搜档网
当前位置:搜档网 › 制药用水中总有机碳测定法

制药用水中总有机碳测定法

制药用水中总有机碳测定法
制药用水中总有机碳测定法

制药用水中总有机碳测定法

本法用于检査制药用水中有机碳总量,用以间接控制水中的有机物含量。总有机碳检查也被用于制水系统的流程控制,如监控净化和输水等单元操作的效能。

制药用水中的有机物质一般来自水源、供水系统(包括净化、贮存和输送系统)以及水系统中菌膜的生长

通常采用蔗糖作为易氧化的有机物、1,4-对苯醌作为难氧化的有机物,按规定制备各自的标准溶液,在总有机碳测定仪上分别测定相应的响应值,以考察所采用技术的氧化能力和仪器的系统适用性。

对仪器的一般要求有多种方法可用于测定总有机碳。对这些技术,只要符合下列条件均可用于水的总有碳测定。

(1)总有机碳测定技术应能区分无机碳(溶于水中的二氧化碳和碳酸氢盐分解所产生的二氧化碳)与有机碳(有机物被氧化产生的二氧化碳),并能排除无机碳对有机碳测定的干扰。

(2)应满足系统适用性试验的要求。

(3)应具有足够的检测灵敏度(最低检出限为每升含碳等于或小于0.05mg/L;)。

采用经校正过的仪器对水系统进行在线监测或离线实验室测定。在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素(如有机物的蒸气)等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。

总有机碳检査用水应采用每升含总机碳低于0.10mg,电导率低于l.(μS/cm(25℃)的高纯水。所用总有机碳检查用水与制备对照品溶液及系统适用

性试验溶液用水应是同一容器所盛之水。

对照品溶液的制备蔗糖对照品溶液除另有规定外,取经105°C干燥至恒重的糖对照品适量,精密称定,加总有机碳检查用水溶解并稀释制成每升中约含1.20mg的溶液(每升含碳0.50mg)

1,4-对苯醌对照品溶液除另有规定外,取1,4-对苯醌对照品适量,精密称定,加总有机碳检查用水溶解并稀释制成每升中含0.75mg的溶液(每升含碳0.50mg)。

供试溶液离线测定由于水样的采集及输送到测试装置的过程中,水样很可能遭到污染,而有机物的污染和二.氧化碳的吸收都会影响测定结果的真实性。所以,测定的各个环节都应十分谨慎。采样时应使用密闭容器,样后容器顶空应尽量小,并应及时测试。所使用的玻璃器皿必须严格清洗有机残留物,并用总有机碳检査用水做最后淋洗。

在线测定将总有机碳在线检测装置与制水系统连接妥当。取水及测定系统都须进行充分的清洗。

系统适用性试验取总有机碳检查用水、蔗糖对照品溶液和1,4-对苯醌对照品溶液分别进样,依次记录仪器总有机碳响应值。按下式计算,以百分数表示

的响应效率应为85%~115%。

r ss-r w

×100

r s-r w

式中r w为总有机碳检查用水的空白响应值;

r s为蔗糖对照品溶液的响应值;

r ss为1,4-对苯醌对照品溶液的响应值。

测定法取供试制药用水适量,按仪器规定方法测定。记录仪器的响应值r u,除另有规定外,供试制药用水的响应值应不大于r s-r w(0.50mg/L)

此方法可同时用于预先经校正并通过系统适用性试验的在线或离线仪器操作。这种由在线或离线测定的水的质量与水样在水系统中的采集位置密切相关。应注意水样的采集位置必须能真实反映制药用水的质量。

水质——总有机碳(TOC)的测定

本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前 处理,以消除对测定的干扰影响:SO 42-400;Cl-400:NO 3 -100;PO 4 3-100;S2-100。 水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC 8H 4 O 4 ):优质纯。

附录ⅧS制药用水电导率测定法

附录Ⅷ S 制要用水电导率测定法本法是用于检查制药用水的电导率进而控制水中电解质总量的一种测定方法。 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯化水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越高,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 仪器和操作参数 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精度应达到±0.1μS/cm。 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。 测定法 1.纯化水

可使用在线或离线电导率仪,记录测定温度。在表1中,测定温度对应的电导率值即限度值。如测定温度未在表1中列出,则应采用线性内插法计算得到限度值。如测定的电导率值不大于限度值,则判为符合规定;如测定的电导率值大于限度值,则判为不符合规定。 表1 温度和电导率的限度(纯化水) 温度/℃电导率/μS·cm-1温度/℃电导率/μS·cm-1 0 2.4 60 8.1 10 3.6 70 9.1 20 4.3 75 9.7 25 5.1 80 9.7 30 5.4 90 9.7 40 6.5 100 10.2 50 7.1 内插法的计算公式为: 式中为测定温度下的电导率限度值; 为表1中高于测定温度的最接近温度对应的电导率限度值; 为表1中低于测定温度的最接近温度对应的电导率限度值; 为测定温度; 为表1中高于测定温度的最接近温度; 为表1中低于测定温度的最接近温度。 2.注射用水 (1)可使用在线或离线电导率仪。在表2中,不大于测定温度的最接近温

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

水中总有机碳TOC的测定

水中总有机碳(TOC)的测定 一、实验目的: 通过本实验,了解本仪器的工作原理,熟悉各操作步骤。 二、方法原理: 总有机碳TOC(Total Organic Carbon),是以构成有机物成分之一的碳的数量表示有机污染物质的量。它是把水中所含有机物质里面的碳转化成二氧化碳后加以测定而求得的。 TOC-10B自动测定仪采用分别测出总碳量和无机碳量,并从两者的差值求得TOC的方法。测定原理如下: 用空气泵将空气引入吸气管,吸气管置于TC电炉内。900℃的高温足以把空气中含碳的物质变成CO2,由吸气管而来的空气经由空气过滤器除尘,由CO2吸收器除CO2制成载气。 载气被通入TC和IC两个通道,它们由各自的流量控制阀控制在给定的流速下,空气按给定的流速进入燃烧管(不是T C燃烧管就是IC反应管,这要根据所需要的途径来选择)。一定量的样品由微量注射器通过注射口注入,使其燃烧或分解。分解或燃烧后的气体直接通过T C一IC选择部分到除水器以除去剩余水气。经这样处理的气体引入红外分析部分去测量CO2浓度。 (1)总碳量(TC )的测定: 用微量注射器将样品注入燃烧管中,在900℃的高温及C O304催化剂的作用下样品中所有含碳物质(T C)燃烧和氧化成CO2,被载气带到红外线分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (2) 无机碳(IC)的测量: 用微量注射器将样品注入IC反应管中,在160℃的温度及磷酸催 化剂的作用下样品中所含无机碳(IC)分解产生CO2,被载气带到红外分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (3)TOC (总有机碳)的测量: 从T C(总碳)减去IC(无机碳)得到TOC (总有机碳),或者将样 品预处理除去IC,然后在TC通道中进行测量,这样就能直接测量TOC。 (4)红外线分析原理: 由一种原子组成的那些分子如N2、O2、和H2不吸收红外线,由两种原子组成的分子,如CO2和CH3吸收红外线,所吸收的红外线的波长与组成分子的原子种类、结合状态有关。在TOC-10B中,载气中的N2和O2不吸收红外线。但是CO2吸收4.3μm的红外线。所吸收的光量正比于气体的浓度。根据朗勃-比尔定律,气体的浓度可由吸收的光量来测定。红外线分析部分原理如下: 为了测量起见,采用非色散系统代替色散光谱,两股间断平行光由检测器测量,并 对之进行选择,被测气体引入测定池光路中的样品池,在另一光路上的参比池封有不吸

制药用水的风险评估和质量控制

ISPE-CCPIE CHINA CONFERENCE 2012
制药用水系统的风险评估与质量控制
张功臣 2012-09-25
September 24-25 2012 Beijing
1

分类
? 制药用水系统是制药厂房设施的重要组成部分, 从风险评估角度,因其介质与药品直接接触,其
对药品的质量有着直接的影响,属于直接影响质 量的关键系统。
液态
制药用水系统需要调试和确认!
纯化水 高纯水
气态
纯蒸汽 无菌氮气 无菌压缩空气
注射用水
无菌氧气
无菌二氧化碳
ISPE-CCPIE CHINA CONFERENCE 2012

系统的“质量”要求
一 满足药典与法规的“质量”要 求
二 满足生产与工艺的“质量”要 求
三 满足投资与运行的“质量”要 求
ISP3E-CCPIE CHINA CONFERENCE 2012

系统的“质量”要求
一 满足药典与法规的“质量”要 求
二 满足生产与工艺的“质量”要 求
三 满足投资与运行的“质量”要 求
ISP4E-CCPIE CHINA CONFERENCE 2012

系统的“质量”要求
一 满足药典与法规的“质量”要 求
? 药典与法规 的质量要求 是什么?
ISP5E-CCPIE CHINA CONFERENCE 2012

药典对于制药用水的规定
? 制药用水的分类:
?原料水--制药生产工艺过程中使用的水。
例如:饮用水;纯化水;高纯水;注射用水; 9 工程上的制药用水特指“原料水” 。
?产品水--按制药工艺生产的包装成品水。
例如:抑菌注射用水;灭菌吸入用水;灭菌注射 用水;灭菌冲洗用水;灭菌纯化水;
ISP6E-CCPIE CHINA CONFERENCE 2012

02 纯化水电导率测定法标准操作规程

1.目的 建立体纯化水电导率测定法标准操作规程。 2.适用范围 适用于纯化水电导率的测定。 3.职责 QC检验员按此规程执行。 4.内容及方法 4.1 简述 4.1.1 本法是用于检查纯化水的电导率,进而控制水中电解质总量的一种测定方法。电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 4.1.2 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越高,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。水中含有其他杂质离子时,也会使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 4.2 仪器和操作参数 4.2.1 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μs/cm,仪器精度应达到±0.1μs/cm。 4.2.2 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。

-实验_电导法测定乙酸电离平衡常数

实验六 电导法测定乙酸电离平衡常数 报告人: 同组人: 实验时间2010年06月12日 一.实验目的: 1.掌握电导、电导率、摩尔电导率的概念以及它们之间的相互关系。 3.掌握电导法测定弱电解质电离平衡常数的原理。 二.实验原理: 1.电离平衡常数K c 的测定原理 在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。二者之间有如下近似关系: ∞∧ ∧= m m α (1) 式中为弱电解质的电离度。 对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下: CH 3COOH →CH 3COO - + H + 起始浓度 c 0 0 平衡浓度 c (1-α) c α c α 则 a ca K c -=12 (2) 以式(1)代入上式得:) (Λm m 2ΛΛΛc K m m c -=∞∞ (3) 因此,只要知道∧m ∞ 和∧m 就可以算得该浓度下醋酸的电离常数K c 。 将式(2)整理后还可得: (4) 由上式可知,m m 1/Λm 作图可得一条直线,由 直线斜率可测出在一定浓度范围内c K 的平均值。 2.摩尔电导率∧m 的测定原理 电导是电阻的倒数,用G 表示,单位S (西门子)。电导率则为电阻率的倒数,用k 表 示,单位为G·m -1 。 摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m 的两个电极之间,这时所具有的电导称为摩尔电导率。摩尔电导率与电导率之间有如下的关系。 ∧m = κ/c (5) 式中c 为溶液中物质的量浓度,单位为mol·m -3 。 在电导池中,电导的大小与两极之间的距离l 成反比,与电极的面积A 成正比。 G = κA/ l (6) 由(6)式可得 κ=K cell G (7)

水质 总有机碳的测定

水质总有机碳的测定 燃烧氧化-非分散红外吸收法 1 适用范围 本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化-非分散红外吸收方法。 本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1 mg/L,测定下限为0.5 mg/L。 注1:本标准测定TOC分为差减法(3.1)和直接法(3.2)。当水中苯、甲苯、环己烷和三氯甲烷等挥发性有机物含量较高时,宜用差减法测定;当水中挥发性有机物含量较少而无机碳含量相对较 高时,宜用直接法测定。 注2:当元素碳微粒(煤烟)、碳化物、氰化物、氰酸盐和硫氰酸盐存在时,可与有机碳同时测出。 注3:水中含大颗粒悬浮物时,由于受自动进样器孔径的限制,测定结果不包括全部颗粒态有机碳。 2 术语和定义 下列术语和定义适用于本标准。 2.1 总有机碳total organic carbon,TOC 指溶解或悬浮在水中有机物的含碳量(以质量浓度表示),是以含碳量表示水体中有机物总量的综合指标。 2.2 总碳total carbon,TC 指水中存在的有机碳、无机碳和元素碳的总含量。 2.3 无机碳inorganic carbon,IC 指水中存在的元素碳、二氧化碳、一氧化碳、碳化物、氰酸盐、氰化物和硫氰酸盐的含碳量。 2.4 可吹扫有机碳purgeable organic carbon,POC 指在本标准规定条件下水中可被吹扫出的有机碳。 2.5 不可吹扫有机碳non-purgeable organic carbon,NPOC 指在本标准规定条件下水中不可被吹扫出的有机碳。

3 方法原理 3.1 差减法测定总有机碳 将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 3.2 直接法测定总有机碳 试样经酸化曝气,其中的无机碳转化为二氧化碳被去除,再将试样注入高温燃烧管中,可直接测定总有机碳。由于酸化曝气会损失可吹扫有机碳(POC),故测得总有机碳值为不可吹扫有机碳(NPOC)。 4 干扰及消除 水中常见共存离子超过下列质量浓度时:SO42?400 mg/L、Cl? 400 mg/L、NO3?100 mg/L、PO43? 100 mg/L、S2? 100 mg/L,可用无二氧化碳水(5.1)稀释水样,至上述共存离子质量浓度低于其干扰允许质量浓度后,再进行分析。 5 试剂和材料 本标准所用试剂除另有说明外,均应为符合国家标准的分析纯试剂。所用水均为无二氧化碳水(5.1)。 5.1 无二氧化碳水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。也可使用纯水机制备的纯水或超纯水。无二氧化碳水应临用现制,并经检验TOC质量浓度不超过0.5 mg/L。 5.2 硫酸(H2SO4):ρ(H2SO4)=1.84 g/ml。 5.3 邻苯二甲酸氢钾(KHC8H4O4):优级纯。 5.4 无水碳酸钠(Na2CO3):优级纯。 5.5 碳酸氢钠(NaHCO3):优级纯。 5.6 氢氧化钠溶液:ρ(NaOH)=10 g/L。 5.7 有机碳标准贮备液:ρ(有机碳,C)= 400 mg/L。准确称取邻苯二甲酸氢钾(预先在110~120℃下干燥至恒重)0.850 2 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两个月。 5.8 无机碳标准贮备液:ρ(无机碳,C)=400 mg/L。准确称取无水碳酸钠(预先在105℃下干燥至恒重)1.763 4 g和碳酸氢钠(预先在干燥器内干燥)1.400 0 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两周。 5.9 差减法标准使用液:ρ(总碳,C)= 200 mg/L,ρ(无机碳,C)= 100 mg/L。用单

水质 总有机碳

水质总有机碳(TOC)的测定非色散红外线吸收法 water quality—Determination of TOC by nondispersive infrared absorption method GB 13193-91 本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前处理,以消除对测定的干扰影响:SO42-400;Cl-400:NO3-100;PO43-100;S2-100。水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机

碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC8H4O4):优质纯。 3.3 无水碳酸钠(Na2CO3):优质纯。 3.4 碳酸氢钠(NaHCO3)优质纯,存放于干燥器中。 3.5 有机碳标准贮备溶液:C=400mg/L。 称取邻苯二甲酸氢钾(3.2)(预先在110~120℃干燥2h,置于干燥器中冷却至室温)0.8500g,溶解于水(3.1)中,移入1000mL容量瓶内,用水(3.1)稀释至标线,混匀,在低温(4℃)冷藏条件下可保存48d。 3.6有机碳标准溶液:c=80mg/L。准确吸取10.00mL有机碳标准溶液(3.5),置于50mL容量瓶内,用水(3.1)稀释至标线混匀。此溶液用时现配。

制药用水电导率测定法

制药用水电导率测定法检验标准操作规程 1.目的:建立制药用水电导率测定法检验标准操作规程,保证检验人员操作规范化、标准化。 2.范围:制药用水电导率测定法的检验操作。 3.责任:化验员,化验室主任。 4.制定依据:《中国药典》2010年版、《中国药品检验标准操作规范》2010年版。 5.内容 5.1本法是用于检验制药用水的的电导率进而控制水中电解质总量的一种测定方法。 5.2 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单

位是S/cm(Siemens)或μS/cm。 5.3 纯水中的水分子也会发生某种程度的电离而产生氢离子和氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的导电率。水的导电率与水的纯度密切相关,水的纯度越高,导电率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。水中含有其他杂质离子时也会使水的电导率增高。另外,水的电导率还与水的PH值与温度有关。 5.4 仪器和操作参数 5.4.1 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精密应达到±0.1μS/cm。 5.4.2 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测定的准确度应在±2℃以内。 5.6 测定法 5.6.1 可使用在线或离线电导率仪,记录测定温度。在表1中,测定温度对应的电导率值即为限度值。如测定温度未在标1中列出,则应采用线性内插法计算得到限度值。如测定的电导率值不大于限度值,则判为符合规定;如测定的电导率值大于限度值,则判为不符合规定。 5.6.2 内插法的计算公式为: 式中:κ

测量水中的TOC总有机碳

测量水中的TOC总有机碳 有机碳化合物种类繁多,由于碳有形成长链分子的能力,有机化合物的种类几乎是无限的。气相色谱仪(GC) 或高效液相色谱仪(HPLC)可以用来定量分析特定的有机化合物,当然前提是要知道分析什么物质。 测量总有机碳(TOC)并不分析某种特定的有机化合物,实际测量的样品中往往非常复杂,含有多种混合的有机物质,总有机碳(TOC)表征的就是所有这类物质的总和。测量TOC的原因不外乎过程控制或法规限制,以下是一些常见的TOC测量应用: 自来水厂:有机碳与消毒剂例如氯或臭氧形成消毒副产物(DBP),有可能有致癌性。 在消毒前减少有机碳含量可以大大降低消毒副产物(DBP)对公众健康的危害。 市政污水处理厂:监测进水的TOC含量测量,有助于指导工艺控制,提高处理效率。出水的TOC含量需要达到相应标准才能排放到地表水系中。 工业污水处理:监测出水的TOC含量,确保达标排放。 发电厂:过程水中的TOC含量测量和控制,有助于减少腐蚀性成分对昂贵设备的损害。 制药厂:监测并控制水中的TOC含量,阻止有害细菌的生长。 半导体厂:芯片生产需要超纯水,集成度越高的芯片,对水的纯度要求越高,也需要监测其中的TOC含量。 TOC 的相关概念 无机碳只与氧原子结合,例如二氧化碳,碳酸氢盐或碳酸盐。有机碳可以与不同的原子结合,例如氢原子,氮原子或其它碳原子。下面是关于有机碳的常用概念: TC: 总碳 TOC: 总有机碳 TIC: 总无机碳 DOC: 总溶解有机碳 POC: 可清除有机碳(也叫VOC 挥发性有机碳) NPOC: 不可清除有机碳 总有机碳可以用总碳减去总无机碳来计算,写成公式如下: TC – TIC = TOC

2015药典纯化水及0681制药用水电导率测定法

纯化水 Chunhuashui Purified Water H 2O 18.02 本品为饮用水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的制药用水,不含任何添加剂。 【性状】本品为无色的澄清液体;无臭。 【检査】酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。 硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml和0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管于50°C水浴中放置15分钟,溶液产生的蓝色和标准硝酸盐溶液[取硝酸钾0.163g,加水溶解并稀释至100ml,摇匀,精密量取1ml ,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml 相当于1μg NO 3)]0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。 亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)1ml 和盐酸萘乙二胺溶液(0.1→100)ml,产生的粉红色,和标准亚硝酸盐溶液[取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml相当于1μg NO2)]0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。 氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,和氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加无氨水48ml和碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。 电导率应符合规定(通则0681)。 总有机碳不得过0.50mg/L(通则0682)。

电导测定的基本原理

电导测定的应用 基本原理: 1.弱电解质电离常数的测定 本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数 对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系: HAc H+ + Ac- t=0 C 0 0 C(1-α) Cα Cα t=t 平衡 K= (Cα)2 =Cα 2 (1) C(1-α) 1-α 当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K。电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即 α=Λm/Λ∞m (2) 将(2)代入(1) K= CΛ2m/ [Λ∞m(Λ∞m-Λm)] (3) 整理得 CΛm = K(Λ∞m)2 (4) Λm- KΛ∞m 以CΛm对1/Λm作图,其直线的斜率为K(Λ∞m)2 ,如知道Λ∞m值(可有文献查得),就可算出K。 文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) 电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为: G = к(A / l) (5) 即к= G * 1 / A = G K cell 来表示,它的式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell 单位为m-1。 由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。 在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。摩尔电导率与电导率的关系:

水质的测定-电导率

水质分析:电导率法 一、目的: 1.了解电导率的含义及测定方法。 2.掌握分光光度法对水质的测定原理及方法。 二、原理: 电导率是以数字表示溶液传导电流的能力。纯水的电导率很小,当水中含有无机酸、碱、盐或有有机带电胶体时,电导率就增加。电导率常用于简介推测水中带电荷物质的总浓度。水溶液的电导率取决于带电荷物质的性质和浓度、溶液的温度和粘度等。 电导率的标准单位是S/m(即西门子/米),一般实际使用单位为mS/m,常用单位μS/cm(微西门子/厘米)。 单位间的互换为: 1mS/m = cm = 10μS/cm 新蒸馏水电导率为,存放一段时间后,由于空气中的二氧化碳或氨的溶入,电导率可上升至;饮用水电导率在5-150mS/m之间;海水电导率大约为3000mS/m;清洁河水电导率为10mS/m。电导率随温度变化而变化,温度没升高1度,电导率增加约2%,通常规定25度为测定电导率的标准温度。 由于电导率是电阻的倒数,因此,当两个电极(通常为铂电极或铂黑电极)插入溶液中,可以测出两电极间的电阻R。根据欧姆定律,温度一定时,这个电阴值与电极的间距L(cm)成正比,与电极截面积A(cm2)成反比: R = ρ× L/A

由于电极面积A与间距L都是固定不变的,故L/A是一个常数,称电导池常数(以Q表示)。 比例常数ρ叫做电阻率。其倒数1/ρ称为电导率,以K表示。 S = 1/R = 1/(ρ*Q) S表示电导率,反应导电能力的强弱。 所以,K = QS 或 K = Q/R 当已知电导池常数,并测出电阻后,即可求出电导率。 三、仪器、试剂: 仪器:MP522电导率仪,GDH-2008W恒温浴槽,石英蒸馏水装置。 试剂:市售桶装纯净水、瓶装矿泉水、实验室去离子水、自来水、二次蒸馏水、河水(或湖水或江水)、污水(或废水)。 四、步骤: 1.电导率仪器校准:用标准氯化钾盐溶液对电导率仪器进行校准, 2.将所测水样放入带夹套的容器中,通入恒温水,待温度恒定后,对水样进 行电导率测量。 3.比较电导率的大小,对水样进行分析。 五、数据记录和处理: 气压: 101kpa ;室温:23°C;实验温度:25°C。 1、电导池常数的测定: KCl溶液的浓度: l;KCl溶液电导率:。

电导法测定酶活力

电导法测定酶活力 摘要 我们已经测定了脲酶,脂肪酶,葡萄糖苷酶水解过程中的电导率的变化,这些变化严格地与前两个体系中碳酸铵的释放和第三个体系中氨基的数目成正比。电导率的方法运用在酶和各种生理液浓度的测定中。 引言 Sjoquist,Oker-Blom,Henri,des Bancels 和Bayliss 证实了用电导法测定酶活性的可能性。最近,Northrop在他的课程中也用了这种方法研究胃蛋白酶,测定了卵蛋白盐酸盐的的水解,解释了水解底物的依赖性电离,并研究有关机制的胰蛋白酶消化的动力学。Euler 欧拉一直采用这种方法研究甘肽的水解。Bayliss通过研究脲酶,脂肪酶,葡萄糖苷酶的行为证实了电导率的可能性,但没有报道过任何与这些系统相关的研究。 以电导判断为目的,酶反应可以归类为:(1)那些释放强烈电子的,(2)释放那些弱离的电解质,(3)那些传统被认为非电解质的。脲脲酶,sinigrin- myrosin,和丙酮醛-乙二醛是属于第一类,而蛋白质水解系统,会有氨基酸的产生,属于第二类。第三组的代表是碳水化合物和大多数的葡萄糖苷酶,作用于他们各自的底物,释放糖类。该反应属于第一组,显然最适合电导研究。第二组反应有一定的局限性和一定的困难,但是随后能使用一个敏感的设备。第三组反应,就目前来说,超过了其研究的范围,在他们的使用范围内,有一定的优势,在硼酸盐,硫酸盐,和钼酸存在条件下,多元醇像糖一样表现出导电性增强。 最强烈的反对意见,提出了该方法不能研究缓冲系统。反应过程中不仅有因为反应的变化,而且有水解产物的累积,为了确定酶的活性,我们必须关注最初阶段的反应过程,使干扰因素控制在最小值。在这段阶段,电导率的方法也许是唯一一个有任何的优势且可以应用方法。因为它能够给人们提供早期反应阶段的大量数值。由于在这些反应中介质的pH值很少有变化,Northrop在pH值6.2至6.4胰蛋白酶明胶的水解不伴pH值的改变而改变。在低浓度电解质中杂质的存在不影响测量,因为可以选择适当的电导率细胞给出须需要的精度。 与其他物理方法相比,电导率测量有着在反应过程中不受干扰和能适用于极小批量底物中的优势。 实验部分 用目前的方法对脲-脲酶,精氨酸-精氨酸酶-脲酶,蛋白胨-胰蛋白酶-激酶和杨素- 苦杏仁酶进行了研究。 通常采用Kohlrausch电桥法测量电导率。一个校准Kohlrausch滑线,4号电阻箱和一个Arrhenius-Ostwald细胞组成了电路的元件。一个5毫升整数倍的底物溶液对工作是必要的。采用铂电极,提供的细胞是在水中浸泡,恒温维持在30.0 ℃±0.1 ℃。当高频电流源和一个电话的听筒用于零点检测时,提供1000 Hz的音频振荡器被使用。该导电细胞的电容通过一个与电阻箱并联的的空气冷凝器平衡。在反应开始,在很短的时间间隔内读数,后来时间间隔较长。利用相对应的酶底物浓度,大量的实验同时在单一的反应容器进行时。对在一定的时间间隔内从反应容器中倒出的等份反应混合物进行分析。因此该反应过程可由一个完全独立的化学方法而知。 脲-脲酶。利用丙酮使一个百分之一的尿素溶液(Kahlbaum)和大豆脲酶的水溶液沉淀。由Sastri 1935年提出的方法有碳酸铵的释放,包括在丙酮中用标准酒精盐酸溶液(0.1 N)滴定等份反应混合物。 精氨酸-精氨酸酶-脲酶。精氨酸碳酸盐是在5%的d-精氨酸中通入二氧化碳至饱和制备而成的。过量的二氧化碳是通过电解溶液中的氢冒泡而赶出的。因此获得的精氨酸碳酸盐溶液呈稳定电导率值。水溶性萃取液丙酮使公羊肝中的提取物沉淀,因此可作为精氨酸酶的来源。因为脲酶几乎瞬间水解、随着精氨酸分解逐步释放,我们需要使用过多的脲酶以确保反

水中总有机碳(TOC)的测定 ——非色散红外吸收法

11.TOC的测定——非色散红外吸收法

一、目的和要求 (1)掌握总有机碳的测定原理 (2)了解德国elementar TOC总有机碳分析仪的使用方法

二、原理 水中总有机碳(TOC),是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,能将有机物全部氧化,它比BOD5或COD更能直接表示有机物的总量,因此TOC经常被用来评价水体中有机物污染的程度。 近年来,国内外已研制成各种类型的TOC分析仪。按工作原理不同,可分为燃烧氧化—非色散红外吸收法、电导法、气相色谱法、湿法氧化—非色散红外吸收法等。其中,燃烧氧化—非色散红外吸收法只需一次性转化,流程简单、重现性好,灵敏度高,因此这种TOC分析仪被国内外广泛采用。

(1)差减法测定TOC值的方法原理水样被分别注入高温燃烧管和低温反应 管中,经高温燃烧管的水样受高温催化氧化,使有机物和无机碳酸盐均转化为二氧化碳;经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳,两者所生成的二氧化碳导入非色散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。

(2)直接法测定TOC值的方法原理将水样酸化后曝气,使各种碳酸盐分解成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳,但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此,其测定结果只是不可吹出性的有机碳值。

地面水中常见共存例子硫酸根超过 400mg/L、Cl-超过400mg/L、NO 3-超过 100mg/L、PO 43-超过100mg/L、S 2 -超过 100mg/L时,对测定有干扰,应做适当的前处理,以消除对测定结果的影响。水样中含大颗粒悬浮物时,由于受水样的、注射器针孔的限制,测定结果往往不包含全部颗粒态碳。

制药用水系统验证

制药用水系统验证 制药用水系统的验证,是为了证实整个工艺用水系统能够按照设计的目的进行生产和可靠操作的过程。验证工作需要从设计时期就开始,通过监按建筑、使用过程,收集和组织相关的文件资料,最终形成完善的验证文件。 通常,工艺用水系统的验证程序分为三个方面,即确认系统中采纳的所有关键的硬件和软件安装是否符合原定的要求(IQ);确认工艺用水系统中使用的设备或系统的操作是否能够满足原定的要求(OQ);确认工艺用水系统采纳的工艺是否能够按照原定的要求正常的运转(PQ)。 1 验证的预备 在针对一个指定的工艺用水系统,进行验证往常应该做好验证前的预备工作,包括下述使用文件所规定的有关内容。 使用文件是由建筑工艺用水系统的工程公司、设备制造厂、使用者共同制作的。要求这些文件必须以合适的形式组织起来,更便于同意药政治理部门(SDA、FDA等)的检查和批准。系统的使用测试和文件将满足多种资格要求。使用文件包括以下六个方面。 (1)文件清单

①系统内设备,包括设备出厂标签号、生产厂商、样品序号和设备尺寸大小; ②PC/PLC/DOS/WINDOWS输入,输出和警告; ③阀门,包括标签号、位置、类型、尺寸; ④关镀的和非关键的设施,包括标签号、位置、类型、作用/目的、范围和测定日期; ⑤管道,包括节段号、类型、尺寸和完成情况; ⑥滤膜,包括标签号、位置、品种、尺寸、制造用的材料、生产商、型号和孔径大小; ⑦工艺过程和配套公用工程,包括系统名、提供压力、温度和所需电力; ⑧采购、安装合同中所需的原材料; ⑨零部件清单; ⑩标准操作程序(适用于系统设备的操作、维护、测定,运行治理)。 (2)工厂测试程序 ①设备测试程序,测定程序和数据表; ②压力测试,PLC/PC测试; ③安全检查,制动设备的操作测试步骤。

制药用水电导率测定法 标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 编号SOP-02-QC-014题目制药用水电导率测定法标准操作规程 版本号0.0 生效日期2015年12月1日 编制部门QC 签名/日期 审核部门QC经理签名/日期 审核部门QA经理签名/日期 批准质量副总经理签名/日期 颁发部门质量保证部分发部门QC 1目的:建立制药用水电导率测定法操作规程,以使检验操作规范化。 2适用范围:适用于制药用水电导率测定的操作。 3责任:QC人员对本SOP实施负责。 4内容 本法是用于检查制药用水的电导率进而控制水中电解质总量的一种测定方法。 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越髙,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增髙。水中含有其他杂质离子时,也会使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 4.1仪器和操作参数 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精度应达到±0.1μS/cm。 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。

制药用纯化水系统水过GMP认证要求

制药用纯化水水系统GMP验证资料 制药用水系统的验证,是为了证实整个工艺用水系统能够按照设计的目的进行生产和可靠操作的过程。验证工作需要从设计阶段就开始,通过监按建造、使用过程,收集和组织相关的文件资料,最终形成完善的验证文件。 通常,工艺用水系统的验证程序分为三个方面,即确认系统中采用的所有关键的硬件和软件安装是否符合原定的要求(IQ);确认工艺用水系统中使用的设备或系统的操作是否能够满足原定的要求(OQ);确认工艺用水系统采用的工艺是否能够按照原定的要求正常的运转(PQ)。 1 验证的准备 在针对一个指定的工艺用水系统,进行验证以前应该做好验证前的准备工作,包括下述使用文件所规定的有关内容。 使用文件是由建造工艺用水系统的工程公司、设备制造厂、使用者共同制作的。要求这些文件必须以合适的形式组织起来,更便于接受药政管理部门(SDA、FDA等)的检查和批准。系统的使用测试和文件将满足多种资格要求。使用文件包括以下六个方面。 (1)文件清单 ①系统内设备,包括设备出厂标签号、生产厂商、样品序号和设备尺寸大小; ②PC/PLC/DOS/WINDOWS输入,输出和警告; ③阀门,包括标签号、位置、类型、尺寸; ④关镀的和非关键的设施,包括标签号、位置、类型、作用/目的、范围和测定日期; ⑤管道,包括节段号、类型、尺寸和完成情况; ⑥滤膜,包括标签号、位置、品种、尺寸、制造用的材料、生产商、型号和孔径大小; ⑦工艺过程和配套公用工程,包括系统名、提供压力、温度和所需电力; ⑧采购、安装合同中所需的原材料; ⑨零部件清单; ⑩标准操作程序(适用于系统设备的操作、维护、测定,运行管理)。 (2)工厂测试程序 ①设备测试程序,测定程序和数据表; ②压力测试,PLC/PC测试; ③安全检查,制动设备的操作测试步骤。 (3)焊接文件 ①焊接管道材料的质量保证书,材料成分报告书; ②焊工证书确认,焊接质量的检查记录; ③焊接设备合格证书,焊接口抽样检查的百分比; ④焊接记录,焊接检查百分比; ⑤焊接程序,焊接检查证书和仓储。 (4)测定文件 测试仪器作为使用和验证的一部分必须进行测定校正。为了区分关键的和不关键的仪器,必须有一个仪器清单。关键测试仪器是那些为了能被药政管理部门接受,直接作用或管理水的质量和纯度的仪器。 关键仪器要在实地操作确认(OQ)前通过可迫溯的方法进行测定。非关键的测试仪器通常也要在OQ前测定。仪器的使用者决定非关键仪器维护的范围。 (5)标难操作规程(SOPs) 为组织验证文件提供一个操作的基本过程,SOPs应该尽早地起草。工艺用水系统的SOPs

相关主题