搜档网
当前位置:搜档网 › 无刷直流电机结构

无刷直流电机结构

无刷直流电机结构
无刷直流电机结构

无刷直流电机结构

————————————————————————————————作者:————————————————————————————————日期:

1. 磁回路分析法

图1-4 (摘自Freescale PZ104文档)

在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。

“当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。

当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示:

图1-5 (摘自Freescale PZ104文档)

如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。

以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。

2. 三相二极内转子电机结构

定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。

图1-6 (修改自Freescale PZ104文档)

图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。

在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。当外线圈完成6次换相后,内转子正好旋转一周(即360°)。再次重申一下:何时换相只与转子位置有关,而与转速无关。

图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。

(a) AB相通电情形(b) AC相通电情形

(c) BC相通电情形(d) BA 相通电情形

(e) CA 相通电情形(f) CB相通电情形

图1-8 换相前和换相后的情形(摘自Freescale PZ104文档)

3. 三相多绕组多极内转子电机的结构

搞清了最简单的三相三绕组二极电机,我们再来看一个复杂点的,图1-9(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图1-9(b)。从图(b)可见,其三相绕

组也是在中间点连接在一起的,也属于星形联结方式。一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸而对齐,产生类似步进电机的效果,此种情况下转矩会产生很大波动。

(a) 电机定子与转子结构(b) 绕组联结方式(摘自5iMX论坛)

图1-9 三相9绕组3对极内转子无刷直流电机结构

二二导通时的6种通电情况自行分析,原则是转子的N(S)极与通电绕组的S(N)极有对齐的运动趋势。图1-10给出了一个对齐的运动趋势的图例。

图1-10 某2相通电时的转子磁极和定子磁极对齐运动的最终位置

1.4 无刷直流电机转矩的理论分析

1. 传统的无刷电机绕组结构

其线圈形状见图1-16,线圈包围整个转子。电机三相绕组示意图见图1-17。

图1-16 磁场中的线圈图1-17 电机绕组和转子抽象示意图

图1-17中为简略示意起见,每相只画出了一个线圈,其实每相应该有N匝线圈。其绕组联结方式为:A’、B’、C’端通过星形联结在一起,A、B、C为电机的三根引出线。无刷直流电机定子绕组结构如下:

2.转子磁场的分布情况

图1-19展示了内转子磁极的磁感应强度B的分布情况。我们预定义磁感应强度方向向外为正,从图中可以看出,在0°的时候,处于正反方向交界处,磁感应强度为零,然后开始线性增加,在A点时达到最大,然后一直保持恒定值不变,直到B点开始下降,到180°的时候下降到零。然后开始负向增长,在C 点处达到负值最大,然后保持恒定负值不变,直到D点强度开始减弱,到0°时又回到零。至于A点到底在几度的位置,不同的电机不一样。如果A非常接近0°的位置,上升和下降直线就会非常陡峭,“梯形波”就变成了“方波”。根据右手定则E=BLV的公式,在匀速转动下,各绕组产生的反电动势波形也呈梯形波/方波。——解释“梯形波/方波”是什么意思

图1-19 转子磁感应强度分布情况

与此类似,上文提到的另一种“正弦波”电机就是一种磁感应强度呈正弦波图形分布的直流无刷电机,也叫永磁同步电机。这种电机的绕组结构和我们的梯形波电机的绕组结构不太相同,进而驱动方式也不太相同,需要用到矢量分析法,由于本文只关注于梯形波的无刷直流电机,故对这种正弦波电机不展开讨论了。

3、转子的受力分析

在图1-20(a)中,AB相通电,电流处于转子产生的磁场内,根据左手定则,我们判断线圈AA’中的上半部导线A受到一个顺时针方向的电磁力,而AA’的下半部导线A’也受到一个顺时针方向的电磁力。由于线圈绕组在定子上,定子是固定不动的,故根据作用力与反作用力,定子绕组AA’会施加给转子一个逆时针方向的反作用力,转子在这个力的作用下,就转起来了。同理,与AA’的情况类似,BB’也会对转子产生一个逆时针的反作用力。当转子逆时针转过60°后,到达图1-20(b)的位置,这时线圈BB’已经到达转子磁极的边缘位置了,再转下去就要产生反方向的力了,所以这时就要换相,换成AC相通电,见图1-20(c)。这样,每过60°换相通电,转子就可以一直转下去了。

(a) AB相通电(b) 转过60°(c) AC相通电

(d) 转过60°(e) BC相通电(f) 转过60°

(g) BA相通电(h) 转过60°(i) CA相通电

(j) 转过60°(k) CB相通电(l) 转过60°

4. 一种近似分析模型

刚才的讨论全都基于一个假设,就是转子磁场的磁力线是垂直穿过绕组的导线的。但事实上,磁力线总是倾向于沿磁阻最小的路径前进,其实并不穿过导线,见下图

图1-21 磁力线分布

现仍以新西达2212电机为例,为了方便说明问题,每个绕组的N匝线圈现都简化成了一个,而且我们对所有绕组和磁极都做一了个编号,见图1-22。

AB相通电时,A1-1导线处在N极下,根据左手定则,受到一个顺时针方向的作用力,即同时施加给转子一个逆时针方向的反作用力。同时,A1-2导线处于S极下,但电流方向与A1-1相反,所以还是会施加给转子一个逆时针方向的作用力。

图1-22 新西达2212电机AB相通电时情形

1.5 换相与调速

1. 换相基本原理

(1) 转子位置与过零检测

前面已经唧唧歪歪过很多遍了,换相的时机只取决于转子的位置,那顺理成章的问题就是:转子的位置怎么测?

一种比较简单的方式是用光电编码盘,这个东西在工业上用得比较多。不过由于其价格

比较贵,而且还要接联轴器等一堆乱七八糟的东西,分量也不轻,显然不适合我们做四轴用。

图1-23一种4位二进制编码盘

霍耳效应测量器件可以根据转子不同位置时的不同磁场方向分布情况,而给出1或0的输出,一般在电机的不同位置上装三个霍尔传感器,就可测出转子的位置。这就是所谓的“有感无刷电机的驱动”。接下来就是我们本文要主讲的“无感”测量方式。无传感器怎么测量?答:利用第三相的感生电动势。无感驱动方式的优点在于省略了三个霍尔传感器,整套系统分量更轻,结构更简单。回过头再去看图1-20,先看图(a)和图(b),在AB通电期间,你会发现线圈CC’的C边在图(a)中切割N极的磁力线并产生一个正向的感生电动势,在图(b)中确是切割S极的磁力线而产生一个反向的感生电动势了;C’边的情况也类似。(这里我们定

义:在转子逆时针旋转时,C边切割N极磁力线和C’边切割S极磁力线产生的感生电动势为正;AA’和BB’

也用类似的定义)。这说明,在AB相通电期间,如果我们去测量线圈CC’上的电压,会发现其间有一个从正到负的变化过程。与此类似,图(c)~图(l)中的情况也可以用相同的方法分析出来,如图1-24所示(图在下页)。这里需要说明一下的是,在AB相通电期间,不只是线圈CC’上产生感生电动势,其实AA’和BB’也在切割磁力线,也都会产生感生电动势,其电动势方向与外加的12V电源相反,所以叫“反向感生电动势”(BEMF)。其等效电路图见图1-25。

图1-25 AB相通电期间线圈AA’和BB’的等效电路

图1-24 六种通电情形下各绕组的电流和感生电动势

从图1-25可以看出,线圈绕组AA’和BB’上产生的反电动势是很大的,两个加起来几乎略小于12V。为什么呢,因为线圈绕组本身的等效电阻很小(约0.1欧左右),如果反电动势不大的话,端电压加载在线圈绕组等效电阻上,会产生巨大的电流,线圈非烧掉不可。为方便理解,我们姑且假设在额定转速下AA’和BB’各产生5.7V的反电动势,那么它们串联起来就产生11.4V的反电动势,结合图1-25看,那么加载在等效电阻上的电压就为V,最终通过绕组AB的电流就是1211.40.6?=0.6/(20.1)3×=A,看来这个假设还是比较合理的。同理,由于各绕组的结构是相同的,切割磁力线的速度也是相同的,所以线圈CC’也应该会产生一个大小约为5.7V的感生电动势;不同的是:在AB相通电期间,CC’的感生电动势会整个换一个方向,也即所谓的“过零点”。

在图1-24的t0时刻(即图1-20(a)的位置),为AB相通电刚开始时的情况,CC’产生的感生电动势的等效电路图如图1-26(a)所示;而在图1-24的t1时刻(即图1-20(b)的位置),为AB相通电快结束时的情况,CC’产生的感生电动势的等效电路图如图1-26(b)所示。

(a) t0时刻的等效电路图(b) t1时刻的等效电路图

图1-26 AB相通电期间CC’的感生电动势

由于中点电势值始终为6V,CC’的线圈产生的感生电动势只能在以中点6V电势为基准点的基础上叠加,仍旧假设在额定转速下CC’上会产生5.7V的感生电动势,那么在t0时刻,如果我们去测量C点的电压,其值应为65.711.7+=V;在t1时刻,C点的电压值应为。6-5.7=0.3V也就是说,在AB相通电期间,只要一直监测电机的C引线的电压,一旦发现它低于6V,就说明转子已转过30°到达了t0和t1中间的位置,只要再等30°就可以换相了。如果电调的MCU足够快的话,可以采用连续AD采样的方式来测量C点电压,不过貌似有点浪费,因为大部分采到的AD值都是没用的,我们只关心它什么时候低于6V。这时候模拟比较器的作用就来了,它天生就是干这个活的料。比较器的联结电路图见图1-27。一旦C相输出电压低于6V,比较器马上可以感知并在输出端给出一个下降沿。同理,当电机处于AC相通电时,监测的是B相输出电压;当电机处于BC相通电时,监测的是A相输出电压。继续往前,当电机开始进入BA相通电时,C相输出电压一开始会处于一个较低的状态(0.3V),过零事件发生时,C相输出电压会超过6V,也就是说,这时比较器会感知并输出一个上跳沿。接下来的CA,CB相通电情况也类似,不再赘述。

图1-27 比较器的电路图

可能有人会说,这可是15V的比较器哪,单片机自带的比较器一般只支持最高5V的比较啊。事实上,上面这个电路图只是为了方便说明问题,在真正的实用中,会对C相输出电压和6V中点电压再加个分压电路,而且中点电压也不总是等于6V,这个留待第二章再作详细分析。

(2) 换相策略

另一个问题是,就算检测到了C相的过零点,那还要等转子转过30°才可以换相,转这剩下的30°究竟要花多少时间?

一种比较简单的做法是近似认为转子转速在这0°~60°的小范围区间内基本是恒定的:从AB相开始通电到检测出C相过零的前半段时间,基本等于后半段的时间。所以只要记录下前半段的时间间隔T1,等过零事件出现后再等待相同的时间,就可以换相了。另一种比较暴力的做法是检测到过零事件后,也不再

等转子再转30°了,立马就换相,事实上德国MK项目的BL-Ctrl电调程序就是这么干的。我们来看看这样做会有什么后果:

图1-28(a)同图1-20(a),为AB刚开始通电时的情况。转过30°后,到达图(b)的位置时,检测到C相过零,如果此时立刻换相为AC导通,将成为图(c)的状态。这时,CC’线圈还处于NS极的交界处,此时穿过CC’的磁感应强度为零,CC’上将不产生电磁力。也就是说此时只有线圈AA’在出力,CC’处于出工不出力的状态。不过这个情况只是瞬时的,只要转子稍微向前再转一点,穿过C’和C的磁感应强度就会开始增加,CC’就会开始出力。回忆一下图1-19,如果梯形波电机工艺做得比较好,磁感应强度上升和下降直线比较陡峭的话,穿过CC’的磁感应强度将很快达到最大值,期间损失的效率很小。如果电机的工艺做得一般般,上升和下降直线比较平缓的话,就会多损失一点效率,电机输出转矩的波动也会大一点。接着往下看,当转子继续转过30°到达图(d)的位置时,一切都好,相安无事。当转子再转过30°到达图(e)的位置时,会检测到B相的过零事件,此时如果立刻换相成BC相通电,将成为图(f)的状态,刚导通的BB’线圈照例会处于“星期一综合症”的状态,效率很低、出工不出力,要再过一会儿才能进入最佳工作状态。

综上所述,暴力换相的方法也是可以用的,只不过损失一点效率。除了首次换相是间隔30°外,以后的每次的换相间隔也都是60°,转子旋转一周也是换6次相。如果有时间的话,我会做一个测试实验,比较采用以上两种不同换相策略时的电机功耗情况,测试结果将放于后续附录中。

(a) AB相开始通电(b) 转过30°(c) AC相通电

(d) 转过30°(e) 转过30°(f) BC相通电

图1-28 暴力换相时各情景的分析

3. 调速

无刷直流电机,无论其换相模式多么复杂,一些控制方式和交流同步电机多么相似,但从本质上来讲,还是属于直流电机。只不过将原来有刷直流电机的机械换向器,改成了现在的电子换相器。

直流电机怎么调速?当然是用直流电压来控制。电压越高,转得越快;电压越低,转得越慢。不过遗憾的是,单片机并不能输出可调的直流电压,于是只好变通一下,用脉宽调制(PWM)方式来控制电机的输入电压。PWM占空比越高,等效电压就越高,占空比越低,等效电压就越低。

当然,单片机给出的PWM波形只是控制信号,而且最高电压也只有5V,其能量并不足以驱动无刷直流电机,所以必须要再接一个功率管来驱动电机。功率管可以是MOSFET(场效应管),也可以是IGBT(绝缘栅双极晶体管)。关于驱动电路的结构,我们将在下一章详细讲述。

2. 无感无刷电调的驱动电路设计2.1 电池电压监测电路

图2-1 电池电压监测电路

图2-1是一个电阻分压网络,其中VCC接电源锂电池的正极,GND接电源锂电池负极,U_BA T接MEGA8的ADC7通道,电容C17用来消除电源中的一些高频波纹的影响。一节标准锂电池的电压为3.7V,一般航模用锂电池都是三节串联,也就是11.1V。若电池即将用尽,VCC会下降,相应的U_BA T测得的电压也会下降。不过在MK项目的电调程序V0.41版本中,作者把监控电压的工作放在了主控板上,所以在整个电调程序中没有任何测量ADC7通道的代码,本模块基本属于鸡肋。

2.2 换相控制电路

换相控制电路主要由6个功率场效应管和一些外围电阻和三极管构成,虽然原理不复杂,但涉及到的相关知识还是蛮多的,所以要分几个部分讲。

1.六臂全桥驱动电路原理

为了清楚地说明问题,我们先将原图作一些简化

图2-2 六臂全桥式驱动电路

Q1到Q6为功率场效应管,当需要AB相导通时,只需要打开Q1, Q4管,而使其他管保持截止。此时,电流的流经途径为:正极→Q1→线圈A→绕组B→Q4→负极。这样,六种相位导通模式:AB, AC, BC, BA, CA, CB分别对应的场效应管打开顺序为Q1Q4, Q2Q2, Q3Q2, Q3Q6, Q5Q6, Q5Q4。Q1~Q6的每个场效应管旁边还并联着一个二极管,这是干什么用的,画蛇添足的设计么?非也。我们在第一章曾经提到,无刷直流电机的调速是用PWM波形的占空比来调,图2-2中,采用的是H_PWM--L_ON方式来驱动的,也就是上臂采用PWM信号控制,而下臂常开的一种驱动方式。比如在AB相导通时,单片机给Q1的栅极是PWM信号,而给Q4的栅极是常开信号,这样你就可以通过控制Q1输入端的PWM信号占空比来控制驱动电机的有效电压。此时A端和B端的电压波形如图2-3的圆圈中所示(我们等会儿再讲C相电压是怎么回事)。现在问题来了,A相的电压是可以突变的,但是由于电感的作用,流经AB线圈的电流是不能突变的。你不给人家一条活路,人家是要造反的,这里所谓的造反就是线圈由于自身电感的作用产生极高的瞬时反电动势(回忆一下:diULdt=)而击穿元器件。所以这时候二极管的作用就来啦,在PWM信号的低电平期间,电流是按照图2-4所示的箭头路径续流的。由于负极端电位强制为零,二极管有一个正向压降,A点的电压就可以在瞬间降到比零略小的值,与图2-3的实验结果相吻合。

图2-3 各相电压波形

图2-4 AB相续流期间电流方向

由于A点电位忽上忽下的变化,会导致ABC线圈的中点电位也会忽上忽下的变化(中点电位总是等于A点和B点电位的平均值),我们来看看这样会对我们采样C点的反电动势有什么影响。当PWM处于高电平期间,A点的电压值接近12V,中点的电压值接近6V,根据我们在第一章的分析,C线圈产生的感生电动势叠加在中点上,会在C点产生接近于12V的电压值。然后PWM进入低电平期间,A点电位迅速降到略小于零,中点电位也会迅速降到略小于零,这时C线圈的感生电动势就会以零为基点往上叠加,此时C点的电压就是略小于6V,这个也可以在图2-3中得到验证。虽然C点电压向下穿越了6V,但是回忆一下比较器的结构(见图2-5),由于中点电压和C点电压同时降低和升高,所以不管中点电位如何变化,只要C线圈本身的感生电动势不过零,比较器输出就不会产生跳变。有人也许会问,这个悬浮的中点电压是怎么测得的呢,又不能从中点引根线出来。其实这是通过一个设计很巧妙的分压电路根据A点和B点的电压值估计出来的,这个放到下面的“反电势过零点检测电路”一小节详讲。

图2-5 比较器电路图

随着转子继续旋转,C线圈的感生电动势终将由正变负,而被比较器给感知到。至于图2-3的波形图中为什么没有C电压为负值的点,因为C端电压如果负得太厉害,Q2的二极管就会导通,而将C端电位钳制在-1V左右。C点理想的电压波形我想应该是这样的:

图2-6 C点电压波形

2.功率场效应管的选择

(1) N型和P型MOSFET

上面的图2-2电路图对于理解换相原理来说,是可以用的,但在实际的电路中,是不能用的。为什么呢?问题于N型场效应管的门限开启电压V GS。

先来复习一下场效应管的基本知识,图2-7(a)是一个N沟道型场效应管,图2-7(b)是一个P沟道型场效应管。N沟道场效应管有点类似于NPN三极管,只要栅源极间加一个正向电压,并且其值超过数据手册上的阈值电压时,场效应管的D极和S极就会导通。一般N 型功率型场效应管的V GS阈值电压都会在3~20V之间。

图2-7 N型和P型场效应管

大功率无刷直流电机的介绍

通常情况下,1KW以上的电机我们会称它为大功率无刷直流电机。无刷电机在大功率、高转速的条件下,其优越性更加明显,但对电机控制器要求会比较高。 它的原理是很多人想要知道的,以BLDC80无刷直流电机为例来说吧,此款电机额定转速15000rpm,额定功率1300W,过载能力3倍,而驱动部分按1KW设计,电源为三相220V/50HZ,驱动方式为直流PWM,这样电机的可靠性更高,控制简单,控制特性更好,无刷直流电机控制器是根据霍尔效应制作的一种磁场控制器,其安装在电机的内部,是一种开关型器件。 大功率无刷直流电机控制器输入的信号经过阻容低通滤波后再输入到单片机中,以免杂波的干扰影响单片机的判断。 这款大功率无刷直流电机主要可以应用在智能家厨、工业设备、医疗设备等领域。其中家电设备的应用最为广泛,主要应用的产品是料理机、破壁机,此款无刷直流电机是含控制器一体化的产品,可根据性能和应用要求设计电机和控制器的方案。 随着市场的需求,无刷直流电机的技术优势越来越显著,近些年大功率无刷直流电机已经迅速的得到了推广与应用,无刷直流电机控制器的技术也得到了一

定的提升。无刷直流电机选型时需参考的主要参数有以下几点:最大扭矩:可以通过将负载扭矩、转动惯量和摩擦力相加得到,另外,还有一些额外的因素影响最大扭矩如气隙空气的阻力等。 平方模扭矩:可以近似的认为是实际应用需要的持续输出扭矩,由许多因素决定:最大扭矩、负载扭矩、转动惯量、加速、减速及运行时间等。 转速:这是有应用需求的转速,可以根据电机的转速梯形曲线来确定电机的转速需求,通常计算时要留有10%的余量。 江苏惠斯通机电科技有限公司具有完备售后服务队伍,为用户提供最佳的服务,并且取得了16949认证,是一家专业生产防爆控制电机,伺服电机,直流无刷电机的厂家,是中国航天防爆伺服制定供应商,是军工行业受欢迎品牌,其产品性价比远远高于国外品牌的同类电机。

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

无刷直流电机结构

无刷直流电机结构、类型和基本原理 一、概述 直流电动机的主要长处是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严峻地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简朴、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。 电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

直流无刷电机实验

直流无刷电机实验 一.实验目的 1.了解直流无刷电机的运行原理 2.掌握直流无刷电机的DSP控制。 二.实验内容 1.实现无刷直流电机的正反转控制 2.实现无刷的速度调节 3.实现无刷直流电机电流环和速度环双环闭环控制 三.原理简介 1.直流无刷电机的原理 无刷直流电动机的结构原理图如图2-1所示: 图1 直流无刷电动机的结构原理图 无刷直流电动机主要由电动机本体、位置传感器和电子开关电路三部分组成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图1中的电动机本体为三相两极,三相定子绕组分别与电子开关线路中相应的功率开关器件联接,在图1中A相、B相、C相绕组分别与功率开关管V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相联接[2]。 定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换

向作用。 所以,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位量传感器三者组成的“电动机系统”。其原理框图如图2所示。 图2 直流无刷电动机的原理框图 2. 直流无刷电机的控制 直流无刷电机的控制基本上类似于直流有刷电机的控制(PWM 调制),但由于无刷直流电机用电子换向器取代了机械电刷,所以无刷直流电机除了在控制各相电枢电流的同时还用对电子换向器进行控制。在无刷直流电机的运行过程中,霍尔位置传感器不断检测电机当前位置,控制器根据当前位置信息来判断下一个电子换向器的导通时序。如图3所示 H1 H3 ANC BNC BNA CNA H2 CNB ANB A Z X C y W B u V 旋转方向 反向 图1 电子换向器的工作原理 图中H1、H2和H3分别表示霍尔位置传感器的信号,H1的有效期为X 轴到u 轴

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 . 主要技术指标 1. 额定功率: P N 30W 2. 额定电压: U N 48V ,直流 3. 额定电流: I N 1A 3. 额定转速: n N 10000r /min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸: 0.036 0.065m . 主要尺寸的确定 1. 预取效率 0.63 、 2. 计算功率 P i 直流电动机 Pi ' K m P N 0.85 30 40.48W ,按陈世坤书 i N 0.63 12 长期运行 P i 132 P N 13 短期运行 P i 1 3 P N 4 3. 预取线负荷 A s ' 11000 A / m 4. 预取气隙磁感应强度 B ' 0.55T 5. 预取计算极弧系数 i 0.8 6. 预取长径比( L/D )λ′=2

7.计算电枢内径 根据计算电枢内径取电枢内径值 D i1 1.4 10 2 m 8. 气隙长度 0.7 10 3 4 m 9. 电枢外径 D 1 2.95 10 2 m 10. 极对数 p=1 11. 计算电枢铁芯长 L D i1 2 1.4 10 2 2.8 10 2 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10 2 m 13. 输入永磁体轴向长 L m L 2.8 10 2 m 定子结构 1. 齿数 Z=6 设计者经验得 1.43T , b t 由工艺取 0.295 10 2 m 3 槽形选择 梯形口扇形槽,见下图 D i1 3 i A 6s . B 1P i n N 6.1 40.48 0.8 11000 0.55 2 10000 1.37 10 2 m 4. 预估齿宽 : b t tB B t K Fe 0.733 10 2 0.55 1.43 0.96 0.294 10 2m , B t 可由 12. 极距 D i1 2p 3.14 1.4 10 2 2 2.2 10 2 m 2. 齿距 i1 3.14 1.4 10 2 0.733 10 2m 5. 预 估 轭 高 : h j1 a i B 2lB j1K Fe 2K Fe B j1 2.2 0.8 0.55 0.323 10 2m

直流无刷电机与永磁同步电机区别

无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。 通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 : 又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步 电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控 制, 是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流无刷电机本体设计要点

电机与拖动基础 课程设计报告 设计题目: 学号: 指导教师: 信息与电气工程学院 二零一六年七月

直流无刷电机本体设计 1. 设计任务 (1) 额定功率 80N P W = (2) 额定电压310N U V ≤ (3) 电动机运行时额定转速 1000/min N n r = (4) 发电机运行时空载转速max 6000/min n r = (5) 最大允许过载倍数 2.5λ= (6) 耐冲击能力21500/m a m s = (7) 机壳外径42D mm ≤ 设计内容: 1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。 2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。 3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。 2. 理论与计算过程 2.1 直流无刷电机的基本组成环节 直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。 因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

直流无刷电机驱动原理

直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电 枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会 产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及 整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技 术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处 理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制 交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转 子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直 流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子 的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电 机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需 求转换输入电源频率。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

无刷直流电机简介及实例

无刷直流电机属于直流电机,我们需要先清楚何为直流电机。 直流电机是指能输出直流电流的发电机,或通入直流电流而产生机械运动的电动机。直流电机简易模型如下图。 原动机以恒定转速拖动电枢即直流发电机。若把负载改为直流电源,则电机做电动机运行。 直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机,这就是无刷直流电机,它没有电刷和换向器。 构成和原理: 以无刷直流电动机为例: 无刷直流电动机通常是由永磁电机本体、转子位置传感器和功率电子开关三部分组成。 众所周知,直流电动机从电刷向外看虽然是直流的,但从电刷向内看,电枢绕组中的感应电势和流过的电流完全是交变的。从电枢绕组和定子磁场之间的相互作用看实际上是一台电励磁的电动机。电动机运行方式下,换向器起逆变作用,把电源直流逆变成交流送入电枢绕组。永磁无刷电动机用功率电子开关代替了直流电机中的换向器,用无接触式的转子位置检测器代替了基于接触导电的电刷,尽管两者结构不同,但作用完全相同。 无刷直流电动机中的位置传感器的作用是检测转子磁场相对于定子绕组的位置,并在确定的相对位置上发出信号控制功率放大元件,使定子绕组中的电流进行切换。通过位置传感器测量转子的准确位置,使各晶体管在转子的适当位置导通和截止,从而控制各电枢绕组的

电流随着转子位置的改变按一定的顺序进行换流,保证了每个磁极下电流的方向,实现了无电刷的无接触式换向。 控制: 无刷直流电机使用了位置检测器代替了电刷,电子换向电路代替了机械式换向器,因此电子控制系统是这种电机不可缺少的必要组成部分。 开环控制系统和闭环控制系统。可以实现电机正反转控制、制动、速度调节。 星形三相六状态无刷直流永磁电动机原理 当开关管BG1与BG5导通时,电流由A组线圈进B组线圈出,两个线圈形成的合成磁场方向向上,,规定此时的磁场方向为0度、转子旋转角度为0,如下图。

无刷直流电机的工作原理

无刷直流电机原理 无刷直流电动机的工作原理 普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示: 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组

无刷直流电机结构

1. 磁回路分析法 图1-4 (摘自Freescale PZ104文档) 在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样转子就会按顺时针方向旋转了。 “当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示: 图1-5 (摘自Freescale PZ104文档) 如此不断改变两头螺线管的电流方向,转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。 以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。 2. 三相二极转子电机结构 定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。

图1-6 (修改自Freescale PZ104文档) 图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。 在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。当外线圈完成6次换相后,转子正好旋转一周(即360°)。再次重申一下:何时换相只与转子位置有关,而与转速无关。 图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。 (a) AB相通电情形(b) AC相通电情形 (c) BC相通电情形(d) BA 相通电情形 (e) CA 相通电情形(f) CB相通电情形

无刷电机结构图及里面的霍尔信号工作原理

无刷电机结构图及里面的霍尔信号工作原理 (2009-05-30 17:33:55) 转载 标 签: 教育 霍耳的红线一般接5-12v直流电。推荐5-7v。 霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。 霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。 电动车用无刷直流电机工作原理 摘要: 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。. 关键词:无刷直流电机永磁同步电机直流变频钕铁硼 abstract: brushless direct current motor has the same dc motor output characteris tics, also named bldc. bldc have higher output torque in low speed, higher efficiency and better speed precision than any control modes of frequency converter drives. this chapte r introduce capacity up to 400kw for the industrial application. key words:brushless direct current motor permanent magnetic synchronous motor bldc ndfeb [中图分类号]tm921 [文献标识码]b 文章编号1561-0330(2003)06-00 1 无刷直流电动机简介 无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。 在工作原理上有二种不同的工作方式: (1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。

无刷直流永磁电动机设计流程和实例

. 无刷直流永磁电动机设计实例 一.主要技术指标 1.额定功率:P N30W 2.额定电压:U N 48,直流 V 3.额定电流:I N1A 3.额定转速:n N10000r/min 4.工作状态:短期运行 5.设计方式:按方波设计 6.外形尺寸:0.0360.065m 二.主要尺寸的确定 1.预取效率0.63、 2.计算功率P i 直流电动机 ' K m P N0.8530 P i40.48W,按陈世坤书。 N 0.63 长期运行 1 2 PN Pi 3 短期运行 1 3 PN Pi 4 3.预取线负荷A s'11000A/m 4.预取气隙磁感应强度B'0.55T 5. 预取计算极弧系数i0.8 6.预取长径比(L/D)λ′=2

Word资料

. 7.计算电枢内径 6.1P i 6.1 40.48 10 2 m D i13 3 1.37 i A s B n N 0.811000 0.55 210000 根据计算电枢内径取电枢内径值D i1 1.4 102 m 8. 气隙长度 0.7 103 m 9. 电枢外径D 1 2.95 102m 10. 极对数p=1 11.计算电枢铁芯长 L D i1 2 1.4 102 2.8 102 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8102 m 12. 极距 Di13.14 1.410 2 2 m 2p 2 2.2 10 13. 输入永磁体轴向长L m L 2.8102 m 三.定子结构 1. 齿数 Z=6 2. 齿距 D i1 3.141.410 2 10 2 m t 6 0.733 z 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: b t tB 0.733 102 0.55 0.294 10 2 m ,B t 可由 B t K Fe 1.430.96 设计者经验得 1.43T ,b t 由工艺取0.295102 m 5. 预估轭高: h j1 a i B 2.2 0.8 0.55 0.32310 2 m 2lB j1K Fe 2KFeBj1 2 0.96 1.56

相关主题