搜档网
当前位置:搜档网 › 时程分析报告阻尼模型附数值计算方法

时程分析报告阻尼模型附数值计算方法

时程分析报告阻尼模型附数值计算方法
时程分析报告阻尼模型附数值计算方法

时程分析阻尼模型及数值计算方法

1、阻尼模型

阻尼是用以描述结构在振动过程中能量的耗散方式,是结构的动力特性,是影响结构动力反应的重要因素之一。结构振动时,由于结构材料的内摩擦、材料的滞回效应等机制导致能量消耗,使结构振动幅值逐渐减少,最后直至完全静止。结构的耗能机制非常复杂,它与介质的特征、结构粘性等诸多因素有关。常用的是粘滞阻尼理论,它认为,阻尼力与速度成正比。试验也证明,对于许多材料,这种阻尼理论是可行的,并且物理关系简单,便于应用和计算。

根据实测去确定阻尼大小是相当困难的,但由于阻尼的影响通常比惯性力和刚度的影响小,所以一般都采用简化的方法考虑阻尼。本文采用最为广泛应用的瑞雷阻尼。

瑞雷阻尼假设阻尼矩阵是质量矩阵和刚度矩阵的线性组合,即

[][][]C M K αβ=+ (4.15)

式中,α、β为常数,可以直接给定,或由给定的任意二阶振型的阻尼比i ξ、j ξ反算求得。

根据振型正交条件,待定常数α和β与振型阻尼比之间的关系应满足:

22

k k k βωα

ξω=

+

(k =1,2,3,…,n ) (4.16a) 任意给定两个振型阻尼比i ξ和j ξ后,可按下式确定比例常数

22

2j i i j

i j

i j

ξωξωαωωωω-=- 222j i i j

i j

ξωξωβωω-=- (4.16b)

i ω、j ω分别为第i 、j 振型的原频率。本文取前两阶振型频率求得α、β值。

2、数值积分方法

多自由度结构体系动力微分方程为:

[]{}[]{}[]{}[]{}()g

M x C x K x M x t I ++=-

(4.17) 其中,[]M -质量矩阵;[]C -阻尼矩阵;[]K -刚度矩阵;{}I -单位对角阵;()

g x t -地面运动加速度;{}x 、{}x 、{}x

-结构楼层相对于地面的位移、速度和加速度反应。

在结构动力计算中,常用的直接积分法有中心差分法、线性加速度法、Wilson-θ法和Newmark-β法等。

数值计算方法的一个基本要求是算法的收敛性好,中心差分法和线性加速度法是条件稳定的,计算时要求积分步长很小才能保证不发散。如前者要求积分步长0.318n

n T t T π

?≤=,

后者要求/10n t T ?≤,n T 为最高阶振型的周期。

Wilson-θ法是线性加速度法的改进。当 1.37θ≥时为无条件收敛,但该方法在t t θ+?处满足动力平衡,退回到t t +?时有一定的平衡误差。 (1)Newmark-β法

ANSYS 软件采用的是Newmark-β法。Newmark-β法的特点是假定加速度介于{}t x 和{}t t x +?

之间的某一常量,记为{}x ,即所谓的常平均加速度假设,根据这一假定,{}x 可表示为

{}{}{}{}()t t t t x x x x γ+?=+-

(4.18) 其中γ为Newmark 积分参数,满足01γ≤≤。为了获得稳定高精度的算法,引入另一

积分参数β,满足00.5β≤≤,{}x

可表示为 {}{}{}{}()2t t t t x x x x β+?=+-

(4.19) 以t 为积分原点,通过积分可获得t +△t 时刻的速度和位移分别为

{}{}{}t t t x

x t x +?=+? (4.20a) {}{}{}{}2

12

t t t t x x t x

t x +?=+?+? (4.20b) 将式(4.18)、(4.19)分别代入式(4.20a )、(4.20b )可得

{}(){}{}1t t t x

x t x t γγ+??=-?+? (4.21a) {}{}{}{}2212t t t t x x

t x t x

t ββ+???

?=?+-?+? ???

(4.21b) 则由以上两式可得

{}{}{}{}023t t x a x a x a x ?=?--

(4.22a) {}{}{}{}145t t x

a x a x a x ?=?-- (4.22b) 其中,

201/a t β=? 1/a t γβ=? 21/a t β=? 31/2a β= 4/a γβ= ()5/21a t γβ=-?

将动力方程改写为增量的形式:

[]{}[]{}[]{}[]{}g

M x C x K x M x I ?+?+?=-?

(4.23) 其中[]K 为切线刚度。

把式(4.22a)、(4.22b)代入式(4.23)中,可得

{}{}K x P ?=?????

(4.24)

其中,

[][][]01K K a M a C =++???? (4.25a)

{}[]{}[]{}{}()[]{}{}()2345g t t t t P M x M a x a x C a x a x I ?=-?++++

(4.25b) 通过对Newmark-β法的积分逼近算子的特征值分析可知,当1

2γ≥,2

11

42βγ≥+?? ???

时,

其谱半径≤1,故其算法为无条件稳定。参数γ和β决定了在时间间隔t ?内加速度变化的规律。12

γ=

、16

β=

时,相当于在时间间隔t ?内加速度线性变化,这就演变为线性加速度法。通常采用12

γ=

、14

β=

,相当于加速度为阶跃式变化,本文采用这一取值。Newmark-

β法求解迭代过程如下:

(1)初始计算;

(2)形成刚度矩阵[]K 、质量矩阵[]M 和阻尼矩阵[]C ;

(3)确定初值{}0x 、{}0x 和{}0x

; (4)选择时间步长t ?、参数γ和β,并计算积分常数0a ~5a ;

(5)根据式(4.25a)、(4.25b)形成等效刚度矩阵[]K 和等效荷载矩阵{}P ?

(6)由式(4.24)求得{}x ?,再由式(4.22a)、(4.22b)求得{}x ? 、{}x

? ,依次便可得到{}t t x +?、{}t t x

+? 和{}t t x +? 。

产能分析报告

产能分析报告 一、产能修改记录及主要产品信息 注:产能分析报告——修改记录 1)产能发生变化时以便及时追踪。如进行增产以达到完全生产能力,此时生产线通过一系列步骤可以达到完全生产能力,则应记录下这些变化。填写论证产能时也应同时填写日期。 2)此次产能分析报告均记作初次提交。 注:产品信息 1)完成产能分析报告的首先要明确需要分析的产品的详细信息。包括产品名称、型号、产能概况、客户需求信息等。 2)必要时应完善产品主要零部件供应商信息,以便及时掌握配套商供货情况,平衡零部件供货影响系数。 二、现有设备产能核算 1、预订工作时间标准

注: 1)单班时间:每班总时间-每班的总计可用小时数。 2)班次:表示的是每天每个工艺操作的班次数。 3)作业率:(总工时-无效工时)/总工时。 人员休息-如果在人员休息的时候,机器也停止运转,则输入每班中机器不运转的时间长度。 计划的维修时间-这是计划的每班中机器停机用于维护的时间长度。 4)年出勤时间:年出勤天数-表示的是每年的工艺运作的天数(扣除法定节假日、双休日)。 5)计算举例:每班8小时、每天2班次、作业率80%、年出勤302天,净可用时间=8*2*80%*302=时。 2、代表产品制程/线能力计算

注: 1)代表产品:所谓代表产品指产品制程包含其他所有产品制造过程包含的所有工艺过程;如存在两种以上产品包含不同工艺过程、需分别取各类型产品代表产品制程并进行线能力分析。 2)评价瓶颈工序应排除可用外协、其他生产线可用设备借代等因素影响。 3)每条生产线选取一种或2种产品作为代表说明制程及瓶颈工序即可,其他产品可直接计算毛产能。3、毛产能核算 注: 1)毛产能核算过程没有排除产品合格率、设备故障率、人员负荷等因素对产能的影响,不能作为需求平衡分析的依据,需进一步平衡。 2)其他产品可根据代表产品计算方法计算出出毛产能。

第二次作业《解释结构模型应用》

大连海事大学 实验报告 《系统工程》 2014~2015学年第一学期 实验名称:基于解释模型在大学生睡眠质量问题的研究学号姓名:马洁茹姚有琳 指导教师:贾红雨 报告时间: 2014年9月24日

《系统工程》课程上机实验要求 实验一解释结构模型在大学生睡眠质量问题中的研究 实验名称:基于MATLAB软件或C/Java/其他语言ISM算法程序设计(一) 实验目的 系统工程课程介绍了系统结构建模与分析方法——解释结构模型法(Inter pretative Structural Modeling ·ISM)是现代系统工程中广泛应用的一种分析方法,能够利用系统要素之间已知的零乱关系,用于分析复杂系统要素间关联结构,揭示出系统内部结构。ISM方法具有在矩阵的基础上再进一步运算、推导来解释系统结构的特点,对于高维多阶矩阵的运算依靠手工运算速度慢、易错,甚至几乎不可能。 本次实验的目的是应用计算机应用软件或者是基于某种语言的程序设计快速实现解释结构模型(ISM)方法的算法,使学生对系统工程解决社会经济等复杂性、系统性问题需要计算机的支持获得深刻的理解。学会运用ISM分析实际问题。 (二) 实验要求与内容: 1.问题的选择 根据对解释结构模型ISM知识的掌握,以及参考所给的教学案例论文,决定选择与我们生活有关的——大学生睡眠质量问题。 2.问题背景 睡眠与我们的生活息息相关,当每天的身体机制在不断运行的过程中身体负荷不断变大,到了夜间就需要休息。但是同一寝室的同学大多休息时段不同,有些习惯早睡,有些会由于许多原因晚睡。有些睡眠较沉不会轻易被打扰,有些睡眠较轻容易被鼾声或者其他声响惊醒。学习得知,解释系统模型是通过对表面分离、凌乱关系的研究,揭示系统内部结构的方法。因此,我想尝试通过解释模型来对该问题进行研究分析。 3.用画框图的形式画出ISM的建模步骤。

减振器阻尼系数与悬架系统阻尼比的匹配(精)

第22卷第6期2000年12月 武汉汽车工业大学学报 JOURNA L OF W UH AN AUT OM OTI VE PO LY TECH NIC UNI VERSITY V ol.22N o.6 Dec.2000 文章编号:10072144X(20000620022204 汽车减振器阻尼系数与悬架系统阻尼比的匹配 韦勇1,阳杰2,容一鸣2 (1.柳州五菱汽车有限责任公司技术中心,广西柳州545007;2.武汉汽车工业大学机电工程学院,湖北武汉430070 摘要:阐述了双轴汽车减振器阻尼系数与悬架系统阻尼比匹配设计的原则,论述了悬架减振器 外特性的匹配设计要求和设计方法,并对某实际车型进行了减振器阻尼系数与悬架系统阻尼比匹 配分析及改进设计。通过道路试验验证了改进设计的结果是可行的。 关键词:减振器;汽车悬架;阻尼比匹配 中图法分类号:U463.33文献标识码:A 汽车悬架动力学表明,地面对悬架系统的激振力等于悬架质量的惯性力和非悬架质量的惯性力之和。车轮动载(激振力又决定了车轮的接地性能,它是汽车行驶安全性的重要尺度。显然,在悬架系统中配置恰当的减振器,才能有效地抑制车身振动,保证良好的平顺性及安全性。

1阻尼匹配的原则 根据振动理论和工程经验,悬架阻尼的匹配关系由式(1确定: ξ=C 2Km =0.2~0.45(1式中,ξ为悬架系统阻尼比;C为悬架减振器的等效阻尼系数 (NsΠm;K为悬架刚度(NΠm; m为悬架质量(kg。当减振器不是垂直安装时,要考虑安装角的影响。 悬架中的弹性元件在支承车身质量的同时,还可缓和路面产生的振动,而减振器起抑制振动的作用。缓冲和抑振是矛盾着的两个方面,它们是在保证车辆和乘员安全的正常运行条件下统一起来的,这就是悬架阻尼必须匹配设计的依据。ξ值较大时,能迅速减振,但不适当地增大ξ值会传递较大的路面冲击,甚至使车轮不能迅速向地面回弹而失去附着力和对激励的缓冲能力;ξ值较小时,振动持续时间变长,又不利于改善舒适性。 一般说来,压缩行程时的悬架阻尼比要小于复原行程,因为在压缩行程,应尽量减小减振器对地面冲击的传递能力,以便充分利用弹性元件的缓冲作用,如果不适当地选择了高系数值,就相当于过分增大了悬架刚度,使车辆的平顺性变坏。在确定了ξ值之后,可由式(1确定减振器的阻尼系数。因此,确定ξ值是减振器设计的原始技术条件。 收稿日期:2000209218. 作者简介:韦勇(19672,男,广西柳州人,柳州五菱汽车有限责任公司工程师. 2悬架减振器非线性外特性的规律化和量化问题 众所周知,被动悬架可行性设计区理论规定了悬架弹性元件和阻尼元件的线性制约关系或匹配关系[1]。在解决悬架阻尼系数的匹配问题时,必须解

车辆最佳匹配减振器阻尼_图文(精)

第8卷第3期 2008年6月 交通运输工程学JournalOfTrafficandTransportatio报 一 ● ● n Lngmeerlng V01.8 Jun.NO.3 2008 文章编号:1671—1637I2008)03—0015—05 0 车辆悬架最佳阻尼匹配减振器设计 周长城1’2,孟婕 (1.山东理工大学交通与车辆工程学院,山东淄博255049; 2.北京理工大学机械与车辆工程学院,北京 100081)

摘 要:为了使设计减振器对车辆具有最佳减振效果,利用悬架最佳阻尼比,对减振器最佳阻尼系 数进行了研究,建立了减振器最佳速度特性数学模型,提出了减振器阀系参数设计优化方法,对设计减振器进行了特性试验和整车振动试验,并与原车载减振器性能进行了对比。计算结果表明:减振器特性试验值与最佳阻尼匹配要求值的最大偏差为9%,而且,在低频范围内,设计减振器的整车振动传递函数幅值明显低于原车载减振器的幅值,有效遏制了簧下质量在13Hz附近的共振,因此,减振器速度特性模型和阀系参数优化设计方法是正确的。关键词:汽车工程;减振器;最佳阻尼;速度特性;设计模型;优化方法中图分类号:U463.335.1 文献标识码:A Designofshockabsorbermatchingtooptimal dampingofvehiclesuspension ZhouChang—chen91”.MengJiel (1.SchoolofTrafficandVehicleEngineering,ShandongUniversityofTechnology,Zibo255049,Shandong,China;2.Schoolof MachineandVehicleEngineering,BeijingInstituteofTechnology,Beijing100081,China) Abstract:Inorderto

汽车减震器结构图

悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张阀; 5. 储油缸筒; 6. 压缩阀; 7. 补偿阀; 8. 流通阀; 9. 导向座;10. 防尘罩;11. 油封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。

第二次作业《解释结构模型应用》

海事大学 实验报告 《系统工程》 2014~2015学年第一学期 实验名称:基于解释模型在大学生睡眠质量问题的研究学号:马洁茹有琳 指导教师:贾红雨 报告时间: 2014年9月24日

《系统工程》课程上机实验要求 实验一解释结构模型在大学生睡眠质量问题中的研究 实验名称:基于MATLAB软件或C/Java/其他语言ISM算法程序设计(一) 实验目的 系统工程课程介绍了系统结构建模与分析方法——解释结构模型法(Inter pretative Structural Modeling ·ISM)是现代系统工程中广泛应用的一种分析方法,能够利用系统要素之间已知的零乱关系,用于分析复杂系统要素间关联结构,揭示出系统部结构。ISM方法具有在矩阵的基础上再进一步运算、推导来解释系统结构的特点,对于高维多阶矩阵的运算依靠手工运算速度慢、易错,甚至几乎不可能。 本次实验的目的是应用计算机应用软件或者是基于某种语言的程序设计快速实现解释结构模型(ISM)方法的算法,使学生对系统工程解决社会经济等复杂性、系统性问题需要计算机的支持获得深刻的理解。学会运用ISM分析实际问题。 (二) 实验要求与容: 1.问题的选择 根据对解释结构模型ISM知识的掌握,以及参考所给的教学案例论文,决定选择与我们生活有关的——大学生睡眠质量问题。 2.问题背景

睡眠与我们的生活息息相关,当每天的身体机制在不断运行的过程中身体负荷不断变大,到了夜间就需要休息。但是同一寝室的同学大多休息时段不同,有些习惯早睡,有些会由于许多原因晚睡。有些睡眠较沉不会轻易被打扰,有些睡眠较轻容易被鼾声或者其他声响惊醒。学习得知,解释系统模型是通过对表面分离、凌乱关系的研究,揭示系统部结构的方法。 因此,我想尝试通过解释模型来对该问题进行研究分析。 3.用画框图的形式画出ISM的建模步骤。

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

制程能力分析

制程能力分析 緒言 在產品生產周期內統計技朮可用來協助制造前之開發活動、制程變異性之數量化、制程變性相對于產品規格之分析及協助降低制 程內之變異性。這些工作一般稱為制程能力分析(process capability analysis)。制程能力是指制程之一致性,制程之變異性可用來衡量制程輸出之一致性。 我們一般是將產品品質特性之6個標准差范圍當做是制程能力之量測。此范圍稱為自然允差界限(natural tolerance limits)或稱為制程能力界限(process capability limits)。圖9-1顯示品質特性符合常態分配且平均值為μ,標准差為σ之制程。制程之上、下自然允差界限為 UNTL=μ+3σ上自然允差界限 LNTL=μ-3σ下自然允差界限 對于一常態分配,自然允差界限將包含99.73%之品質數據,或者可說是0.27%之制程輸出將落在自然允差界限外。如果制程數據之分配不為常態,則落在μ±3σ外之機率將不為0.27%。

(例) 產品外徑之規格為5±0.015cm,由樣本資料得知X=4.99cm,σ=0.004cm,試計算制程之自然允差界限。 (解): UNTL=4.99+3(0.004)=5.002 LNTL=4.99-3(0.004)=4.978 制程能力分析可定議為估計制程能力之工程研究。制程能力分析通常是量測產品之功能參數而非制程本身。當分析者可直接觀察制程及控制制程數據之收集時,此種分析可視為一種真的制程能力分析。因為經由數據收集之控制及了解數據之時間次序性,可推論制程之穩定性。若當只有品質數據而無法直接觀測制程時,這種研究稱為產品特性分析(product characterization)。產品特性分析只可估計產品品質特性之分布,或者是制程之輸出(不合格率),對于制程之動態行為或者是制程是否在管制內則無法估計。這種性形通常是發生在分析供應商提供之品質數據或者是進貨檢驗之品質資料。

21随机载荷减震器阻尼力测试

随机载荷减振器阻尼力测试 李波涛,徐雄威,王成业,董新年 (长城汽车股份有限公司技术中心、河北省汽车工程技术研究中心,保定 071000) 摘要:简单介绍了应变片的组桥和工作原理,阐述了使用应变片对车辆减振器阻尼力进行测试的方法,并结合整车试验,在各种不同路面下进行减振器阻尼力动态响应测试。根据减振器标定公式,计算在各种路况下减振器的阻尼力。 关键词:减振器;阻尼力;应变测试;nCode 引言 随着生活水平的提高,人们对汽车的乘坐舒适性、操纵稳定性和行驶安全性提出了更高的要求。减振器作为车辆悬架的重要组成部分,是影响上述指标的关键所在。 减振器的作用是迅速衰减车身和车轮之间由弹性元件引起的连续相对运动,改善车辆行驶平顺性、操纵稳定性和安全性,为人们的驾乘提供更舒适的感受。 1 减振器简介 评价减振器优劣的最主要的指标是阻尼特性。阻尼特性可以用示功图和速度特性进行体现。 示功图是减振器在运动过程中阻尼力随活塞位移变化而围成的曲线图。速度特性图为减振器在运动过程中阻尼力随活塞杆速度变化而形成的曲线图,两者结合观测,可对减振器阻尼力进行全面的评价。 图1 阻尼力-位移特性和阻尼力-速度特性而目前面临的问题是,减振器阻尼力测试只在台架上进行,并且只选择几个特定的速度,并未涵盖用户的所有使用工况,而增加测试点又会大幅度提高测试成本,此方法存在一定的不足。 基于提高阻尼力测试全面性的角度,需对阻尼力的测试方法进行完善。在减振器活塞杆表面粘贴应变片,结合整车道路随机载荷采集,可弥补上述方法的不足。 2 应变片工作原理 应变的测量是将应变片因应变而引起的阻值变化转换为电压信号。根据输出电压和各桥臂阻值变化之间的关系: 得出电压信号的变化。 图2 惠斯通全桥 3 减振器处理 3.1 应变片粘贴 在减振器活塞杆上加工四个凹槽,凹槽深度要适中,并经过进一步处理。粘贴两枚应变片在其两个相对的凹槽位置,组成惠斯通全桥。 在活塞杆运动过程中,应变片随着活塞杆的拉

解释结构模型

3.2解释结构模型 系统是由许多具有一定功能的要素(如设备、事件、子系统等)所组成的, 各要素之间总是存在着相互支持或相互制约的逻辑关系。在这些关系中,又可以分为直接关系和间接关系等。为此,开发或改造一个系统时,首先要了解系统中 各要素间存在怎样的关系,是直接的还是间接的关系,只有这样才能更好地完成 开发或改造系统的任务。要了解系统中各要素之间的关系,也就是要了解和掌握系统的结构,建立系统的结构模型。 结构模型化技术目前已有许多种方法可供应用,其中尤以解释结构模型法(InterpretativeStructuralModeling,简称ISM)最为常用。 3.2.1结构模型概述 一、解释结构模型的概念 解释结构模型(ISM)是美国华费尔特教授于1973年作为分析复杂的社会 经济系统有关问题的一种方法而开发的。其特点是把复杂的系统分解为若干子系 统(要素),利用人们的实践经验和知识,以及电子计算机的帮助,最终将系统 构造成一个多级递阶的结构模型。 ISM属于概念模型,它可以把模糊不清的思想、看法转化为直观的具有良好 结构关系的模型,应用面十分广泛。从能源问题等国际性问题到地区经济开发、 企事业甚至个人范围的问题等,都可应用ISM来建立结构模型,并据此进行系 统分析。它特别适用于变量众多、关系复杂且结构不清晰的系统分析,也可用于方案的排序等。 所谓结构模型,就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型,图3-1所示即为两种不同形式的结构模型。

图3-1两种不同形式的结构模型 结构模型一般具有以下基本性质: (1)结构模型是一种几何模型。结构模型是由节点和有向边构成的图或树 图来描述一个系统的结构。节点用来表示系统的要素,有向边则表示要素间所存 在的关系。这种关系随着系统的不同和所分析问题的不同,可理解为“影响”、“取决于”、“先于”、“需要”、“导致”或其他含义。 (2)结构模型是一种以定性分析为主的模型。通过结构模型,可以分析系统的要素 选择是否合理,还可以分析系统要素及其相互关系变化对系统总体的影响等问题。 (3)结构模型除了可以用有向连接图描述外,还可以用矩阵形式来描述。 矩阵可以通过逻辑演算用数学方法进行处理。因此,如果要进一步研究各要素之间关系,可以 通过矩阵形式的演算使定性分析和定量分析相结合。这样,结构模型的用途就更为广泛,从而 使系统的评价、决策、规划、目标确定等过去只能凭个人的经验、直觉或灵感进行的定性分析,能够依靠结构模型来进行定量分析。 (4)结构模型作为对系统进行描述的一种形式,正好处在自然科学领域所用的数学 模型形式和社会科学领域所用的以文章表现的逻辑分析形式之间。因此,它适合用来处理 处于以社会科学为对象的复杂系统中和比较简单的以自然科学为对象的系统中存在的问题, 结构模型都可以处理。 总之,由于结构模型具有上述这些基本性质,通过结构模型对复杂系统进行分析往往能够 抓住问题的本质,并找到解决问题的有效对策。同时,还能使由不同专业人员组成的系统开发 小组易于进行内部相互交流和沟通。

液压减震器的工作原理

减震器主要有弹簧和阻尼器两个部分组成,弹簧的作用主要是支撑车身重量,而阻尼器则是起到减少震动的作用。 阻尼”在汉语词典中的解释为:“物体在运动过程中受各种阻力的影响,能量逐渐衰减而运动减弱的现象”。阻尼器就是人造的物体运动衰减工具。 为了防止物体突然受到的冲击,阻尼在我们现实生活中有着广泛的应用,比如汽车的减震系统,还有弹簧门被打开后能缓缓地关闭等等。 阻尼器的种类很多,有空气阻尼器、电磁阻尼器、液压阻尼器等等。我们车上使用的是液压阻尼器。 大家知道,弹簧在受到外力冲击后会立即缩短,在外力消失后又会立即恢复原状,这样就会使车身发生跳动,如果没有阻尼,车轮压到一块小石头或者一个小坑时,车身会跳起来,令人感觉很不舒服。有了阻尼器,弹簧的压缩和伸展就会变得缓慢,瞬间的多次弹跳合并为一次比较平缓的弹跳,一次大的弹跳减弱为一次小的弹跳,从而起到减震的作用。 液压阻尼器利用液体在小孔中流过时所产生的阻力来达到减缓冲击的效果。 图一红圈中是活塞,它把油缸分为了上下两个部分。当弹簧被压缩,活塞向下运行,活塞下部的空间变小,油液被挤压后向上部流动;反之,油液向下部流动。 不管油液向上还是向下流动,都要通过活塞上的阀孔。油液通过阀孔时遇到阻力,使活塞运行变缓,冲击的力量有一部分被油液吸收减缓了。

下面是压缩行程示意图,表示减震器受力缩短的过程。图二为活塞向下运行,流通阀开启,油缸下部的油液受到压力通过流通阀向油缸上部流动。 图三为活塞向下运行,压力达到一定程度时,压缩阀开启,油缸下部的油液通过压缩阀流向油缸外部储存空间。图中红色大箭头表示活塞运动方向,红色小箭头表示油液流动方向。

应用解释结构模型

应用解释结构模型(ISM)分析大学生就业的问题09工业工程周浩吕超宇 摘要: 关键词:解释结构模型大学生就业原因及对策 背景: 据人力资源和社会保障部公布的数据,2009年我国将有2400万劳动力需要安排就业,其中将有超过700万大学毕业生需要解决就业问题。数据显示,2009年高校毕业生规模达到611万,比2008年增长52万;而据预测,2011年这一数字将达到峰值758万。与此同时,国际金融危机的影响进一步显现,可以预见,在未来相当长时期内大学生就业压力不会减弱。如何帮助大学生走出就业难的困境将成为政府与社会长期而艰臣的任务。 大学生就业难是一个现实问题,更是一个社会问题。总体来说,大学毕业生具有较高的人力资本水平,是劳动力市场上的优势群体。但随着全球化的发展与知识经济的冲击,青年初次与持续就业所需的能力门坎逐年提高,大学生必须具备能够满足新经济要求的核心就业能力才能成功发展,但现有教育培训体系缺乏必要的就业市场需求导向,缺乏对创业行为的深入研究,高等教育培养出来的大学生在知识和技能结构上与人才市场的需求存在脱节,大学生就业的结构性矛盾日益突出。 (https://www.sodocs.net/doc/989131025.html,/xiaobao/news_view.asp?newsid=663)

应用解释结构模型分析问题: 1.1成立ISM 小组 小组成员主要由来自09工业工程的周浩和吕超宇组成; 1.2确定关键问题与确定因素,列举各导致因素的相关性 根据当今大学生的就业现状,我们小组应用头脑风暴法在小组内经过激烈讨论,并在网上查阅大量的资料,基本上确定影响当今大学生就业的因素大致为以下12种原因,小组成员又经过多次探讨分析确定他们之间的关系并按照下面的影响关系填写表2所示的框图。 (1)j S i S 对有影响,填1;j S i S 对无影响,填0;(i ,j=0,1,……12) (2)对于有相互影响的因素,取你认为影响大一方为影响关系,即有影响; 表1导致因素 关键问题:大学生就业问题 0S 导致因素 1 专业设置与社会需求脱节 1S 2 就业政策不完善 2S 3 竞争压力较大( 3S 4 教育机制存在弊端 4S 5 海归的竞争 5S 6 大学生就业观念 6S 7 缺乏工作经验 7S 8 知识陈旧,转化率低 8S

阻尼力可调液压减震器

阻尼力可调的液压缓冲调节背部的压力调节阀压力控制电磁阀阻尼[]的挑战,保持压力控制电磁阀黄油。救济是通过中间人连接水库56背压腔16 - 32 - 分辨率手段来调整背压调节阀30,控制了石油背压腔泄压流阻尼力的水库16-32阻尼力可调液压减震器10其中有一个压力控制电磁阀50,孔口56A它提供救济水库16压力控制电磁阀在救灾通道56 50。

在阻尼力可调的液压冲击在专利文献1所述吸收已经由压力控制电磁阀开启压力阀的电流值设置,背压调节阀阻尼力(背压腔)的压力控制电磁当阀门开阀压力设定值附近的黄油反复打开和压力控制电磁阀(浪涌现象)关闭生成。巴塔并采取压力控制电磁阀,背压腔压力变得不稳定,不稳定的阻尼力的阻尼力调整开放和黄油约收盘作为一个阻尼力调节阀阀产生的结果。 [0004] 本发明的目的是一个缓冲区,以调整与背压调节阀压力控制阻尼力可调的液压阻尼力电磁阀与黄油保持在压力控制电磁阀。 解决问题的手段] [0005] 权利要求1的发明包括一个圆柱体住房油和活塞杆进入气缸与活塞插杆提供与分区活塞腔室和活塞气缸内的活塞杆,石油和天然气填补和一个水库,一个通道的主要形式流动的一个油到从杆腔侧,并用单向阀通过反弹水库的方式让绘图允许进入会议厅只油流从水库活塞并通过高压侧有一个单向阀允许压力方只允许流油的有杆腔侧从活塞室的一面,以及分区的背压腔是要传达的试点通道和通道主要提供通过原发性和阻尼力控制阀或阀门的开闭座椅,飞行员口提供在试点连接的主要通道背压腔和阻尼力控制阀是在救灾通过中间人连接背压腔水库背压通过阻尼力可调的液压减震器,包括压力控制电磁阀和背压调节阀来调节,通过控制油流救济压力腔的水库,通过压力控制电磁救灾的阻尼力这是可提供救济阀口的水库。 [0006] 权利要求2,权利要求1进一步发明其中一个比试点孔孔直径,这是形成一个比的电磁阀压力控制流路的直径更小的直径直径较大的救济口以上孔径,发明。 [0007] 权利要求3,权利要求1或2进一步的发明,和阻尼力控制阀发明说滑阀,滑阀包括一个与阀座连接到主离苏茹通过试验和试点碟阀口通道这是可配备。 [0008] 权利要求4,任何索赔1-3,这是可在同一轴线上都与阀的情况下,压力控制电磁阀其中的阻尼力调节阀平行排列另一项发明的发明。 [0009] 该发明的权利要求5进一步在目前一个1,要求4,活塞,安全阀反弹流入油腔活塞的杆腔侧和超过一定室杆端液压阀打开提供关于圆柱体的底部,这是可提供一个安全阀,以水库油流由一个液压活塞及活塞超过一定限度阀室开了房间的压力方提供的分区为主。 [功效的发明 [0010] (索赔1) (一)提供救济口至水库压力控制电磁阀的救援通道。因此,在背压控制电磁阀的泄压孔造成不利,早在阻尼力控制阀(背压腔)的压力时,阀门开启压力接近设定压力控制电磁阀,压力控制它可以稳定的开放和电磁阀压力控制电磁阀关闭与黄油抑制。这使您可以稳定在阀门的开放压力控制电磁阀的压力设定值附近背压腔压力,阻尼力可以稳定阻尼力的阀门开度,因此截止阀,调节阻尼力产生。[0011]

spc制程能力分析

SPC 概述Statistical Process Control

SPC Introduction 统计性统计管理(SPC = Statistical Process Control)? ? Statistical ... ?统计性方法是用Sampling的Data Monitoring 、分析Process 变动时使用。 Process ... ?反复性的事情或者阶段 (SIPOC : Supplier → Input → Process → Output → Customer) Control ... ? Process正在变化的事实早期警报。 警报是指最终Output出来之前纠正问题,能够具有充分的时间 (管理图 : 随着时间工程散布的变化) SPC –对某个 Process掌握品质规格和工程能力状态, 利用统计性资料和分析技法, 在所愿的状态下一直能管理下去的技法。 2

SPC 的发展历史 SPC 的特征:控制过程,防患于未然。 重点在于预防

?電視機彩色密度 投机?美國:無不合規格產品出廠,注意力在符合規格?日本: 0.3% 超出產品規格,致力於命中目標

製程- 產品-顧客 產品 (Output) Measurement 製程(過程)(Process) 展開 特性 特徵 顧客 滿意 Man Machine Material Method Environmental 4M1E

製程,程序 影響工作結果之所有原因的集合,亦即為達成工作 結果之製造過程中所有活動的集合 管制,控制 確保達到要求標準,必要時採取矯正行動 何謂製程管制 (程序控制) 工作 結果 原材料 方法 環境 機器 人員 原因 手段 特性 目的

解释结构模型作业

解释结构模型作业 一问题提出 近年来,随着我校整体规模的不断扩大,很多细节问题都成了师生们关注的焦点,尤其是学校食堂的问题日益成为师生们关心的重点。可以看到,每到吃饭时间11:30分左右尤其11:55分前后学时,食堂里面人员排队情况十分严重。虽然大食堂已经尽量多开窗口,提供人手,但在学校就餐时人员仍旧很多,学校食堂餐厅就餐严重拥挤。针对该拥挤问题,我们首先组建了一个ISM 研究小组,共五人,研 究出现该拥挤问题的原因。经过小组成员的讨论,我们初步整理出了问题构成的要素。 选择构成食堂拥挤问题的要素; 在形成对食堂拥挤问题初步认识的意识模型基础上,本组成员进一步明确定义了影响食堂客源的各要素,系统共有11个要素所组成。要素集合为A,表达式:A= {A1,A2,A3, (11) 二模型构建针对问题建立邻接矩阵和可达矩阵 系统中这11个要素是有机的联系在一起的,而这些要素之间又

是相互影响的,将这种影响关系用矩阵,即邻接矩阵来表示。矩阵的元素A ij=1 表示要素A i对A j有直接影响,否则A ij=0。在本实验中,根据小组及相关人员分析之后,建立邻接矩阵如表2。 三模型求解 1.根据系统元素建立的邻接矩阵编程求出可达矩阵; 2.对可达矩阵编程求系统元素的前因集、后果集及其它们的交集,作出分级划分; 3.作出强连通与不连通子集划分。 邻接矩阵表2反映了要素之间的直接关系,同时,要素之间还存在着间接关系,要素A i影响A j,而A j又影响A k,则A i就间接影响A k。这种影响可能是通过一个中间要素,也可能通过多个中间要素。我们用可达矩阵M来表示这样的直接或者间接的要素之间的影响关系。矩阵的元素A ij=1表示要素A i对A j有直接或间接的影响,否则,A ij=0。

产能分析报告及指标明细

产能分析报告及指标明细 The document was prepared on January 2, 2021

产能分析报告模板及指标明细 一、产能修改记录及主要产品信息 注:产Array能分析 报告— —修改 记录 1) 产能发 生变化 时以便 及时追踪。如进行增产以达到完全生产能力,此时生产线通过一系列步骤可以达到完全生 产能力,则应记录下这些变化。填写论证产能时也应同时填写日期。 2)此次产能分析报告均记作初次提交。 注:产品信息 1)完成产能分析报告的首先要明确需要分析的产品的详细信息。包括产品名称、型号、产能概况、客户需求信息等。 2)必要时应完善产品主要零部件供应商信息,以便及时掌握配套商供货情况,平衡零部件供货影响系数。 二、现有设备产能核算

1、预订工作时间标准 注:Array 1)单班 时间:每 班总时间 -每班的 总计可用 小时数。 2)班 次:表示 的是每天 每个工艺操作的班次数。 3)作业率:(总工时-无效工时)/总工时。 人员休息-如果在人员休息的时候,机器也停止运转,则输入每班中机器不运转的时间长度。 计划的维修时间-这是计划的每班中机器停机用于维护的时间长度。 4)年出勤时间:年出勤天数-表示的是每年的工艺运作的天数(扣除法定节假日、双休日)。 5)计算举例:每班8小时、每天2班次、作业率80%、年出勤302天,净可用时间 =8*2*80%*302=时。 2、代表产品制程/线能力计算

1)代 表产 品:所 谓代表 产品指 产品制 程包含 其他所 有产品 制造过 程包含 的所有 工艺过 程;如 存在两种以上产品包含不同工艺过程、需分别取各类型产品代表产品制程并进行线能力分析。2)评价瓶颈工序应排除可用外协、其他生产线可用设备借代等因素影响。 3)每条生产线选取一种或2种产品作为代表说明制程及瓶颈工序即可,其他产品可直接计算毛产能。 3、毛产能核算

制程能力的评价分析报告

制程能力的评价 制程能力与规格之比较,可就制程平均值与规格中心及分散宽度与规格 容许围两方面比较,亦可直接计算超出规格的不良率来表示。将制程能 力与规格之比较用简单的数字及等级评定的方法,谓之制程能力评价。工程准确度指数(Capability of Accuracy)的评价 设定工程规格中心值的目的,在于希望该工程制造出来的各种产品的实 绩值,能以规格中心为中心,成左右对称的常态分配,而制造时也应以 规格中心值为目标。工程准确度平价之目的就在于衡量制程平均与规格 中心之一制程度,有时工程准确度指数又称为正确度指数。 (1)K的计算 制程平均值()与规格中心值之间偏差程度, 称为工程准确度,其指数K之计算公式如 下: T=Su-Sl=规格上限-规格下限 由上是可知当M与差愈小,也就是质量接近规格要求的水平。K值为负时,表示实绩值偏低,K值为正时表示偏高。在单边规格的情形,即只

有规格上限Su或只有规格下限Sl的情形,因没有规格中心值,故不能 计算工程准确度指数。 (2)K之等级评定 K等级评定标准 (3)等级评定后之处置原则 ?A级:作业员遵守作业标准操作,继续维持。 ?B级:有必要时尽可能改善为A级。 ?C级:作业员可能看错规格,不按作业标准操作,须加强训练,检讨规格及作业标准。 ?D级:应采取紧急措施,全面检讨所有可能影响的因素,必要时得停止生产。 K不良时其对策方法以制造单位为主技术单位为副品管单位为辅有时又以Ca表之。工程能力指数Cp(Capability of Process)之评价

设定工程上下限的目的,在于希望制造出来的各个产品之特性值,能在规格上下限之容许围。工程能力的评价之目的就在于衡量产品分散宽度符合公差的程度。工程能力指数又可称为工程精密度指数(capability of Precision) (1)Cp之计算 由上式可知产品分散宽度愈大时,Cp值愈小,表示制程能力差,反之表示能力好。前者系用于计算双边规格之Cp,而后者用于计算单边规格之Cp。与所代表的意义一样,都是表示群体标准差之估计值。 (2)Cp之等级评定 Cp值之等级评定基准如下表 Cp等级评定基准 等级Cp A B C D

相关主题