搜档网
当前位置:搜档网 › 直流电机的基础知识第2部分

直流电机的基础知识第2部分

直流电机的基础知识第2部分
直流电机的基础知识第2部分

直流电机的基础知识(第2部分)

——晶闸管直流调速装置的电路原理分析与调试

(电子管)二极管的出现,使人们找到了控制电流方向的“钥匙”,(电子管)三极管的出现,使人们掌握了控制电流大小的奥妙,人类文明由此进入了电子时代的新纪元。做为“弱电”的电子元件,从来都希望并且也有能力在“强电领域”占有一席之地,晶闸管在工业控制领域得以广泛的应用,即是一个有力的证明。

电子器件的发展,经历了电子管、晶体管、(小、中、大规模)集成电路的三个阶段。其中电子管除在高频高压电路,得到极少数应用外,常规电路中已难见到它们的踪影。但晶体管电路的“阵地”随集成电路的“强势出击”虽有所缩小,但并示全盘“退却”,像上文所述的滑差电机调速盒,仍以由晶体管分立元件构成的电路为主流。

正在应用中的直流电机调速器,仍有部分由晶体管分立元件构成的整机电路,分析其原理和给出检修指导,仍具有实际意义,并且为进一步掌握由集成电路(或单片机)构成的直流调速电路,也相当于一个基础和原理性的铺垫。

N

图1 单相晶闸管直流电机调速器(整机电路)

该电路用于小功率他励直流电机的调速与起停控制。

〔主电路〕由单相半控整流桥、滤波电抗器L0构成,桥式整流电路的左侧由两只晶闸管串联而成,右则的两只串联二极管(2CZ50A)与两只晶闸管呈并联关系,两只二极管身兼双职,即可作为整流元件,又并接于电枢绕组两端,提供电枢绕组的反电势通路,起到为电枢绕组的“续流作用”,因而该电路省去了并接于电枢电源两端的续流二极管。电抗器L0可抑制整流后脉动成分,改善电机的换向并降低电机损耗和温升,同时起到提高电网侧功率因数的作用,减弱晶闸管与二极管非线性整流造成的谐波影响。

〔励磁电路〕由桥式整流器组成,电机励磁线圈并串有电流继电器LJ,当励磁电流消失时,主电路晶闸管的触发信号同时消失,电枢绕组同时断电,避免了电机超速(或飞车)运行。他励和和复励直流电机的调速控制电路,都设有励磁电流检测回路,以实现“失磁”时的停机保护。

〔移相触发电路〕由DW0、DW1、DW2、晶体管BG1~BG5、脉冲变压器B2等元件组成。电阻R1、稳压器WG1对70V绕组整流电压进行削波处理成梯形波电压,做为触冲功放级BG5、BG3的供电和电网过零同步信号,控制BG5在电网电压过零时处于截止状态;该梯形波直流电压又经D1隔离、C4滤波成平滑和稳定直流电压,用作移相电路的前级信号处理电路——BG1放大器的供电,以提高电路工作的稳定性。

R16、WG3对另一70V绕组整流电压,削波生成梯形波直流电压,该电压作为同步采样信号,经DW0、DW1、DW2三只电位器调整后,经R7、BG1的发射结、射极电流负反馈电阻R6、DW3、DW4等元件形成了BG1的Ib回路(或称为基极偏压回路),形成了速度给定信号。DW0、DW2用于用于调速范围的设定,D2、D3、D4三只二极管,起到BG1的be结正反向电压的限幅保护作用,将BG1的最大Ic(即BG2的最大Ib)限制于1.4V(两二极管串联压降)-0.7V(BG1发射结电压)/24kΩ=0.029Ma,从而限制了BG2的最小等效导通Rce电阻,限制了单结晶体管BG3形成直通而停振。串入DW3、DW4、DW5支路的目的,是引入电流、电压反馈信号,形成速度闭环控制及电流保护作用(见下文所述)。

当DW2活动臂上行时→BG1的Ub(Ib)上升→BG2的Ib/Ic上升→BG1的Rce(等效导通电阻)变小→C1上充电电压到达BG3基极峰点电压的时刻提前→BG3的导通提前→(在触发脉冲作用下)两只主电路晶闸管的导通时刻提前→半控桥整流电压升高→直流电机转速升高。

移相信号形成电路的主体为单结晶体管BG3、R3(包括BG2导通时的等效Rce)C1的定时电路所组成的张驰振荡器。BG5为脉冲功率放大电路,将输入移相触冲进行功率放大后,驱动脉冲变压器B2。而BG1、BG2两级放大器,组成了可控的变阻电路(BG2的等效导通Rce电阻),使之对C1的充电是可控的(可以调节RC时间常数),进而控制了张驰振荡器第一个脉冲出现的时刻。

注意:稳压二极管WG1两端形成的梯形波电压,为桥式整流所得的100个波头的削波电压,相邻两个波即对应电网电压的正负两个波,两只晶闸管的栅-阴极得到的实际为100Hz的触发脉冲。在电源L端为正时,触发脉冲同时加到上桥臂与下桥臂晶闸管的栅-阴极,但只有承受正向电压的上桥臂晶闸管受触发导通,而下桥臂晶闸管受反击处于关断状态。同理,当电源L端为负时,触发脉冲也同时加到两只晶闸管上,但下桥臂晶闸管承受正向电压而开通,上桥臂晶闸管受反压并不具备导通条件而关断。脉冲变压器B2二次绕组的两个同名端输出触发脉冲经二极管正向整流后引入晶闸管的栅极,两路触发脉冲其实是同步出现的,并非相差180°输出!

〔过电流保护电路〕电流采样电阻RS、稳压管2CW9、晶体管BG4等组成过电流保护电路。电阻RS(0.1Ω20W)串接于电枢供电回路中,将电枢电流信号转化为电压降信号。RS 两端形成的电流采样信号经DW3整定后,加到稳压管2CW9的负极。当因起动或其机械堵转等原因造成电枢电流过大时,DW3的活动臂上输出的电压升高,若升高到2CW9的击穿电压值以上时,稳压管击穿,BG4得到基极偏流饱合导通,C1的充电电压经D10、BG4和100Ω电阻形成放电通路,C1上电压迅速跌落,使主电路的晶闸管趋于关断,输出电压降低,限制了电流的增大。

〔失磁保护电路〕电流继电器的常开触点串于DW1活动臂的输出线上,当励磁电流正常时,LJ得电动作,常开触点吸合,移相电路有给定速度信号。当励磁电路故障,使励磁电流小于某整定值时(调节R17的阻值可整定电流继电器的动作阀值),电流继电器释放,触点断开,BG1的Ib为0,主电路晶闸管关断。

此外,还有下文两个控制环节,电流正反馈电路和电压负反馈支路,两支路信号都由DW4活臂上输出,通过调节BG1的(Ub)Ib大小,控制输出电压(输出转速)的稳定。将BG1的Ib回路重画一下,可看出速度给定信号和电流、电压反馈信号对Ib的影响。见下图2。

+

4-2 BG1的Ib控制电流通路

上图中的a、b两点之间电压为U控(BG1的基极偏置电压),调节转速给定电位器DW1时,U控电压相应变化,从而控制了Ib的大小。BG1的Ib回路:U控+端经R7、BG1的be结、R6、DW4、R14、DW5回到U控-端。当U控为固定值时,电枢A1、A2端电压下降时,DW4活动臂上分压减小,从而使R7、BG1的Ube分压上升,Ib增大。反之,A1、A2端电压的上升,使Ube下降,Ib减小;当电枢电流增大,DW5上分压上升,使DW4上分压降低,使Ube上升,Ib增大。正常运行时,当U控为某一调节后固定值,电流与电压反馈信号改变了BG1的Ib 值的大小,实现了负反馈闭环稳速控制。

〔电流正反馈电路〕闭环调节电路之一,稳定电流输出。直流电机拖动负载以后,转速相应下降(电枢端电压下降),输出电流有所增大,若欲维持给定转速,即需相应升高输出电压。电枢电流上升时→电位器DW5分压值上升→DW4上分压值减小→BG1的Ube上升→BG2的等效导通Rce电阻减小→C1充电速度加快→触发脉冲出现时刻提前→晶闸管导通角增大→输出电压升高→负载转速上升。于是电机的输出特性曲线保持平坦(机械特性曲线硬度提高)。

〔电压负反馈电路〕闭环调节电路之二,稳定输出电压。当电机加载时,引起电枢端电压降低,电机转速下降→DW4上分压值减小→BG1的Ube上升→BG2的等效导通Rce电阻减小→C1充电速度加快→触发脉冲出现时刻提前→晶闸管导通角增大→输出电压升高→负载转速上升。实现了稳压(稳速)输出控制。

注意:在电路调整过程中电流反馈与电压反馈量调节不当,会出现振荡现象(转速忽高忽低变化),要防止片面领导追求机械特性的硬度,因而将电流正反馈信号取得过大而引起机械振荡。

具体调试步骤如下:

1)将电压反馈信号电位器DW4往增大方向(4-11图中看,使其活动臂向上)调节,约调到4/5处,将电流反馈信号电位器调减小方向调节(从4-11图中看,使其活动臂向左),约调到4/5处;

2)将转速给定电位器DW1调到低速位置(从4-11图中看,使其活动臂向下),调整完毕后起动电动机;

3)然后缓慢将转速给定电位器调至全速位置,看转速是否能达到额定值。如达有到全速运行,将DW4调小,直到能全速运行为止;

4)将静态特性调整在10﹕1的调速范围内,并调整DW2使DW1在零速位置时,电机转速为零;

5)为电机加载,调节电流反馈信号电位器WD5,直到转速变化达到5%的硬度时为止。如单纯调节DW5达不到要求时,应配合调节DW0、DW4,适当增加给定信号比例和电压负反馈比例,使电机在高速运行时,也能达到5%的硬度。

关于直流电机及控制系统的基本知识

关于直流电机及控制系统的基本知识 6、直流电机的四象限运行: 直流电机与交流电机一样,也有两种运行方式:电动运行和制动运行。如果再以正、反转来分的话,则分为正转运行、正转制动运行和反转运行、反转制动运行四种运行方式。如果以坐标形式来表示的话,则称为电机的四象限运行坐标,见下图4-5各种运行方式的机械特性曲线。 当电机正向运行时,其机械特性是一条横跨1、2、4象限的直线。其中1象限为电动运行状态,电磁转矩方向与旋转方向相同,第2、4象限为制动运行状态,在此状态内是产生一个与转向方向相反的阻力矩,以使拖动系统迅速停车或限制转速的升高。制动状态下转矩的方向与转速的方向相反,此时电机从轴上吸收机械能并转化为电能消耗于电枢回路电路或回馈于电源。第3象限为反向电动运行。

当电磁转矩T M与转速n同方向,T M是拖动负载运动的,所以电机运行曲线处于1、3象限,1象限为电机正向运行,3象限为电机反向运行;当T M与转速n的方向相反时,表示电机机处于制动运行方式,其机械特性曲线在坐标的2、4象限内,2象限内为电机正向制动,包含能耗制动过程(O A线段)、电源反接制动过程(-T M B线段)和正向回馈制动过程(-n0C)线段;处于第四象限时为电机反向制动,也包含能耗制动过程(O D线段)、倒拉反接制动过程(T M E线段)和反向回馈过程(-n0F线段)。 7、直流电机的启动、停止和制动控制: 直流电机从接入电源开始,电枢由静止开始转动到额定转速的过程,称为启动过程。要求启动时间短、启动转矩大、启动电流小。启动的要求是矛盾的,比如,用逐渐提升供电电压实施软起动,来降低起动电流,但启动时间又会加长;加大启动转矩,又势必增大的启动电流等。因而要根据实际应用和配置情况,对启动问题综合考虑。 1)启动方式: a、直接启动。只适用于小型直流电机。启动方法是先给电机加励磁,并调节励磁电流达到最大,当励磁磁场建立后,再使电枢绕组直接加上额定电压,电机开始启动。在启动过程中,电枢中最大冲击电流,称为启动电流。直流启动,因启动电流大,电气和机械冲击大等缺点,应用较少; b、早期采用变阻器启动,电动机在启动时在电枢回路中串入变阻器,用接触器触点切换电阻只数,限制启动电流。将启动电流限制在2位额定电流以内。后期采用晶闸管电子电力技术,用改变电枢电压的方式实现了软起动。 2)停止方式: a、自由停车。直流电机的电源关断后,电机按运转惯性自由停车; b、施加制动(刹车)措施,如机械抱闸刹车、能耗制动、反接制动等使其快速停车。 3)直流电机的制动方式和方法: 电动机的电磁转矩方向与旋转方向相反时,就称为电动机处于制动状态。 制动的目的:使电动机减速或停车、限制电动机转速的升高(如电车下坡)。 机械抱闸制动也是一种制动(刹车)方式,但不属电机运行特性的范畴。属于电机运行特性的制动方式和方法有以下四种,有时也统称为电磁制动方式。 a、能耗制动。指运行中的直流电机突然断开电枢电源,然后在电枢回路串 入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。由于电压和输入功率都为0,所以制动平衡,线路简单;

电动机常见故障分析与维修

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

直流电机常见故障的处理

直流电机常见故障的处理: 直流电机由于其启动转矩大,调速平稳,控制简单等优点,在生产生活中广泛应用。其按励磁方式可分为他励、并励、串励和并励。串励电动机在使用时,应注意不允许空载起动,不允许用带轮或链条传动;并励或他励电动机在使用时,应注意励磁回路绝对不允许开路,否则都可能因电动机转速过高而导致严重后果的发生。我们也知道在一定的条件下直流电动机和直流发电机可以相互转换的。下面我们主要说一下电机的一些常见故障。

电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进行判定。将6~12V低压直流电源的两端分别接到相隔K/2或K/4的两换向片上(K 为换向片数),然后用毫伏表的一支表笔触及电动机轴,另一支表笔触在换向片上,依次测量每个换向片与电动机轴之间的电压值。若被测换向片与电动机轴之间有一定电压数值(即毫伏表有读数),则说明该换向片所连接的绕组元件未接地;相反,若读数为零,则说明该换向片所连接的绕组元件接地。最后,还要判明究竟是绕组元件接地还是与之相连接的换向片接地,还应将该绕组元件的端都从换向片上取下来,再分别测试加以确定。 电枢绕组接地点找出来后,可以根据绕组元件接地的部位,采取适当的修理方法。若接地点在元件引出线与换向片连接的部位,或者在电枢铁心槽的外部槽口处,则只需在接地部位的导线与铁心之间重新进行绝缘处理就可以了。若接地点在铁心槽内,一般需要更换电枢绕组。如果只有一个绕组元件在铁心槽内发生接地,而且电动机又急需使用时,可采用应急处理方法,即将该元件所连接的两换向片之间用短接线将该接地元件短接,此时电动机仍可继续使用,但是电流及火花将会有所加大。 电枢绕组短路故障 若电枢绕组严重短路,会将电动机烧坏。若只有个别线圈发生短路时,电动机仍能运转,只是使换向器表面火花变大,电枢绕组发热严重,若不及时发现并加以排除,则最终也将导致电动机烧毁。因此,当电枢绕组出现短路故障时,就必须及时予以排除。 电枢绕组短路故障主要发生在同槽绕组元件的匝间短路及上下层绕组元件之间的短路,查找短路的常用方法有: ①短路测试器法与前面查找三相异步电动机定子绕组匝问短路的方法一样,将短路测试器接通交流电源后,置于电枢铁心的某一槽上,将断锯条在其他各槽口上面平行移动,当出现较大幅度的振动时,则该槽内的绕组元件存在短路故障。 ②毫伏表法如图所示,将6.3V交流电压(用直流电压也可以)加在相隔K/2或K/4两换向片上,用毫伏表的两支表笔依次接触到换向器的相邻两换向片上,检测换向器的片间电压。在检测过程中,若发现毫伏表的读数突然变小,例如,图中4与5两换向片间的测试

直流电机的基础知识-第三部分

直流电机的基础知识/第三部分 ——直流调速的主电路形式和整机电路构成 直流电机需要直流电源的供给,这要求一个能将交流电转变为直流电的电源装置。另外,直流电机的起/停、保护、调速等控制电路,也常常与直流电源集成于一体,称为直流调速装置或直流调速器。 早期对直流电机的调速控制,用直流发电机作直流电机的直流电源,用接触器配合变阻箱实现直流电机的启/停控制和调速,系统繁杂、造价高。后期由于晶闸管等电力电子器件的成熟应用,出现了静止式直流调速装置,系统配置变得精简,而控制性能大幅度提升。国内外,有一些专业厂家,专门生产了专用于直流电机调速的系列产品,进口产品如英国欧陆传动系统有限公司生产的《590+直流数字式调速器》、ABB(瑞典阿西亚公司和瑞士的布朗勃法瑞公司合并而成)集团公司生产的《DCS400晶闸管变流器直流传动系统》等,国内生产厂家更是林林总总,不下百家。其产品范围囊括了大、中、小功率,他励、自励直流电机的调速控制。 1、小功率直流电机调速器的主电路形式: DC+(A1) SCR2 SCR1 DC-(A2) DC+(F1) DC-(F2)(a)主电路形式1(b)主电路形式2(c)主电路形式3 DC-(A2) L N L N 图1 小功率电机调速器的主电路形式 小功率直流电机,串、并励结构都有,上图(a)、(b)为串励直流电机所用的调压电路,电枢和励磁采用同一电源供电。(a)电路,当电源L端为电压极性为正时,形成SCR1→电机绕组回路→D2,回到电源N端;L端为电压极性为负时,形成SCR2→电机绕组回路→D1→电源N端的电流通路。从分析得出,SCR1与D2相串联,故控制SCR1的导通角,即可实现可控整流。这种由二极管和晶闸管构成的整流桥电路,又称半控桥调压电路。假定两只晶闸管处于最大导通角,电路形同一个桥式整流器,输入AC220V,输出整流电压为220V×0.9=198V,故调压范围约为0~198V;(b)电路,两只可控硅位于整流桥的上桥臂,仍呈现SCR1、D2和

直流电机的基本知识

直流电机的基本知识 1 直流电机的工作原理 永磁式直流电机是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图是这种电机的符号和简化等效电路[1]。 工作原理图: 图直流电机的符号和等效电路 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点: 当电机负载固定时,电机转速正比于所加的电源电压。 当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 转子转动的方向,可由电机上所加电压的极性来控制。 体积小、重量轻、起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。

直流电机常见故障及排除方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 直流电机常见故障及排除 方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9217-56 直流电机常见故障及排除方法(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。

对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升………..

电机与拖动基础习题1(第3-6章)

第三章:直流电机原理 一、简答题: 1、换向器在直流电机中起什么作用? 在直流发电机中,换向器起整流作用,即把电枢绕组里交流电整流为直流电,在正、负电刷两端输出。在直流电动机中,换向器起逆变作用,即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中。 2、直流电机铭牌上的额定功率是指什么功率? 直流电机铭牌上的额定功率:对直流发电机而言,指的是输出的电功率的额定值;对直流电动机而言,指的是电动机轴上输出的机械功率的额定值 3、直流电机主磁路包括哪几部分? 磁路未饱和时,励磁磁通势主要消耗在哪一 部分? 直流电机的主磁路主要包括;主磁极、定、转子之间的气隙电枢齿、电枢磁轭、定子磁轭。磁路未饱和时,铁的磁导率远大于空气的磁导率,气隙的磁阻比磁路中的铁心部分大得多,所以,励磁磁通势主要消耗在气隙上。 4、如何改变他励直流发电机的电枢电动势的方向? 如何改变他励直流电动机空 载运行时的转向? 通过改变他励直流发电机励磁电流的方向,继而改变主磁通的方向,即可改变电枢电动势的方向;也可以通过改变他励直流发电机的旋转方向来改变电枢电动势的方向。 改变励磁电流的方向,继而改变主磁通的方向,即可改变电动机旋转方向;也可通过改变电枢电压的极性来改变他励直流电动机的旋转方向。 5、直流发电机的损耗主要有哪些? 铁损耗存在于哪一部分,它随负载变化吗? 电枢铜损耗随负载变化吗? 直流发电机的损耗主要有:(1)励磁绕组铜损耗;(2)机械摩擦损耗;(3)铁损耗;(4)电枢铜损耗;(5)电刷损耗;(6)附加损耗。铁损耗是指电枢铁心在磁场中旋转时硅钢片中的磁滞和涡流损耗。这两种损耗与磁密大小以及交变频率有关。当电机的励磁电流和转速不变时,铁损耗也几乎不变。它与负载的变化几乎没有关系。电枢铜损耗由电枢电流引起,当负载增加时,电枢电流同时增加,电枢铜损耗随之增加。电枢铜损耗与电枢电流的平方成正比。

直流电机相关的问题汇总

直流电机相关的问题汇总 问:直流电机原理是什么 答:直流电机有定子和转子两大部分组成,定子上有磁极(绕组式或永磁式),转子有绕组,通电后,转子上也形成磁场(磁极),定子和转子的磁极之间有一个夹角,在定转子磁场(N 极和S极之间)的相互吸引下,是电机旋转。改变电刷的位子,就可以改变定转子磁极夹角(假设以定子的磁极为夹角起始边,转子的磁极为另一边,由转子的磁极指向定子的磁极的方向就是电机的旋转方向)的方向,从而改变电机的旋转方向. 直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成

本高,运行中的维护检修也比较麻烦。因此,电机制造业中正在努力改善交流电动机的调速性能,并且大量代替直流电动机。不过,近年来在利用可控硅整流装置代替直流发电机方面,已经取得了很大进展。包括直流电机在内的一切旋转电机,实际上都是依据我们所知道的两条基本原则制造的。一条是:导线切割磁通产生感应电动势;另一条是:载流导体在磁场中受到电磁力的作用。因此,从结构上来看,任何电机都包括磁场部分和电路部分。从上述原理可见,任何电机都体现着电和磁的相互作用,是电、磁这两个矛盾着的对立面的统一。我们在这一章里讨论直流电机的结构和工作原理,就是讨论直流电机中的“磁”和“电”如何相互作用,相互制约,以及体现两者之间相互关系的物理量和现象(电枢电动势、电磁转矩、电磁功率、电枢反应等)。《一》直流发电机的基本工作原理直流发电机和直流电动机具有相同的结构,只是直流发电机是由原动机(一般是交流电动机)拖动旋转而发电。可见,它是把机械能变为电能的设备。直流电动机则接在直流电源上,拖动各种工作机械(机床、泵、电车、电缆设备等)工作,它是把电能变为机械能的设备。但是,当前已经有可控硅整流装置替代了直流发电机,为了能使大家更好的理解直流电动机,有必要同时讲述一下直流发电机的原理。我们首先来观察直流发电机是怎样工作的。如图1所示,电刷A、B分别与两个半园环接触,这时A、B两电刷之间输出的是直流电。我们再来看看这时线圈在磁极之间运动的情况。从图1(a)可以看出,当线圈的ab边在N极范围内按逆时针方向运动时,应用发电机右手定则,这时所产生的电动势是从b指向a。这时线圈的cd边则是在S极范围内按逆时针方向运动,依据发电机右手定则可以判断,cd边中的感应电动势方向是从d 指向c。从整个线圈来看,感应电动势的方向是d-c-b-a。因此,和线圈a端连接的铜片1和电刷A是处于正电位;而和线圈的d端连接的铜片2和电刷B是处于负电位。如果接通外电路,那么电流就从电刷A经负载流入电刷B,与线圈一起构成闭合的电流通路。当线圈的ab边转到S极范围内时,cd边就转到N极范围内(图1,b),用右手定则判断可以知道,这时线圈cd边中产生的电动势方向是从c到d,而ab边转到了S极范围内,其中电动势的方向则是有a到b。由于电刷在空间是不动的,因此和线圈d端连接的铜片2和电刷A接触,它的电位仍然是正。而与线圈a端连接的铜片1则和电刷B接触,它的电位仍然是负。接通外电路时,电流仍然是从电刷A经负载流入电刷B,与线圈一起构成闭合的电流通路。不过,要注意到这时线圈内的电流已经反向了。由此可知,当线圈不停地旋转时,虽然与两个电刷接触的线圈边不停的变化,但是,电刷A始终是正电位,电刷B始终是负电位。因此,有两电刷引出的是具有恒定方向的电动势,负载上得到的是恒定方向的电压和电流。也就是说,

直流电机常见故障案例

直流电机常见故障案例 直流电机常见的故障包括如下几种: 一、直流电动机不能启动 直流电动机不能启动的原因及解决方法原因解决方法 1.线路中断:检查线路是否完好,起动器接线是否正确,保险丝是否熔断,励磁欠压继电器是否动作。 2.起动时负载过重:减去部份负载。 3.电刷接触不良:检查刷握弹簧是否松弛。 4.串激绕组接反:按正确接线图接线。 5.线路电压太低:用万用表测电压,提高电压后在起动。 6.轴承损坏或有杂物卡死:停车后,调换轴承,排除杂物。 二、电刷火花过大 1.电刷火花过大的原因及解决方法原因解决方法:电刷与换向器接触不良或电刷磨损过短;研磨电刷接触面,更换新电刷。 2.电刷上弹簧压力不均匀:适当调整弹簧压力,使每个电刷压力保持在1.47×104~2.45×104Pa,也可凭手上的感觉。 3.刷握松动将刷握螺栓固紧,使刷握和换向器表面平行;刷握离换向器表面距离过大;调整刷握至换向器距离,一般为2~3mm 。 4.电刷牌号不符合要求:更换原来牌号。 5.电刷与刷握配合不当:不能过紧或过松,保证在热态时,电刷在刷握中能自由滑动,过紧可用砂纸将电刷适当砂去一些,过松的要调换新电刷。 6.换向器片间云母未拉净:用手拉刀刻去剩余云母。 7.刷架中心位置不对:移动刷架座,选择火花最好位置。 8.电机长期超负载:调整负载,在额定负载内。 9.换向极线圈短路:重新绕制线圈。 10电枢绕组断路:拆开电机,检查电枢绕组,用毫伏表找出断路处,若不能焊接将重绕。 11电枢绕组短路或换向器断路:电机运转时,换向器刷握下冒火,电枢发热,应检查云母槽中有无铜屑,或用毫伏表测换向片间电压降,检查出绕组短路处。 12.电压过高:调整外加电压到额定值。 13.换向极引出线接反:帘动机在负载时转速稍慢并出火,应调换和刷杆相联接的两线头 三、电动机转速不正常 1.励磁绕组回路开路,励磁电压过低:检查磁场线圈联接是否良好,接错磁场线圈或调速器内部是否断路,励磁欠压继电器是否动作,励磁电压是否正常。 2.电刷不在正常位置:按所刻记号调整刷杆座位置。 3.电枢及磁场线圈短路:检查换向器表面及接头片是否有短路,测量磁场线圈每极直流电阻是否一样。 4.外加电压过高或过低:用万用表测量,将电压调整到允许范围内。

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下 A.将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。 B.电机内部有磁场存在。 C.载流的转子(即电枢)导体将受到电磁力 f 的作用 f=Bli a(左手定则) D.所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以便拖动机械负载。 2. 归纳 A. 所有的直流电机的电枢绕组总是自成闭路。 B. 电枢绕组的支路数(2a)永远是成对出现,这是由于磁极数(2p)是一个偶数. 注:a-支路对数 p-极对数

常用电动机类型及特点

电动机类型及特点 一、同步电机与异步电机区别:(均属交流电机) 结构:同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构。同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流(又称感应电机)。相比之下,同步电机较复杂,造价高。 应用:同步电机大多用在大型发电机的场合。而异步电机则几乎全用在电动机场合。同步电机效率较异步电机稍高,在2000KW以上的电动机选型时,一般要考虑是否选用同步电机。 二、单相异步电动机与三相异步电动机: 单项电动机:当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。通常根据电动机的起动和运行方式的特点,将单相异步电动机分为单相电阻起动异步电动机、单相电容起动异步电动机、单相电容运转异步电动机、单相电容起动和运转异步电动机、

单相罩极式异步电动机五种。 区别:三相异步电动机采用380V三相供电,单相电机是用220V的电源,而且都是小功率的,最大只有2.2KW 。相比于同转速同功率的三相电机,单项电机的效率低、功率因数低、运行平稳性差、且体积大,成本高,但由于单相电源方便,且调速方便,因此广泛用于电动工具、医疗器械、家用电器等。 三、无刷直流电机 1、无刷直流电机: 无刷直流电机是永磁式同步电机的一种,而并不是真正的直流电机。无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。直流无刷电机由电动机主体和驱动器组成,在电动机内装有位置传感器检测电动机转子的极性,驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 特点: ●全面替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速; ●具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; ●可以低速大功率运行,可以省去减速机直接驱动大的负载; ●体积小、重量轻、出力大; ●转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;

直流电机常见维修

直流电机常见维修 1.电机拆检: 客户待修电机进厂后,必须组织技术、质量和车间有关人员进行修理内容的鉴定。 1.1 在鉴定前必须进行下列试验,以确定故障的性质: 1.1.1 绝缘电阻测定:主极、电枢、补偿、换向对地及主极和换向极间。 1.1.2 直流电阻测定:主极、电枢、补偿、换向极。 1.1.3 作为电动机的空载试验。 如1.1.1和1.1.2二项实验不合格,则不再进行1.1.3试验。1.2 拆开试验: 试验后和不能试验的电机都必须拆开进行内部检查。 检查包括:轴承是否松动;定子极间的连接接触,碳刷、刷架及换向器是否烧毛或短接;与转子竖板的焊接是否良好。 1.3 填写“拆检分析单”。 1.4 根据拆检结果确定修理方案和工艺。 2. 保养复试: 2.1 凡定转子线圈完好,整流子无严重灼伤、跳排、短路、偏心不 圆者,可作常规保养处理。 2.2 保养复试内容: 2.2.1 定子线圈冲洗,清除污秽物。 2.2.2 定子极间连接线如接触不良或有破损及裂开者,须重新更换或

搪锡。 2.2.3 转子冲洗、清理。 2.2.4 转子出线和换向器竖板的焊接、补焊。 2.2.5 整流子清理、车外圆、拉槽、倒角。 2.2.6 碳刷架的清理。刷握的修理、调整。 2.2.7 碳刷的更换。 2.2.8 轴承的更换。 2.2.9 定转子线圈的烘干、浸漆(根据需要)。 2.2.10 定转子线圈的重新喷漆8037。 2.2.11 换轴瓦或轴瓦的修理。 3. 电机的大修: 3.1 凡电机有下列情况者都需进行大修: 3.1.1 定子磁极线圈局部或全部烧坏须更换者。 3.1.2 电枢绕组烧坏须重新更换者。 3.1.3 换向器损坏或短路者。 3.1.4 转子断轴须更换者。 3.1.5 电机改电压。 3.1.6 电机改容量。 4. 电机的修理工艺: 4.1 电机的拆装: 4.1.1电机外观检查:如机壳、端盖、轴盖等有无断裂;轴头有无损 坏拉毛;紧固件等有无短缺。

直流电机常见故障及其处理方法

直流电机常见故障及其处理方法故障现象可能原因处理方法 电刷下火花过大1、电刷换向器接触不良研磨电刷接触面,并在轻载下运转30~60min 2、握松动或装置不正确紧固或纠正刷握装置 3、电刷与刷握配合太紧略微磨小电刷尺寸 4、电刷压力大小不当或不均用弹簧校正电刷压力 5、换向器表面不光洁不圆或有污垢清洁或研磨换向器表面 6、换向片间云母凸出换向器刻槽,倒角,再研磨 7、电刷位置不在中性线上调整刷杆座至原有位置或按感应法校正中性线位置 8、电刷磨损过度或用品牌及尺寸不符更换新电刷 9、过载恢复正常负载 10、电机底角松动,发生震动固定底脚螺钉 11、换向极绕组短路检查换相极绕组,修理绝缘损害处 12、电刷绕组与换向器脱焊用毫伏表检查换向片间电压是否呈周期性出现,如某两 片之间电压特别大,说明该处有脱焊现象,须进行重焊13、检修时将换相极绕组接反用指南针试检验换相极极性,并纠正换向极与主磁极极 性关系,顺电机旋转方向,发电机为n—N—s—S,电 动机为n—S—s—N(大写字母为主磁极极性,小写字 母为换向器极极性) 14、电刷之间的电流分布不均匀调整刷架等分;按原牌号及尺寸更换新电刷 15、电刷分布不等分校正电刷等分 16、转子平衡未校好重校转子动平衡 发电机电压不能建立1、剩磁消失另用直流电通入并励绕组,产生磁场 2、励磁绕组接反纠正接线 3、旋转方向错误改变旋转方向(按箭头所示方向) 4、励磁绕组断路检查励磁绕组及磁场变阻器之间的链接是否松脱或接 错,磁场绕组或变阻器内部是否断路 5、电枢短路检查换向器表面及接头片是否有短路出,用毫伏表测试 电枢绕组是否短路 6、电刷接触不良检查刷握弹簧是否松弛或改善接触面 7、磁场回路电阻过大检查磁场变阻器和磁励绕组电阻大小并检查接触是否 良好

直流电机常见故障及排除方法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 直流电机常见故障及排除方法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

直流电机常见故障及排除方法(新版) 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变

极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升……….. (2)换向极绕组接反。此情况会使换向严重恶化,可看到电刷下火花随负载增加而更加明显,发现这种情况,先检查换向极性是否正确,可将换向极绕组的接头互换位置,进行试验以观察效果。 (3)电刷偏离中性线过多,严重时不发电空载下电刷有火花,

直流电机常见故障现象原因解析及处理方法简介

在直流电机的实际应用过程中,偶尔会出现一些故障,有些故障时由于电机本身质量问题而引起,还有一些是由于长期使用造成磨损而引起的。当电机出现故障时,有一些小问题只要及时发现原因,就可以简单解决问题,必须返厂维修。三新电力结合多年来的实战经验,为大家列举一些电机常见的故障,及对应的处理方法,仅供参考。 电动机不能起动的原因及处理方法 (1)无电源。检查线路是否完好,起动器连接是否正确,接触器接触是否良好,熔断器是否熔断。 (2)负载过重。减少电机负载或换大电动机。 (3)电刷接触不良。检查刷握、弹簧或改善接触面。 (4)启动电流太小或太大。检查启动器是否合适、启动电阻是否过大或过小。 电动机转速太快的原因及处理办法 (1)电源电压过高。降低电源电压或在电枢回路串接电阻。 (2)磁场回路中电阻过大。减小磁场电阻。 (3)电刷不在正常位置。按所刻标记调整刷杆位置。 (4)励磁绕组有晰路或短路。查出故障点进行修理。 (5)积复励接成差复励。调换串励绕组两头。 电动机转速太慢的原因及处理办法 (1)电源电压太低。设法恢复电源电压,使电源电压适当提高。 (2)负载过重。减轻电机负载或换大电动机。 (3)电刷不在正常位置。调整电刷位置。

(4)电枢或换向片有故障。查出故障点进行处理。 发电机不能建立电压的原因及处理办法 (1)电机中剩磁消失。将6-12V低压直流电源加在并励绕组上约数秒钟,使其产生磁场。 (2)转向不对。改变电机转向,使电机按箭头所示方向旋转。 (3)并励绕组接反。改变并励绕组接线。 (4)磁场回路电阻过大。检查磁场变阻器和励磁绕组电阻大小,并检查接触是否良好,减小磁场电阻。 (5)电刷接触不良。检查刷握、弹簧、改善电刷接触面。 (6)励磁回路断路。检查励磁绕组和磁场变阻器是否断路,连接是否松脱。 发电机空载电压过低的原因及处理方法 (1)转速低。提高原动机转速、使其达到额定转速。 (2)励磁回路电阻过大。检查磁场变阻器和励磁绕组电阻大小,并检查接触是否良好减小磁场电阻。 (3)并励绕组部分短路。查出故障线圈进行修理。 (4)电刷不在正常位置。按标记调整电刷位置。 (5)电枢绕组有短路、接线错误等故障。查出故障点进行修理。 发电机加负载后电压显著下降的原因及处理方法 (1)电刷不在中性线上。调整电刷位置。 (2)串励绕组接反。改正接线。 (3)过载。减少负载。 (4)电枢绕组短路。查出故障点进行修理。 (5)电刷接触电阻过大。检查刷握、弹簧及换向器表面、改善电刷接触面。

直流电机常见故障

直流电机常见故障的处理以及一些实验 直流电机由于其启动转矩大,调速平稳,控制简单等优点,在生产生活中广泛应用。其按励磁方式可分为他励、并励、串励和并励。串励电动机在使用时,应注意不允许空载起动,不允许用带轮或链条传动;并励或他励电动机在使用时,应注意励磁回路绝对不允许开路,否则都可能因电动机转速过高而导致严重后果的发生。我们也知道在一定的条件下直流电动机和直流发电机可以相互转换的。下面我们主要说一下电机的一些常见故障。 电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电

阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进行判定。将6~12V低压直流电源的两端分别接到相隔K/2或K/4的两换向片上(K 为换向片数),然后用毫伏表的一支表笔触及电动机轴,另一支表笔触在换向片上,依次测量每个换向片与电动机轴之间的电压值。若被测换向片与电动机轴之间有一定电压数值(即毫伏表有读数),则说明该换向片所连接的绕组元件未接地;相反,若读数为零,则说明该换向片所连接的绕组元件接地。最后,还要判明究竟是绕组元件接地还是与之相连接的换向片接地,还应将该绕组元件的端都从换向片上取下来,再分别测试加以确定。 电枢绕组接地点找出来后,可以根据绕组元件接地的部位,采取适当的修理方法。若接地点在元件引出线与换向片连接的部位,或者在电枢铁心槽的外部槽口处,则只需在接地部位的导线与铁心之间重新进行绝缘处理就可以了。若接地点在铁心槽内,一般需要更换电枢绕组。如果只有一个绕组元件在铁心槽内发生接地,而且电动机又急需使用时,可采用应急处理方法,即将该元件所连接的两换向片之间用短接线将该接地元件短接,此时电动机仍可继续使用,但是电流及火花将会有所加大。 电枢绕组短路故障 若电枢绕组严重短路,会将电动机烧坏。若只有个别线圈发生短路时,电动机仍能运转,只是使换向器表面火花变大,电枢绕组发热严重,若不及时发现并加以排除,则最终也将导致电动机烧毁。因此,当电枢绕组出现短路故障时,就必须及时予以排除。 电枢绕组短路故障主要发生在同槽绕组元件的匝间短路及上下层绕组元件之间的短路,查找短路的常用方法有: ①短路测试器法与前面查找三相异步电动机定子绕组匝问短路的方法一样,将短路测试器接通交流电源后,置于电枢铁心的某一槽上,将断锯条在其他各槽口上面平行移动,当出现较大幅度的振动时,则该槽内的绕组元件存在短路故障。 ②毫伏表法如图所示,将6.3V交流电压(用直流电压也可以)加在相隔K/2或K/4两换向片上,用毫伏表的两支表笔依次接触到换向器的相邻两换向片上,检测换向器的片间电压。在检测过程中,若发现毫伏表的读数突然变小,例如,图中4与5两换向片间的测试读数突然变小,则说明与该两换向片相连的电枢绕组元件有匝问短路。若在检测过程中,各换向片问电压相等,则说明没有短路故障。

直流电机的基础知识第2部分

直流电机的基础知识(第2部分) ——晶闸管直流调速装置的电路原理分析与调试 (电子管)二极管的出现,使人们找到了控制电流方向的“钥匙”,(电子管)三极管的出现,使人们掌握了控制电流大小的奥妙,人类文明由此进入了电子时代的新纪元。做为“弱电”的电子元件,从来都希望并且也有能力在“强电领域”占有一席之地,晶闸管在工业控制领域得以广泛的应用,即是一个有力的证明。 电子器件的发展,经历了电子管、晶体管、(小、中、大规模)集成电路的三个阶段。其中电子管除在高频高压电路,得到极少数应用外,常规电路中已难见到它们的踪影。但晶体管电路的“阵地”随集成电路的“强势出击”虽有所缩小,但并示全盘“退却”,像上文所述的滑差电机调速盒,仍以由晶体管分立元件构成的电路为主流。 正在应用中的直流电机调速器,仍有部分由晶体管分立元件构成的整机电路,分析其原理和给出检修指导,仍具有实际意义,并且为进一步掌握由集成电路(或单片机)构成的直流调速电路,也相当于一个基础和原理性的铺垫。 N 图1 单相晶闸管直流电机调速器(整机电路)

该电路用于小功率他励直流电机的调速与起停控制。 〔主电路〕由单相半控整流桥、滤波电抗器L0构成,桥式整流电路的左侧由两只晶闸管串联而成,右则的两只串联二极管(2CZ50A)与两只晶闸管呈并联关系,两只二极管身兼双职,即可作为整流元件,又并接于电枢绕组两端,提供电枢绕组的反电势通路,起到为电枢绕组的“续流作用”,因而该电路省去了并接于电枢电源两端的续流二极管。电抗器L0可抑制整流后脉动成分,改善电机的换向并降低电机损耗和温升,同时起到提高电网侧功率因数的作用,减弱晶闸管与二极管非线性整流造成的谐波影响。 〔励磁电路〕由桥式整流器组成,电机励磁线圈并串有电流继电器LJ,当励磁电流消失时,主电路晶闸管的触发信号同时消失,电枢绕组同时断电,避免了电机超速(或飞车)运行。他励和和复励直流电机的调速控制电路,都设有励磁电流检测回路,以实现“失磁”时的停机保护。 〔移相触发电路〕由DW0、DW1、DW2、晶体管BG1~BG5、脉冲变压器B2等元件组成。电阻R1、稳压器WG1对70V绕组整流电压进行削波处理成梯形波电压,做为触冲功放级BG5、BG3的供电和电网过零同步信号,控制BG5在电网电压过零时处于截止状态;该梯形波直流电压又经D1隔离、C4滤波成平滑和稳定直流电压,用作移相电路的前级信号处理电路——BG1放大器的供电,以提高电路工作的稳定性。 R16、WG3对另一70V绕组整流电压,削波生成梯形波直流电压,该电压作为同步采样信号,经DW0、DW1、DW2三只电位器调整后,经R7、BG1的发射结、射极电流负反馈电阻R6、DW3、DW4等元件形成了BG1的Ib回路(或称为基极偏压回路),形成了速度给定信号。DW0、DW2用于用于调速范围的设定,D2、D3、D4三只二极管,起到BG1的be结正反向电压的限幅保护作用,将BG1的最大Ic(即BG2的最大Ib)限制于1.4V(两二极管串联压降)-0.7V(BG1发射结电压)/24kΩ=0.029Ma,从而限制了BG2的最小等效导通Rce电阻,限制了单结晶体管BG3形成直通而停振。串入DW3、DW4、DW5支路的目的,是引入电流、电压反馈信号,形成速度闭环控制及电流保护作用(见下文所述)。 当DW2活动臂上行时→BG1的Ub(Ib)上升→BG2的Ib/Ic上升→BG1的Rce(等效导通电阻)变小→C1上充电电压到达BG3基极峰点电压的时刻提前→BG3的导通提前→(在触发脉冲作用下)两只主电路晶闸管的导通时刻提前→半控桥整流电压升高→直流电机转速升高。 移相信号形成电路的主体为单结晶体管BG3、R3(包括BG2导通时的等效Rce)C1的定时电路所组成的张驰振荡器。BG5为脉冲功率放大电路,将输入移相触冲进行功率放大后,驱动脉冲变压器B2。而BG1、BG2两级放大器,组成了可控的变阻电路(BG2的等效导通Rce电阻),使之对C1的充电是可控的(可以调节RC时间常数),进而控制了张驰振荡器第一个脉冲出现的时刻。

相关主题