]:称取1g阿拉伯胶溶于100mL沸水中,加入2滴氯仿作为防腐剂(混浊时使其澄清后,倾出上部清液),备用; 4.5 铵态氮标准贮备溶液[ρ(N)=500μg·mL-1]:称取1.910g氯化铵(优级纯,经90℃干燥2h),溶于水中,加入氯仿1mL,定容至1L; 4.6 铵态氮标准溶液[ρ(N)=10μg·mL-1]:测定当天吸取铵态氮标准贮备溶液10.00mL,加水定容至500mL。 5分析步骤: 称取10.0g土壤样品放入200mL塑料瓶中,加入50.0mL 2mol·L-1氯化钾提取液,盖紧瓶盖,摇匀,在振荡机上于20℃~25℃振荡30min(振荡频率:180r/min±20r/min),立

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法 1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。母液要是不及时测定,需立即在-15℃以下保存 2.测定 可溶性有机氮=可溶性全氮-(铵态氮+硝态氮) 要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。 以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定 氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1 L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8 溶液混合定容至1L) 测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。) 标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。稀释10倍即为10mg/L 的氮标准溶液。吸取氮标准溶液(梯度为0ml,1ml,2ml,3ml,4ml,5ml,6ml;对应浓度分别为0 mg/L,0.02 mg/L,0.04 mg/L,0.06 mg/L,0.08 mg/L,0.10 mg/L,0.12mg/L)于50ml容量瓶中,各加入1ml 氧化剂并定容,得氮的标准系列,与样品同样消煮测定A220和A275。以A(A= A220-A275)为纵标,氮浓度为横标绘制标准曲线。 硝态氮测定1 注:硝态氮测定1仅适合于农田土壤,腐殖质含量比较低的土壤,森林土壤和腐殖质含量比较高的土壤不适用,因为森林土壤和腐殖质高的土壤有腐植酸的颜色,干扰比色可采用硝态氮测定2进行测定

土壤侵蚀原理_张洪江_试卷4

土壤侵蚀原理_张洪江_试卷4 水保04级B卷 北京林业大学2006—2007学年第一学期考试试卷 试卷名称:土壤侵蚀原理B卷课程所在院系: 水土保持学院 考试班级学号姓名成绩试卷说明: 1. 本次考试为闭卷考试。本试卷共计2页,共六大部分,请勿漏答; 2. 考试时间为120分钟,请掌握好答题时间; 3. 答题之前,请将试卷和答题纸上的考试班级、学号、姓名填写清楚; 4. 第一大题可直接在试题纸上答题;从第二大题开始可直接在试卷上写题号后答题 5. 答题完毕,请将试卷和答题纸正面向外对叠交回,不得带出考场; 6. 考试中心提示:请你遵守考场纪律,参与公平竞争~ 一、简释下列名词(2分/个×10个=20分)。 1.土壤侵蚀: 在水力、风力、温度作用力和重力等外营力作用下,土壤及其母质被破坏、剥蚀、搬运和沉积的全过程。 2.冻融侵蚀: 3.侵蚀沟: 坡面径流冲刷土壤或土体,并切割陆地表面形成沟道的过程,也称为线状侵蚀或沟状侵蚀。 4.侵蚀模数: 2单位面积上一定时间内被侵蚀带走的泥沙量,以t/km?a 表示。 5.土壤侵蚀程度:

任何一种土壤侵蚀形式在特定外营力种类作用和一定环境条件影响下,自其发生开始,截止到目前为止的发展状况。 6.风力侵蚀: 在降雨雨滴击溅、地表径流冲刷和下渗水分作用下,土壤、土壤母质及其他地面组成物质被破坏、剥蚀、搬运和沉积的全部过程。 7.沟壑密度: 2沟壑密度是指单位面积上侵蚀沟道的总长度,常以 km/km表示。 8.开析度: 2开析度是指单位面积上水文网的总长度,常以 km/km表示。 9.允许土壤流失量 小于或等于成土速度的年土壤流失量。也就是说允许土壤流失量是不至于导致土地生产力降低而允许的年最大土壤流失量。 10. 重力侵蚀: 坡面表层土石物质及中浅层基岩,由于本身所受的重力作用(很多情况还受下渗水分、地下潜水或地下径流的影响),失去平衡,发生位移和堆积的现象。 二、试述重力侵蚀的主要形式及其影响因素(20分)。 重力侵蚀的发生机理主要为,由于在下渗水分影响下,土体、岩体等在重力作用下,沿坡面向下运动产生位移(10分)。 当岩土体在重力作用下,其抗滑阻力小于下滑力时,则发生重力侵蚀(8分)。 其影响因素主要为降雨、下渗水分、地形、地质、地震动等(2分)。 三、试述一级土壤侵蚀类型区的划分依据及其大致范围(15分)。 土壤侵蚀类型一级区的划分依据是外营力种类,将全国划分为水力侵蚀类型区,其大致范围为内蒙的阴山以南、青藏高原的东缘线以东地区;风力侵蚀类型

土壤有机质含量

监测表明:甘肃土壤有机质低有害重金属含量低 2010-06-28 03:51:00 来源: 甘肃日报(兰州) 跟贴 0 条手机看新闻 我省耕地质量监测结果表明 土壤有机质低有害重金属含量低 本报兰州讯(记者王朝霞实习生刘婉琼)省农业节水与土壤肥料站连续13年对我省耕地质量监测表明,我省耕地土壤有机质远低于全国平均水平,土壤培肥任务艰巨;耕地土壤有害重金属汞、砷、铅、铬等含量远低于指标范围,对耕地危害程度较低。 我省于1997年开始进行耕地土壤监测,根据区域、气候、土壤特点和农业生产实际,在具有代表性、面积较大的黑垆土、黄绵土、灌漠土、灰钙土等四大类型土壤上布设监测点,并建立了9个国家级监测站。根据监测结果,我省耕地养分含量指标低于华北、东北、华南、华东地区,基本接近西北地区的平均水平。其中,土壤有机质2009年的全国平均水平为22.97克/千克,而我省平均水平仅为1.21-1.33克/千克;全氮、有效磷含量基本接近全国平均水平,速效钾含量高于全国平均水平。13年间,黄绵土、灌漠土的有机质略有积累,黑垆土则有所下降。 同时,我省主要耕地土壤有害重金属含量较低。汞平均值0.02毫克/千克,变化幅度0.008-0.039毫克/千克,远低于指标≤0.5毫克/千克的范围;砷平均值11.85毫克/千克,变化幅度10.19-13.59毫克/千克,远低于指标≤25毫克/千克范围;铅平均值28.48毫克/千克,变化幅度18.27-38.84毫克/千克,远低于指标≤150毫克/千克范围。这表明我省主要耕地土壤有害重金属含量对耕地危害程度还不是很高。 根据监测,我省耕层养分盈亏情况为氮盈余,磷富积,钾亏缺,我省需要合理调整农田肥料结构,需要加强测土配方施肥,提高有机肥量,减少氮肥使用量,增加磷、钾肥。并对渍涝排水型、坡地梯改型、沙化型、盐碱耕地型、障碍层次型、瘠薄培肥型、高寒阴湿型等全省七种类型的中低产田进行改造。

土壤硝态氮及铵态氮的取样测定

土壤硝态氮和铵态氮的取样测定 1.田间取样与保存 根据小区面积,随机选2~3个样点,采样地点应避开边行以及头尾。在行间取样,以30cm为一层,取样深度可以是0-90cm或0-210cm或更深,分层取样,等层混合。新鲜土样须田间将土壤样品立即放入冰盒,没有冰盒者应将土样放置阴凉处,避免阳光直接照射,并尽快带回室内处理。 2.土样的处理 在田间采样后,立即将土样放置在冰盒中,低温保存。返回实验室后,如果样品数量较多,则放置于冰箱中4℃保存。也可以直接进行土样处理:土壤过3-5cm筛,测定土壤的水分含量,同时作浸提。 3.土样的浸提 称取混匀好的新鲜土壤样品24.00g,放入振荡瓶,加100 ml 1mol/L 优级纯KCl浸提液,充分混匀后放入振荡机振荡1个小时,用定性滤纸过滤(注意:国内好多滤纸含有铵态氮,需选择那些无铵滤纸)到小烧杯或胶卷盒中,留滤液约20ml备用,每批样做3个空白。若样品不能及时测定,应放入贮藏瓶中冷冻保存。 同时称取20-30 g鲜土放入铝盒中105℃下烘干测定土壤水分。剩余土样自然风干后保存。 4.土壤硝态氮、铵态氮测定 测定前先解冻贮藏瓶盒中的滤液,并保持滤液均匀(注意:解冻后的样品有时有KCl 析出,必须等KCl溶解后,液体完全均匀后再测定),上流动分析测定溶液中的铵态氮和硝态氮含量(专门的试验人员负责)。所用标准溶液必须是用1mol/L KCl浸提液配制。 有时样品浓度超出了机器的测定范围,需对样品进行稀释(注意:应以最低稀释倍数把样品测定出来,且不可放大稀释倍数,这样会引起很大误差)。 流动分析测定的是溶液中的铵态氮和硝态氮浓度,单位是mg/L,必须根据土壤样品含水量和土壤干重换算成mg N/kg。如果要换算成kg N/ha,可以通过下列公式:土壤硝态氮或铵态氮(kg N/ha)=土壤硝态氮或铵态氮(mg N/kg)* 采样层次(30cm 或20cm)* 土壤容重/ 10

土壤中氮的形态和转化

土壤中氮的形态和转化 徐斌 一、土壤中氮的形态 土壤中的氮素形态分无机态及有机态两大类,但以有机态为主,按其溶解度大小和水解难易分为3类:第一,水溶性有机氮;第二,水解性有机氮;第三,非水解性有机态氮;它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮。它们都是水溶性的,都能直接为植物吸收利用。铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 1.有机态氮 按其溶解度大小和水解难易分为3类: 第一、水溶性有机氮一般不超过全氮的5%。它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很 容易水解,释放出离子,是植物速效性氮源。 第二、水解性有机氮占全氮总量的50%-70%。主要是蛋白质多肽和氨基糖等化合物。用酸碱等处理时能水解成为较简单 的易溶性化合物。 第三、非水解性有机态氮占全氮的30%-50%。它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 2.无机态氮

土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。它们都是水溶性的,都能直接为植物吸收利用。 第一,硝态氮土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。 第二,铵态氮土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 第三,亚硝态氮土壤中的亚硝态氮是硝化作用的中间产物。二、土壤中氮的转化 土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2 COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2 COOH+H2

土壤有机质含量的测定

土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K 2Cr 2 O 7 +3C+8H 2 SO 4 →K 2 SO 4 +2Cr 2 (SO 4 ) 3 +3CO 2 +8H 2 O K 2Cr 2 O 7 +6FeSO 4 +7H 2 SO 4 →K 2 SO 4 + Cr 2 (SO 4 ) 3 +3Fe 2 (SO 4 ) 3 +8H 2 O 用Fe2+滴定剩余的K 2Cr 2 O 7 2-时,以邻啡罗啉(C 2 H 8 N 2 )为氧化还原指示剂,在 滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO 4.7H 2 O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁 55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H 2SO 4 1.5ml,再加蒸馏 水定容到1000ml备用。

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析 核心提示:摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态... 摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。 关键词:土壤;全氮;测定方法 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。 土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。我国土壤的含氮量,从东向西、从北向南逐渐减少。进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。 1 土壤全氮的测定 1.1 开氏法 近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。但开氏法目前仍作为一个统一的标准方法,此法容易掌握,测定结果稳定,准确率较高。 开氏法测氮的原理为:在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,求出土壤全氮含量(不包括硝态氮)。含有硝态和亚硝态氮的全氮测定,在样品消

天然水体中的溶解性有机氮

全世界河流中的总氮有14%~90%由有机氮组成。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON)是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%。传统观点认为DON是一类难以被利用、生物有效性(bioavailability)低的有机氮库,不会促进水体水质富营养化,因而不重视DON的管理和控制,甚至在水体氮负荷估算时忽略不计DON含量。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注。目前世界上DON的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON研究相对较为缺乏。 能利用DON的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate、铜绿微囊藻Microcystis aeruginosa)具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长。有毒藻种可以产生肝毒素、神经毒素等藻毒素,不利于作为饮用水源的淡水水体的安全保障。当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON绝大部分物质本身对人体具有直接或间接的毒害作用。研究发现,水中DON 大部分组成物质本身对人体具有直接或间接致毒作用,可生成更多的消毒副产物、产生较为严重的膜污染等,因此DON 相关研究已成为国际饮用水处理领域新的研究方向。尤其是近年来,研究人员发现DON 易和消毒剂发生反应生成含氮消毒副产物( N-DBPs) ,如卤化腈、二甲基亚硝胺、卤代硝基甲烷、卤代酰胺等,这些N-DBPs 的浓度远低于三卤甲烷、卤乙酸等常规消毒副产物,但其“三致”特性却远超过后者。DON 是N-DBPs 的前体物,有效削减DON 是控制消毒过程中N-DBPs 生成的重要手段,而了解微污染原水中DON 的组成规律是关键。 1.淡水水体DON 含量与来源 (1)含量 多数自然水体中的TDN含量与其中的DON密切相关。开阔海洋表面DON 约占TDN的83%,河口DON约占13%;近海约占18%。在淡水生态系统中,其DON浓度要比DIN浓度高。 当前,测定DON含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Totaldissolved nitrogen)浓度的测定,然后再减去溶解性无机氮(DIN,

影响土壤侵蚀的社会经济因素研究进展

第30卷第3期2011年03月 地理科学进展 PROGRESS IN GEOGRAPHY V ol.30,No.3Mar.,2011 收稿日期:2010-10;修订日期:2011-01.基金项目:国家自然科学基金项目(40671019,50725930)。作者简介:王红兵(1982-),男,甘肃静宁人,博士生,从事土壤侵蚀研究。E-mail:hbwang82@https://www.sodocs.net/doc/9410296853.html, 通讯作者:许炯心(1948-),男,四川绵阳人,研究员,博士生导师,从事河流地貌研究。E-mail:xujx@https://www.sodocs.net/doc/9410296853.html, 268-274页 影响土壤侵蚀的社会经济因素研究进展 王红兵,许炯心,颜明 (中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京100101) 摘要:本文在总结了人为加速侵蚀研究的基础上,介绍了人口增长、政策导向、经济发展和土地利用变化4个方面社会经济因素对土壤侵蚀的影响,概述了国内外对影响土壤侵蚀的社会经济因素的研究方法。在以上综述的基础上提出了以后研究需要深入的3个方面:多学科交叉研究、社会经济学模型研究和区域差异化研究。关键词:土壤侵蚀;社会经济因素;进展 土壤侵蚀是危及人类生存与发展的主要环境 问题之一,因此,土壤侵蚀研究在世界各国受到普遍重视。根据郑粉莉等对土壤侵蚀研究进展的阶段划分,20世纪80年代后,土壤侵蚀的研究在侵蚀产沙过程及其机理研究方面取得了重要进展[1]。土壤侵蚀主要受自然和社会经济两个方面因素的影响,其中自然因素如降雨、植被以及地形等直接影响侵蚀过程,而社会经济因素主要通过对人类活动的影响间接作用于侵蚀过程。由于社会经济因素作用的复杂性,对影响土壤侵蚀的社会经济因素的研究一直是侵蚀产沙研究的薄弱环节。本文从国内外已有的研究成果出发,总结关于人为加速侵蚀量方面的研究,概括对土壤侵蚀产生影响的主要社会经济因素的研究进展,探讨了已有的研究方法,以深化对土壤侵蚀发生机理的认识。 1人为加速侵蚀的界定 自然侵蚀过程受到了人为活动影响而加速发展,进而对土地利用和人类生存环境产生负面影响时,就演变成“人为加速侵蚀”,是人为因素作用的范畴[2]。国内对人为加速侵蚀研究比较多,集中在加速侵蚀量与自然侵蚀量的对比方面。景可等[3]认为全新世以来黄土高原进入侵蚀的发展期,唐朝以前基本属于自然侵蚀,自然侵蚀加速速率为7.9%,唐朝以后,因人类活动而引起的加速侵蚀的速率逐渐递增,到20世纪80年代已经达到25%。陆中臣等[4]采用历史反演法对黄土高原自然侵蚀和人为加 速侵蚀的定量研究表明,黄土高原自然侵蚀量占总侵蚀量70%,而人为加速侵蚀约占30%。贾绍凤[5]根据水土保持规律和有无人类对植被影响进行对比,认为安塞县自然侵蚀占总侵蚀的9.55%,最不乐观占到16.67%,有利时仅占2.03%,说明加速侵蚀的作用明显占主导地位。郑粉莉等[6]通过有林与无林小流域的观测发现林地开垦后,流域的加速侵蚀量是自然侵蚀量的几百倍至几千倍,因此判断黄土高原地区,当人为破坏植被后,人为加速侵蚀在现代土壤侵蚀中占据主导地位。国内对加速侵蚀的研究多选取黄土高原为研究对象,这主要是因为黄土高原从历史上来说植被覆盖的变化较大,现代生态环境脆弱,人类活动影响较为严重。综上所述,在黄土高原地区人为加速侵蚀速率在逐年递增,并在现代土壤侵蚀中占据主导地位。 国外对人类活动引起的土壤侵蚀量也有类似的界定。Hooke [7]研究表明,在美国每年因建筑房屋移动土石方为8亿t 、开矿为38亿t 、修路为30亿t ,此外在农业活动中使7亿t 的土壤流失到河流中去,以上共计76亿t 。与此同时,如果不计人类活动的影响,则河流每年输入的物质(泥沙与溶解质)为10亿t 。由此可见,人类活动移动的物质量是河流的7.6倍。 纵观国内外的研究发现,人为加速侵蚀已经成为现代土壤侵蚀的主力,对人为加速侵蚀量的界定,为探究人类活动背后的社会经济因素奠定了基础,下面分别从4个方面来综述影响土壤侵蚀的社会经济因素方面研究的进展。

土壤有机质含量的测定-重铬酸钾发

测定所需试剂 1 土壤有机质的测定一重铬酸钾容量法——外热法 1 原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机 质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g ,溶于600~800ml蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免 急剧升温,每加约100ml硫酸后稍停片刻, 并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.50.1m o l·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~ 800ml水中,加浓硫酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍压细,使之通过1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm 筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到 0.0001g。置入150ml三角瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬 酸钾-硫酸溶液10ml混匀。 表1 不同土壤有机质含量的称样量 有机质含量,% 试样质量,g

土壤硝态氮和铵态氮的测定方法

一、原理: 过滤后的样品经过一个开放的镀铜镉还原器通道后,硝酸根被还原成亚硝酸根,亚硝酸根通过磺胺处理后,与N-(1-萘基)-乙二胺二盐酸盐偶联,形成深红色的偶氮染料,然后在550nm或者520nm比色分析。 二、样品处理 土壤鲜样采取四分法处理,根据实验用量进行过筛(比目大小视样品含水量而定)。过筛后的土样,取出5g土样放入离心管,加入25ml 氯化钾提取液(2moL/L),震荡2小时后进行离心(8000 g ,15min),静置后过滤,取上清液测定。若不能及时测定,放入4℃冰箱保存。 三、试剂配制: 试剂用水:蒸馏水或去离子水。 (1)显色试剂:(棕色玻璃瓶,避光保存) 150ml水,加入25ml浓磷酸▲,冷却至室温后,加入10g磺胺,再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。用水定容至250ml。加入浓缩探针清洗液(表面活性剂)。 (2)氯化铵-EDTA缓冲液(ammonium chloride-EDTA):把85g氯化铵和0.1g 乙二胺四乙酸二钠盐(EDTA-Na2)溶解 于水,定容至1L。用浓氨水▲调节PH至。 (3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)}取100ml的氯化铵-EDTA缓冲液,稀释至1L。调节PH至。(4)2%硫酸铜: 10g 五水硫酸铜()溶于水,定容至500ml。 (5)5mol/L盐酸: 小心慢慢加入浓盐酸▲于水中,冷却后定容至100ml。 (6)硝酸盐存储溶液(1g/L):(溶液6个月内有效) 7.218g硝酸钾溶于水,定容至1L,加入1ml氯仿▲(防腐剂)。(7)比色管清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效)取50ml比色管清洗液,加水定容至1L。 (8)进样针清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效。) 取进样针清洗液,加水定容至1L。 四、测定方法: 土壤硝态氮测定采用SmartChem全自动间断化学分析仪。

土壤侵蚀的危害

土壤侵蚀的危害:1破坏土地,吞食农田。2降低土壤肥力,加剧干旱的发展。3淤积抬高河床,加剧洪涝灾害。4淤塞湖泊,影响开发利用。 土壤侵蚀:土壤及其母质在水力、风力、重力、冻融等外营力的作用下,被破坏、剥蚀、搬运、沉积的过程。 水土流失:在水力、重力、风力等外营力的作用下,水土资源和土壤生产力的破坏和损失,包括土地表层侵蚀及水的损失。 水土保持:防止水土流失,合理保护、改良和利用风沙区、山丘区的水土资源,维护和提高土壤生产力以利于充分发挥水土资源的经济效益和社会效益,建立良好的生态环境事业。水力侵蚀:在降雨雨滴击溅、地表径流冲刷和下渗水分作用下,土壤、土壤母质及其其它地面组成物质被破坏、剥蚀、搬运、和沉积的全部过程。 雨滴击溅侵蚀:在雨滴击溅作用下土壤结构和土壤颗粒产生位移的现象。 混合侵蚀:是指在水流冲力和重力作用下产生的一种特殊侵蚀类型,常称泥石流。 冰川侵蚀有冰川运动队地表土石体造成机械破坏作用的一系列现象。 面蚀:斜坡上的降雨不能完全被土壤吸收时在地表产生积水,由于重力作用形成地表径流,开始形成的地表径流处于未集中的分散状态,分散的地表径流冲走地表土粒 沟蚀:在面蚀的基础上,尤其细沟状面蚀进一步发展,分散的地表径流由于地表影响逐渐集中,形成有固定流路的水流称作集中的地表径流或股流,集中的地表径流冲刷地表,切入地面带走土壤、母质及破碎基岩,形成沟壑的过程。 风沙流:气流及其搬运的固体颗粒的混合流。 荒漠化:气候变异和人类活动在内的种种因素造成的干旱、半干旱、亚湿润干旱地区的土地退化 输沙量;气流在单位时间通过单位宽度或面积所搬运是沙量 沙尘暴:大风扬起地面沙尘,使空气混浊,水平能见度小于1000米的恶劣天气。 按导致土壤侵蚀的外营力种类划分:水力重力风力冻融冰川混合生物化学。按发生的时间划分为古代侵蚀现代侵蚀按发生的速度划分为加速侵蚀正常侵蚀 泥石流的分类:按固体物质组成分泥石质水石流泥流。按泥石流性质分稀性泥石流和粘性泥石流按主导因素分冰川型降雨型 土壤侵蚀类型分区原则:1为同一区内的土壤侵蚀类型和侵蚀强度应基本一致2同一区内影响土壤侵蚀的主要因素等自然条件和社会经济条件基本一致3同一区内的治理方向、措施、土地利用方向基本相似4以自然界限为主适当照顾行政区域的性和地域的连续性。 雨滴特性:雨滴形态、大小及雨滴分布、降落速度接地时冲击力、降雨量、降雨量强度和降雨历时等。

相关主题