搜档网
当前位置:搜档网 › 类胡萝卜素生物合成抑制剂的研究进展

类胡萝卜素生物合成抑制剂的研究进展

类胡萝卜素生物合成抑制剂的研究进展
类胡萝卜素生物合成抑制剂的研究进展

类胡萝卜素生物合成抑制剂的研究进展

11应用化学

摘要概述了类胡萝卜素生物合成抑制剂类除草剂的作用机理以及八氢番茄红素去饱和

酶(phytoene desaturase, PD酶)抑制剂的结构-活性关系。简要介绍了进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂品种以及它们的除草活性。

类胡萝卜素生物合成是极佳的除草剂作用靶标,经类胡萝卜素生物合成抑制剂处理后的植物最明显的症状是产生白化叶片【1】。植物产生白化叶片的首要原因是类胡萝卜素生物合成被抑制,其次是叶绿素生物合成被抑制,而且已合成的叶绿素还会遭到破坏。尽管经药剂处理后的植株仍能生长一段时间,但是由于不能产生绿色的光合组织,因此其生长不可能持续下去,随后生长停止,植物死亡【2】。由于此类除草剂以类胡萝卜素生物合成为作用点,确保了动植物之间的选择毒性,具有高效、低毒的特点,成为新型除草剂开发的热点。

1、类胡萝卜素生物合成

类胡萝卜素在植物中的生物合成途径见图l:首先,异戊烯焦磷酸(IPP)在IPP异构酶作用下生成二甲基丙烯基二磷酸(DMAPP),然后DMAPP在拢儿基抛牛儿基焦磷酸合成酸(CGPS)作用下与三个IPP缩合,依次生成10碳的拢牛少L焦磷酸(GPP)、巧碳的法尼基焦磷酸(FPP〕即碳的橄儿基推牛儿基焦磷酸(GGPP)。2个GGPP在八氢番茄红素合成酶(PSY)作用下形成第一个40碳的、无色的举胡萝卜素一八氢番茄红素(Phytone)。Phytone再经过连续的脱氢反应、共扼双键延长,经八氢番茄红素脱氮酶(PDS)脱笨形成δ一类胡萝卜素,直至在δ一胡萝卜素脱氢酶(ZDS)作用下形成番茄红素(Lycopene)。番茄红素是类胡萝卜素进一步合成代谢的分枝点,可被环化形成β一、ε一环两大类胡萝卜素分支。番茄红素分子的两个末端在番茄红素β一环化酶(LycB)作用下形成β一环,即为β一胡萝卜素;若只有其中一个末端在番茄红素ε一环化酶(LycE)作用下形成ε一环,即为δ一胡萝卜素;而若分子的两个末端分别被LycB及LycE作用形成β一环和ε一环,即为α一胡萝卜素[3][4]。α一、β一胡萝卜素还可形成结构更为复杂的叶黄素等[5]。

类胡萝卜素是含 40 个碳的类异戊烯聚合物,即四萜化合物,是含有 8 个异戊二烯单位的四萜化合物,由两个二萜缩合而成。植物中的萜类化合物有两条合成途径,即甲羟戊酸途径( mevalonate,MVA)和2-C-甲基-D-赤藻糖醇-4-磷酸( 2-C-methyl-D-erythritol-4-phosphate,MEP) 途径。Zhan 等【6】综述了植物帖类化合物的生物合成途径并以图表形式清晰的给出了类胡萝卜素生物合成的前体物质异戊烯二磷酸

( isopentenydiphosphate,IPP) 主要来自于 MEP 途径,其在 IPP 异构酶作用下生成二甲基丙烯基二磷酸 ( dimethylallyldiphosphate,DMAPP) 。MEP 途径主要在植物特有的细胞器质体中进行,以 IPP 为中间产物,除了类胡萝卜素,赤霉素、脱落酸、生育酚、叶绿素、叶醌、质体醌和单萜等的合成也是通过该途径。

三个 IPP 分子和一个 DMAPP 分子在牻牛儿基牻牛儿基二磷酸合酶( geranylgeranyl diphosphate synthase,GGPS) 催化下缩合形成 20 个碳原子的牻牛儿基牻牛儿基二磷酸( geranylgeranyl diphosphate,GGPP) ,GGPP 是多种物质生物合成的共同前体,是形成植物类胡萝卜素最直接的前体,参与合成植物中第一个类胡萝卜素———八氢番茄红素。

在八氢番茄红素合酶( phytoene synthase,PSY) 催化下,两个 GGPP 分子缩合生成类胡萝卜素生物合成途径中的第一个化合物: 无色的 15-顺式-八氢番茄红素。在植物中,由八氢番茄红素脱氢酶 ( phytoenedesaturase,PDS ) 和δ-胡萝卜素脱氢酶 ( δ-carotenedesaturase,ZDS) 催化 4 步脱氢反应,PDS 脱氢作用的产物 9,15,9'-三顺式-δ-胡萝卜素,在光和δ-胡萝卜素异构酶( δ-carotene isomerase,ZISO) 作用下异构形成黄色的 9,9'-二顺式-δ-胡萝卜素【7】,在植物非绿色组织中,由类胡萝卜素异构酶( carotenoid isomersase,CRTISO)催化作用下,生成全反式番茄红素【8】【9】。全反式番茄红素是一种红色的类胡萝卜素,主要存在于西瓜、番茄等的果实中。

番茄红素分子式为 C40H56,为含有 11 个共轭双键和 2 个非共轭双键的多不饱和脂肪烃,是一种很重要的类胡萝卜素,结晶是暗红色【10】。分子式及其晶体结构如图 2所示:

图2 番茄红素的结构及其晶体

番茄红素环化反应是类胡萝卜素进一步合成代谢的分支点,可被环化形成β-、ε-环两大类胡萝卜素。番茄红素分子的两个末端在番茄红素β-环化酶( lycopeneβ-cyclase-L YCB) 作用下形成β-环,即为β-胡萝卜素,其分子结构如图3所示。

图3 β-胡萝卜素的结构及其晶体

β-胡萝卜素以不同的有机溶剂提取得到的晶体形状不同,一般为深紫红色六棱柱结晶或红色正方形叶片晶体。可溶于二硫化碳、苯、氯仿等溶剂,微溶于甲醇、乙醇、食用油等溶剂,不溶于水、酸和碱等。β-胡萝卜素对空气、光和热较敏感,空气中易被氧化而变为无色、无活性的氧化产物【11】,其晶体结构如图 4 所示。

图 4 δ-胡萝卜素的结构

若只有其中一个末端在番茄红素ε-环化酶( lycopene ε-cyclase-L YCE) 作用下形成ε-环,即为δ-胡萝卜素,其分子结构如图 4 所示。以δ-胡萝卜素为底物经过L YCB 催化,在其另一端形成β-环,生成α-胡萝卜素。α-胡萝卜素为红黄色板状结晶,能溶于石油醚、氯仿,难溶于甲醇,其分子结构如图5所示【12】。

图 5 α-胡萝卜素的结构

β-胡萝卜素、α-胡萝卜素、γ-胡萝卜素和β-隐黄质都含有未被取代的β-环,是维生素A 生物合成的前体物质,被称为维生素A 原。β-胡萝卜素环可以在非亚铁血红素β-胡萝卜素羟化酶( β-carotene hydroxylase,BCH) 催化下经中间产物β-隐黄质( β-cryptoxanthin)生成玉米黄质( zeaxanthin) ,而α-胡萝卜素则可在细胞色素P450 胡萝卜素羟化酶( ε-carotene hydroxylase,CYP97) 的作用下生成叶黄素【12-14】。叶黄质和玉米黄质在生物体内以酯化物形式存在,且存在立体异构现象【15-16】。玉米黄质可以转化为花药黄质( a ntheraxanthin) ,进而转化为紫黄质( violaxanthinde) ,两步环氧化作用都是在玉米黄质环化酶( zeaxanthin epoxidase,ZEP)催化作用下完成。

在胡萝卜素分子中引入羟基、酮基、醚基、环氧基等含氧基团,可以将其转化为其氧化衍生物叶黄素( 类胡萝卜素中的另一大类物质) 。常见的叶黄素主要有α-隐黄质、叶黄质、玉米黄质、紫黄质、新黄质、辣椒红素和虾青素等,都是常见的氧化衍生叶黄素,其类胡萝卜素分子中引入了羟基、酮基、醚基、环氧基等含氧基团,是类胡萝卜素中的另一大类物质,类胡萝卜素合成途径如图6 所示。

2、类胡萝卜素生物合成的调控

一般来说,类胡萝卜素在体内的生物合成是通过基因和环境因素(如:光、氧及营养等)多级调控的。许多文章都论述了不同种生物中类胡萝卜素生物合成的调控【2,8】。在此,只将基因调控及合成抑制方面的研究予以介绍。

2.1基因调控

高等植物光和组织的多种突变可影响其中的类胡萝卜素生物合成,并可能会产生多种表型,包括在叶子生长过程中的光漂白和其它变化。许多人已对Arabidopsis thalianna,Lycopersicon esculentum 和Zea mays 中的突变做了深入的研究[15]。此外,已有文献报道了在Hordeum vulgare、Capsicum annuum和Helianthus annuus中的突变。除了突变之外,高等植物中类胡萝卜素的生物合成也受到植物生长和个体发育的调控,例如,

PSY和PDS在Lycopersicon esculentum 的叶子、花和果实中的表达就明显不同。在花的发育期,这两种基因的表达产物会比开花前多10倍[16]。

与高等植物相比,微生物中类胡萝卜素生物合成的基因调控比较简单。母菌株通过各种处理(如物理、化学和放射等处理)即可得到突变型或新菌株。

2.2合成的抑制

对类胡萝卜素生物合成抑制的研究已有40 年的历史。Bramley曾对类胡萝卜素生物合成的抑制以及各种抑制剂的情况进行过全面的评述[17]。已经证明,多种化合物在合成途径中可抑制各种反应,主要是八氢番茄红素去饱和环化反应。图6阐明了多种抑制剂和其作用点。这些抑制剂在生物合成途径和反应机制的研究中起到了重要的作用,尼古丁是个典型的例子。它可在各种微生物中抑制环化反应,从而导致番茄红素和链孢红素在体内的积累,现被大量用于类胡萝卜素生物合成途径的研究中。

图6 类胡萝卜素生物合成抑制剂的作用位点示意图

类胡萝卜素的生物合成对许多生物(尤其是光合生物)的生命是很重要的,抑制类胡萝卜素的生物合成可能导致生物体的死亡。在高等植物的光合组织中,八氢番茄红素去饱和反应的抑制剂可导致组织失去颜色,最终导致植物体的死亡。因此,这些抑制剂亦可作为漂白除草剂。

3、类胡萝卜素生物合成抑制剂作用机理的研究

类胡萝卜素生物合成需要多种酶的参与(见图7),理论上讲,抑制参与催化的任何一种酶都能阻断类胡萝卜素的生成,最终导致植物死亡[18]。目前,研究最为透彻的作用位点是八氢茄红素去饱和酶(phytoene desaturase, PD酶)以及F-胡萝卜素去饱和酶(F-carotenedesaturase, ZD酶),尤其是PD酶。

图7

4、类胡萝卜素生物合成抑制剂

类胡萝卜素生物合成抑制剂又称白化除草剂(bleaching herbicide)。此类除草剂引起的变化主要表现为植物出现白化叶片,导致植物死亡。主要原因有两点:其一,植物体内类胡萝卜素生物合成被抑制;其二,植物体内叶绿素生物合成被抑制[19]。阻断类胡萝卜素生物合成的主要两种酶为八氢番茄红素去饱和酶(PDS)以及F-胡萝卜素去饱和酶(ZDS)。

4.1八氢番茄红素去饱和酶,F-胡萝卜素去饱和酶抑制剂的作用机制

目前,研究最为透彻的类胡萝卜素生物合成抑制剂的作用位点是八氢番茄红素去饱和酶以及F-胡萝卜素去饱和酶。A L Babili[20]曾发现如果PDS受到抑制,植物体内六氢番茄红素以及F-胡萝卜素积累程度受到影响,最终导致类胡萝卜素积累减少。

通过类异戊二烯途径或类萜途径可以得到类胡萝卜素。类胡萝卜素的生成过程是由二甲基丙烯基焦磷酸和异戊烯焦磷酸的浓缩物生成=牛儿基=牛儿基焦磷酸,后者进而缩合得到八氢番茄红素,在PDS的作用下八氢番茄红素脱氢生成六氢番茄红素,六氢番茄红素继续在PDS 的作用下脱氢生成F-胡萝卜素,最后F-胡萝卜素在ZDS作用下脱氢生成番茄红素[21]。类胡萝卜生物合成抑制剂通过对PDS以及ZDS的抑制,造成八氢番茄红素大量积累,六氢番茄红素减少,导致类胡萝卜素的积累受到抑制,最终使得植物出现白化症状而死亡。图8为植物类胡

萝卜素生物合成途径简图[17]。

图8 植物类胡萝卜素生物合成途径简图

4.2 八氢番茄红素去饱和酶,F-胡萝卜素去饱和酶抑制剂的应用

目前世界上以PDS为作用靶标,已经进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂的发展研究更为系统化。Atul等[22]报道,氟啶草酮(fluridone)作为一种抑制PDS类的除草剂,是美国环境保护局批准的唯一对水生杂草进行长期系统控制的除草剂。Kolyo等[23]把它用于研究类胡萝卜素减少的程度与植物光合系统的功能之间的关系,数据显示,微量氟啶草酮的使用使类胡萝卜素减少25%,可见除草活性较好。

到目前为止, ZDS抑制剂类除草剂还不具备商品化的条件,但已经发现能够抑制ZDS的许多嘧啶类衍生物,不仅可以导致F-胡萝卜素的量增加,也使八氢番茄红素得到大量积累,此类衍生物甚至对PDS有更好的抑制作用。Breitenbach等[23]曾试验了14种不同的6-甲基嘧啶衍生物对F-胡萝卜素去饱和酶的抑制活性,结果表明,抑制作用最强的是结构中含二氯-环丙

基-甲基-氧代的化合物。番茄红素环化酶(lycopene cyclase)是阻断类胡萝卜素生成的另一个作用靶标,Burdge[24]曾报道多种可以抑制此酶的嘧啶酮类化合物、三乙胺衍生物和烟碱类衍生物,但至今还未有一种化合物进入商品化市场。目前已开发或推广应用的主要PDS抑制剂类除草剂见表1

表1 PDS抑制剂类除草剂的主要品种

5、质体醌生物合成抑制剂

质体醌是类胡萝卜素生物合成以及光合电子传递过程中的一个电子接受体。质体醌的生物合成受到抑制,间接导致类胡萝卜素的生物合成受到抑制,最终使得植物死亡。质体醌生物合成抑制剂也具有除草活性,能产生植物白化毒素。这些抑制剂的靶标酶为对羟苯基丙酮酸双氧化酶[25]。

5.1对羟苯基丙酮酸双氧化酶抑制剂的作用机制

20世纪初,一个新的类胡萝卜素生物合成抑制剂作用位点——对羟苯基丙酮酸双氧化酶(HPPD)被确定,在微生物、哺乳动物和植物中都可以找到HPPD,但在不同的生物体内作用机制不同。HPPD是一种铁-酪氨酸蛋白,在哺乳动物体内,HPPD参与生物体内酪氨酸和苯丙氨酸的分解代谢【26】;在植物体内HPPD催化质体醌与生育酚生物合成的起始反应【27】,亦即催化对羟苯基丙酮酸转化为尿黑酸的过程,同时释放出CO2。对羟基苯基丙酮酸在HPPD催化条件下转化得到的尿黑酸是植物体内一种重要物质。有氧条件下,这个过程包括氧化脱羧、芳环羟基化以及羧甲基的1,2位迁移,从而生成质体醌和生育酚【28】。

尿黑酸的生物合成被抑制,导致质体醌与生育酚合成受阻。植物体内质体醌和生育酚的减少,可引起植物白化症状【29】。生育酚在植物的新陈代谢过程中具有重要的作用,它是高等植物细胞膜的主要抗氧化剂之一;而质体醌是植物在进行光合作用时重要的电子传递载体,同时HPPD抑制剂也起着光合作用电子传递抑制剂的角色。此外,在类胡萝卜素的生物合成过程中,质体醌还是辅助八氢番茄红素去饱和酶的关键因素,八氢番茄红素去饱和酶的催化作用受阻中的主要原因是由于质体醌的减少,最终导致类胡萝卜素的生物合成受到抑制,使植物出现白化症状。类胡萝卜素既可作为光吸收体,又可作为保护性物质,降低三线态叶绿体或单线态氧的激发,类胡萝卜素的生物合成被抑制将导致植物最终出现白化症状而死亡。

5.2对羟苯基丙酮酸双氧化酶抑制剂的应用

HPPD抑制剂最初来源于三酮类化合物,因此对于HPPD抑制剂构效关系的研究也主要集中于三酮类化合物。影响HPPD抑制剂活性的结构主要分为3类:在环己二酮部分中,4-位或者6-位引入取代基后可以增强除草剂的活性,如果环己二酮取代基被异噁唑环替代,可形成异噁唑类抑制剂;如果环己二酮取代基被吡唑环替代,可形成吡唑类HP-PD抑制剂。在苯环部分中,为增强除草剂的活性,可引入强吸电子取代基,并且引入的取代基碳链越长、基团体积越大,除草剂活性提高的效果越明显。在三酮部分中,HPPD抑制剂的除草活性取决于7-位羰基的存在、具有共平面性的三酮系统及形成烯醇的能力【30】。

目前,对于三酮类除草剂已有3个品种开发成功,它们是磺草酮(sulcotrione)、甲基磺草酮(me-sotrione)和双环磺草酮(benzobicyclon)。三酮类除草剂的最大优点是【31】:其一,不易挥发

与光解,水溶液的贮存稳定性强;其二,为弱酸性除草剂,便于植物吸收;其三,与其他除草剂的物理相容性好,利于开发混合制剂。

目前已开发或推广应用的主要HPPD抑制剂类除草剂见表2。

表2 HPPD抑制剂类除草剂的主要品种

6、2-唑基苯氧基嘧啶类——除草剂新的类胡萝卜素生物合成抑制剂

取代的2-唑基-4-苯氧基嘧啶类(结构式1)是新一类高效除草剂,它们的作用机理是抑制类胡萝卜素的生物合成。嘧啶上的取代基都是含氧的杂环,包括吡啶、咪唑和三唑,这类化合物是苗前和苗后除草剂,在苗前使用活性更高,小麦、玉米和大豆对这类化合物具有选择性。在禾谷类田间试验中,吡唑基嘧啶la对阔叶杂草显示出了极佳的防效,而且对小麦安全,使用剂量为5~10g/hm2。

6.1 2-唑基-4-苯甲酰基嘧啶的合成

Miyashita【33】近期给出了一条直接合成4-苯甲酰基嘧啶的路线。他们发现,用某些苯甲醛类在催化剂存在下可以进行卤代杂环的酰化反应,如1,3-二甲基咪唑碘化物、氢化钠、嘧啶(3)和3-三氟甲基苯甲醛反应,可以生成所需的苯甲酰基嘧啶(11),收率很高。用4-三氟甲基吡唑取代氯化物(11)很容易得到高活性的嘧啶化合物(1d),(11)与4-三氟甲基苯甲醛进行铃木耦合,生成2-芳基嘧啶(12),其它的醛类、嘧啶、唑类也可以进行类似反应(图9)。

图9 4-苯甲酰基嘧定类的模拟合成

6.2 唑基甲基嘧啶的合成

选择Strekowski【34】的嘧啶官能团作快速合成液。首先,利用嘧啶(13)与甲基锂进行甲基化反应,在4-位上引入一个甲基,在原位置以DDQ氧化生成嘧啶(14),在醋酸中,用溴对4-甲基基团进行选择性溴化得到(15)。该苄基溴化物可用于各种不同的取代唑类中氮进行烷基化反应,生成嘧啶(le)和类似化合物(图10)。(le)的除草活性表明,唑类可以作为间-和对-位取代苯的等排物。

图10 唑基甲嘧啶的合成

6.3 两个唑基嘧啶类的合成

在钯催化下,用2,4-二氯-5-甲基嘧啶(3)与三甲基铝进行反应,使其在4-位选择性引进一个甲基,再在醋酸存在下,用溴进行选择性溴化,得到化合物(16),16中的卤代甲基在室温下与吡唑基反应生成4-吡唑基甲基嘧啶(17),随后在K2CO3存在下,化合物通过改变唑基的引进顺序制备不同的双唑基嘧啶类(1f)。合成如图11。

6.4 取代的4-杂芳氧基吡唑基嘧啶类的合成

2-吡唑基-5-甲磺酰基嘧啶(18)分别与2-羟基-5-三氟甲硫基苯和5-羟基-1-甲基-3-三氟甲基吡唑在N,N-二甲基甲酰胺中,于K2CO3存在下进行反应,可得到4-杂芳氧基-2-吡唑基嘧啶(19)、(20)、(21),收率较高。

只有间位取代的化合物具有较高除草活性,在这个位置上最佳的取代基是卤代烷基和卤

代烷氧基。通过对嘧啶的2-位上R1取代基进行研究,不同的唑基中,吡唑的活性高于三唑和咪唑,而对嘧啶来说,应首选对位取代,三氟甲基是最好的取代基。合成如图12。

图11 两个唑基的嘧啶类的合成

图12 取代的4-杂芳氧基-2-吡唑基

7、开发和应用

就作用机理而言,目前世界上进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂,根据其作用靶标不同可划分为3类:第一类是以PD酶为作用靶标的除草剂,主要品种有

哒嗪酮类,如哒草伏(9,防除柑桔、棉花、酸果蔓、坚果、仁果类、大豆、核果类园中一年生阔叶杂草,对PD酶的I50为0.1Lmol/L【35】,施用剂量1~4 kg/hm2);吡啶羧酰胺类,如吡氟酰草胺(diflufenican,10,防除麦田禾本科杂草和阔叶杂草,对PD酶的I50为0.03Lmol/L【35】,剂量125 ~250 g/hm2),picolinafen(11,对PD酶的I50为0.01Lmol/L,剂量50 g/hm2)【1】;其他结构类型还有beflubutamid(12),氟定酮(5),防除水中或水面杂草,对PD酶的I50为0.02Lmol/L【35】,剂量250 g/hm2)【1】,氟咯草酮(7),防除麦田、棉花田、马铃薯田和向日葵田的多种阔叶杂草,对PD酶的I50为0.1Lmol/L,剂量500~700 g/hm2),呋草酮(3,防除多种禾本科和阔叶杂草,对PD酶的I50为0.03Lmol/L[35],剂量60~840 g/hm2)。从上述PD酶抑制剂类除草剂的生物活性数据可见,施用剂量与其I50值基本呈对应趋势,表明除草活性随其对PD酶抑制活性的增强而增强。第二类为目前尚未确定具体作用靶标的类胡萝卜素生物合成抑制剂,主要品种为三唑类,如杀草强(amitrole,13);异唑酮类,如异草松(clomazone,14,防除大豆田阔叶杂草和禾本科杂草,剂量100~1 000 g/hm2);脲类,如氟草隆(fluometuron,15,防除棉田阔叶和禾本科杂草,剂量1~1.5 kg/hm2),该品种同时也是光系统Ⅱ的光合成抑制剂。第三类为4-羟苯基丙酮酸双氧化酶(HPPD)抑制剂。主要品种有三酮类,如mesotrione(16,对HPPD的I50为0.01Lmol/L,剂量60~100 g/hm2)[1],磺草酮(sulcotrione,17,防除玉米田阔叶杂草及禾本科杂草,对HPPD的I50为0.008Lmol/L,剂量250 g/hm2)[1];异唑类,如isoxachlortole(18),异唑草酮(isoxaflutole,19,对HPPD的I50为0.005Lmol/L,剂量75 g/hm2)[1];吡唑类,如吡草酮(benzofenap,20,防除稻田一年生及多年生阔叶杂草,剂量1.2~2.4 kg/hm2),吡唑特(pyrazolate,21,防除稻田禾本科杂草、莎草科杂草,剂量3 kg/hm2),苄草唑(pyrazoxyfen,22,防除稻田一年生和多年生杂草,剂量3 kg/hm2);其他结构类型还有Benzobicyclon(23,对HPPD的I50为0.1Lmol/L,剂量300 g/hm2)[1]。HPP 抑制剂类除草剂的生物活性数据同样表明,I50值越小,施用剂量越少,即除草活性随抑制活性的增强而增强。

类胡萝卜素生物合成是极佳的除草剂作用靶标,具有杀草谱广的优点,但由于这类除草剂对植物无专一性,其选择性相对较差,使其应用范围受到限制。虽然目前合成了大量具有活性的类胡萝卜素生物合成抑制剂,但具有高选择性的商品化品种为数不多。随着基因工程的发展,以及抗类胡萝卜素生物合成抑制剂类除草剂基因作物的推出[36,37],将有力地推动此类除

草剂的发展。

参考文献:

1.Wakabayashi K, Boger P. Target sites for herbicides: entering the 21stcentury[J].Pest Manag Sci,2002, 58(11): 1149-1154.

2. Boger P. Mode of action of herbicides affecting carotenogenesis[J].J Pestic Sci, 1996, 21(4): 473-478.

3.陶俊,张上隆,徐昌杰等.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002,18;276-281.

4.徐昌杰, 张上隆.植物类胡萝卜素的生物合成及其调控[J].植物生理学通讯,2002 ,36(l):64

一70.

5.Hirschberg J, Caritenoid biosynthesis in flowering plants[J]. Currt Opin Plant Biolt ,2001,4;210-218.

6.Zhan A Y ,You X L ,Zhan Y G . Biosynthetic pathway and applications of plant terpenoid isoprenoid.Letters in Biotechnology,2010,21( 1) : 131-135.

7.Li F , Murillo C , Wurtzel E T. Maize Y9 encodes a productessential for 15-ciszeta-carotene isomerization. Plant Physiol , 2007, 144; 1181-1189.

8.Krinsky N, Landrum J, Bone A. Biologic mechanisms of theprotective role of Lutein and zeaxanthin in the eye. Annu Rev Nutr, 2003, 23; 171-201.

9.Breitenbach J, Sandmann G. zeta-Carotene cis isomers asproducts and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene Planta, 2005 , 220 ; 785-793.

10.Maass D, Arango J, Wüst F, et al. Carotenoid Crystal Formationin Arabidopsis and CarrotRoots Caused by Increased Phytoene Synthase Protein Levels. Journal of Chemical Technology and Biotechnology, 2009,84( 2) ; 215-222.

11.Chu B S, Ichikawa S, Kanafusa S, et al. Preparation of protein-stabilized β-carotene nanodispersions by emulsification-evaporation method Journal of the American Oil Chemist 'Society, 2007, 84( 11) ; 1053-1062.

12.Kim J, DellaPenna D. Defining the primary route for luteinsynthesis in plants: the role of Arabidopsis carotenoid b-ringhydroxylase CYP97A3. Proc Natl Acad Sci USA, 2006,103;3474-3479.

13.Quinlan R F, Jaradat T T, Wurtzel E T. Escherichia coli as aplatform for functional expression of plant P450 carotene hydroxylases., Arch Biochem Biophys ,2007, 458( 2) : 146-157.

14.Kim J E,Cheng K M, Craft N E , et al. Over-expression of Arabidopsis th aliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochemistry, 2010, 71( 2-3) : 168-178.

15. Miguel F, Martín A, Mattea F, et al. Precipitation of lutein andco-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 2008 , 47 ( 9-10 ) :1594-1602.

16. Linden A,Bürgi B , Eugster C H. Confirmation of the structuresof lutein and zeaxanthin. Helvetica Chimica Acta, 2004, 87( 5) : 1254-1269.

17. Wakabayash I K, Boger P. Target site for herbicides: entering the 21st century [ J]. Pest ManagSc i, 2002, 58 ( 11 ):1149-1154.

18. A-l Babili S, Hartung W, Kleinig H, et al. CPTA modulates levels of carotenogenic proteins and their m RNA s and affects carotenoid and ABA content as well as chromoplast structure in Narcissus pseudonarcissus Flowers[J]. Plant Biology, 1998(1):607-612.

19. Breitenbach J, Sandmann G. zeta-Carotene cis isomers as prod-ucts and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene[J]. Planta, 2005, 220(5):785-793. 20. Atul P, Gregory E M, Fredy A, et al. Mutations in phytoene desaturase gene in fluridone-resistant hydrilla (Hydrilla verti-cillata) biotypes in florida[J]. Weed Science, 2007, 5(5):412-420.

21. Dankov K, Busheva M, Stefanov D. Relationship between the degree of carotenoid depletion and function of the photosyn-thetic apparatus[J]. Journal of Photochemistry and Photobiol-ogy B: Biology, 2009, 96(1): 49-56.

22. Breitenbach J, Boger P, Sandmann G. Interaction of bleaching herbicides with target enzyme-carotene desaturase[J]. Pestic Biochem Physiol, 2002, 73(2): 104-109.

23. Burdge E L. The mode of action of RH21965: a new phenylpyr imidinone bleachingn herbicide[J]. Pest Manag Sci, 2000, 56:245-248.

24. Mitchell G, Bartlett D W, Fraser T E M, et al. Mesotrione: A new selective herbicide for use in Maize[J]. Pest Manag Sci,2001, 57(2):120-128.

25. Abbasi A R, H ajirezaei M, Hofius D, et al. Specific roles of A-and C-tocopherol in abiotic stress responses of transgenic tobac-co[J]. Plant Physiology, 2007,143(4):1720-1738.

26.梁玉玲.黄连对-羟苯基丙酮酸双加氧酶HPPD基因的cDNA克隆、特性分析及对烟草的遗传转化[C],中国植物生理学会全国学术会议论文摘要汇编,2007.

27.黄美兰,商志才,邹建卫.两类HPPD酶抑制剂的比较分子场分析研究[J].化学学m 报,2002,60(9):1558-1563.

28. Yang H, Wang I, Xie Z, et al. The tyrosine degradation genehpp D is transcriptionally activated by Hpd A and repressed by Hpd R inStreptomy cescoelicolor, while hpd A is negatively au-toregulated and repressed by hpdR[J]. Molecular Microbiolo-gy, 2007, 65(4):1064-1077. 29.朱有全,胡方中,杨华铮,等. HPPD酶及其抑制剂构效关系的研究进展[J].化学通报,2004,67(3):1-7.

30.苏少泉.三酮类除草剂磺草酮与硝磺酮的作物特性及使用[J].现代农药,2002,1(3):1-8.

31.Miyashita, A1, Suzuki, Y1, Iwamoto, K-I., Higashino, T. Chem.Pharm.Bull1,1998,46,390~399.

32.Strekowski, L.,WYDRA, R. L.,Janda,L.,Harden,D.B.J. Org.Chem.,1991,56,5610~5614.

33. Sandmann G, Boger P. Chemical structure and activity of herbicidal inhibitors of phytoene desaturase[A]. Draber W, Fujita T. Rational Approaches to Structure, Activity, and Ecotoxicology of Agrochemicals[C]. Boca Raton, FL, USA: CRC Press, 1992. 357-371.

34. Sandmann G, Fraser P D. Differential inhibition of phytoene desaturases from diverse origins and analysis of resistant cyanobacterial mutants[J].Z Naturforsch C, 1993, 48(3-4): 307-311. 35.Sandmann G. Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements [J].Trends Plant Sci, 2001, 6(1): 14-17.

合成生物学研究进展及其风险

合成生物学研究进展及其风险 关正君魏伟徐靖 1合成生物学研究概况 合成生物学(synthetic biology)是在现代生物学和系统科学基础上发展起来的、融入工程学思想的多学科交叉研究领域。其包括了与人类自身和社会发展相关的研究方向和内容,为解答生命科学难题和人类可持续发展所面临的重大挑战提供了新的思路、策略和手段。2004年,合成生物学被美国麻省理工学院出版的Technology Review评为“将改变世界的十大新技术之一”。2010年12月,Nature杂志盘点出2010年12件重大科学事件,Science杂志评出的科学十大突破,合成生物学分别排名第4位和第2位。为此,世界各国纷纷制定合成生物学发展战略及规划,开展合成生物学研究,以抢占合成生物学研究和发展先机,促进了合成生物学基础研究和应用研究的快速发展。同时合成生物学的巨大应用潜力,还吸引了众多公司及企业参与到该领域的研究开发,推动着合成生物学产业化的进程。 合成生物学作为后基因组时代生命科学研究的新兴领域,其研究既是生命科学和生物技术在分子生物学和基因工程水平上的自然延伸,又是在系统生物学和基因组综合工程技术层次上的整合性发展。与传统生物学通过解剖生命体以研究其内在构造不同,合成生物学旨在将工程学的思想用于生物学研究中,以设计自然界中原本不存在的生物或对现有生物进行改造,使其能够处理信息、加工化合物、制造材料、生产能源、提供食物、处理污染等,从而增进人类的健康,改善生存的环境,以应对人类社会发展所面临的严峻挑战。 作为一个新的基础科学研究领域,合成生物学综合生物化学、生物物理和生物信息技术与知识,涵盖利用基因和基因组的基本要素及其组合,设计、改造、重建或制造生物分子、生物体部、生物反应系统、代谢途径与过程,乃至整个生物活动的细胞和生物个体。合成生物学使人们可以利用与物理学方法类似的模块构建和组装形成新的生命有机体,从而人工设计新的高效生命系统。中科院《2013年高技术发展报告》指出,DNA测序技术、DNA合成技术和计算机建模是支撑合成生物学发展的关键技术。近年来,大量物种的全基因组测序,为合成生物学家构建功能组件的底盘生物体系提供了丰富的遗传信息。快速、廉价的测序技术也促进了新的系统和物种的识别和解析。 2 合成生物学应用研究进展 2.1 合成生物学在医药工业领域的应用 2.1.1 天然药物合成生物学 天然药物合成生物学是在基因组学研究的基础上,对天然药物生物合成相关元器件进行发掘和表征,借助工程学原理对其进行设计和标准化,通过在底盘细胞中装配与集成,重建生物合成途径和代谢网络,从而实现药用活性成分定向、高效的异源合成,以解决天然药物

农药化学的期末考试

农药:用于防治为害农作物及农副产品的病虫害、杂草及其它有害生物的化学药剂的统称。 急性毒性:药剂一次进入人体后短时间引起的中毒现象。 慢性毒性:药剂长时间作用于有机体后,引起药剂在体内的积蓄,或者造成有机体机能损害的积累而引起的中毒现象。 LD50:致死中量,或半致死量。 经口LD50:一次口服急性中毒死亡死亡半数的剂量。 经皮LD50:通过皮肤摄入极性中毒死亡半数的剂量。 农药残留:在农业生产中施用农药后一部分农药直接或间接残存于谷物、蔬菜、果品、畜产品、水产品以及土壤和水体中的现象。 农药代谢:农药的代谢是指作为农药进人生物体后,生物体利用自身的多种酶,对这些外源化合特产生化学作用,以达到排泄目的的过程,这类作用也称为生物转化。 初级代谢:一般将微生物从外界吸收各种营养物质,通过分解代谢和合成代谢生成维持生命活动的物质和能量的过程,称为初级代谢 农药选择性:是指仅对某种或某几种病、虫、草害有防治效果的农药。 杀虫剂的主要类型: 按作用方式可分类为: ①胃毒剂。②触杀剂。③熏蒸剂。④内吸杀虫剂。 按毒理作用可分为: ①神经毒剂。②呼吸毒剂。③物理性毒剂。④特异性杀虫剂。 制备反应:有机磷杀虫剂合成,吡虫啉合成

化学除草剂的发展过程:19世纪末:无机除草剂;1932年:有机除草剂二硝酚;1942年:第一个内吸性的有机除草剂2,4-D;1980s:磺酰脲类除草剂的发现,掀起了超高效除草剂研究的热潮。这是除草剂发展史上新的里程碑。 抑制植物氨基酸生物合成的除草剂。目前,主要有两类氨基酸的生物合成过程已经被开发为除草剂的作用靶标: (1)支链氨基酸的生物合成:缬氨酸、亮氨酸、异亮氨酸 (2)芳香氨基酸的生物合成:苯丙氨酸、色氨酸、酪氨酸 为什么杀虫剂马拉硫磷会具有高效低毒的特点? 杀虫剂马拉硫磷具有选择性, 马拉硫磷在昆虫体内转变为更 毒代谢产物, 温血动物体内的转变为无毒代谢产物

各类中药化学成分的生物合成途径

各类中药化学成分的主要生物合成途径 乙酸-丙二酸途径:脂肪酸类,酚类,醌类;甲戊二羟酸途径:萜类,甾类;莽草酸途径:即桂皮酸途径,苯丙素类,木脂素类,香豆素类;氨基酸途径 :生物碱类 溶剂提取法(常用溶剂及极性) (1)溶剂按极性分类:三类,即亲脂性有机溶剂、亲水性有机溶剂和水。溶剂按极性由弱到强的顺序如下:石油醚<四氯化碳<苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<正丁醇<丙酮<甲醇(乙醇)<水。 甲醇(乙醇)是最常用的溶剂,能用水任意比例混合. 分子大,C多,极性小,反之,大..按相似相溶原理,极性大的溶剂提取极性大的化合物 提取方法 ①煎煮法:挥发性及加热易破坏,多糖类不宜用。 ②浸渍法:不用加热,适用于遇热易破坏或挥发性成分,含淀粉或黏液质多的成分,但效率不高。 ③渗漉法:效率较高。④回流提取法:受热易破坏的成分不宜用。⑤连续回流提取法:有机溶剂,索氏提取器或连续回流装置。⑥水蒸气蒸馏法: 适于具挥发性,能随水蒸气蒸馏而不被破坏的。挥发油、小分子生物碱、酚类、游离醌类等:⑥超临界萃取法:以CO2为溶剂.用于极性低的化合物,室温下工作,几乎不用有机溶剂,环保 分离方法 ①吸附色谱:利用吸附剂对被分离化合物分子的吸附能力的差异,而实现分离的一类色谱。硅胶用于大多数中药成分;氧化铝用于碱性或中性亲脂性成分如生物碱、萜、甾;活性炭用于水溶性物质如氨基酸、糖类和某些苷类;聚酰胺用于酚醌如黄酮、蒽醌及鞣质。②凝胶色谱:主要是分子筛作用,根据凝胶的孔径和被分离化合物分子的大小而达到分离目的。③离子交换色谱:基于各成分解离度的不同而分离。主要用于生物碱、有机酸及氨基酸、蛋白质、多糖等水溶性成分的分离纯化。④大孔树脂色谱:一类没有可解离基团,具有多孔结构,不溶于水的固体高分子物质。它可以通过物理吸附有选择地吸附有机物质而达到分离的目的。是反相的性质,一般被分离物质极性越大,越先被洗脱下来,极性越小,越后洗脱下来。应用于中药有效部位或有效成分的分离富集。⑤分配色谱:利用物质在固定相和流动相之间分配系数不同而达到分离。正相色谱:固定相极性>流动相极性,用于分离极性和中等极性的成分。常用固定相:氰基或氨基键合相;常用流动相为有机溶剂。反相色谱:固定相极性<流动相极性,用于离非极性和中等极性的成分,常用C18或C8键合相。常用流动相为甲醇-水或乙腈-水。 糖和苷类化合物 糖:多羟基醛或多羟基酮及其衍生物、聚合物的总称 苷:糖或糖额衍生物与另一非糖物质通过糖的端基碳原子连接而成,又称配糖体 构型D,L,α,β : 向上D,向下L; 同侧:β异侧:α 苷键酸水解:苷键原子首先发生质子化,然后苷键断裂生成苷元和糖的阳碳离子中间体,在水中阳碳离子经溶剂化,再脱去氢离子形成糖分子。难易顺序:N-苷>O-苷>S-苷>C-苷。强酸水解:得到糖,苷元易破坏;弱酸水解:得到次级苷,确定糖的连接顺序;两相酸水解:保护苷元 酶水解:对难以水解或不稳定的苷,在酶水解条件温和,不会破坏苷元,可得到真正的苷元 显色反应 Molish反应:加入5%α-萘酚乙醇液,沿管壁缓慢滴入浓硫酸,在两层液面间会出现一个紫色环。又称α-萘酚反应.说明含有糖类或苷类. (但碳苷和糖醛酸例外,呈阴性.) 菲林和多伦反应:阳性,有还原糖.可以利用这两个反应来区别还原糖和非还原糖。 单糖:都是还原糖。双糖:麦芽糖、乳糖为还原糖。蔗糖为非还原糖 苷键构型的判断 糖苷的1H-NMR:成苷的端基质子H的耦合常在较低场。如:β构型J H1-H2=6~9Hz(8左右);α构型J H1-H2=2~3.5Hz (4左右) 醌类 酸性(规律) -COOH > 二个β-OH > 一个β-OH >二个α- OH > 一个α–OH 可用PH 梯度萃取分离。 其结果为①和②被5%碳酸氢钠溶液提出;③被5%碳酸钠提出;④被1%氢氧化钠提出;⑤只能被5%氢氧化钠提出 可用PH梯度萃取分离。 颜色反应 1、Feigl反应:全部醌类均阳性。碱性条件加热,紫色 2、Borntrager’s反应:也叫碱液试验,羟基蒽醌阳性。——颜色变化与OH数目及位置有关,红-紫色. 3、醋酸镁反应:含α-酚羟基或邻二酚羟基的蒽醌类阳性。 4、与活性亚甲基试剂反应kesting-Craven和无色亚甲蓝显色反应: 苯醌和萘醌类的专属反应.在碱性条件下 5、对亚硝基-二甲苯胺反应: 蒽酮类的特异性反 应.(唯一).蒽酮就是9或10位没有被取代的羟基 蒽酮类. 醌类化合物的提取与分离 (大题,看书) pH梯度萃取法P82 例:大黄蒽醌苷类的分离 苯丙素类(一个或几个C6-C3) 香豆素:一般具有苯骈α-吡喃酮母核的天然产物 母核(画) 内酯性质和碱水解反应 碱性开环,酸性闭环。但长时间加热,异构化,不可 恢复闭环. 显色反应有荧光性质 1、Gibb’s反应: 试剂:2,6-二氯(溴)苯醌氯 亚胺 C6位没取代,阳性,蓝色 2、Emerson反应试剂:4-氨基安替比林,铁氰化 钾反应 C6位没取代,阳性,红色 木脂素鉴识 Labat反应:具有亚甲二氧基的木脂素加浓硫酸 后,再加没食子酸,可产生蓝绿色 黄酮(C6-C3-C6) 结构与基本骨架(芦丁,槲皮素,鼠李糖,葡萄糖的 结构都要求会写)138页 经典结构是2-苯基色原酮,现在泛指两个苯环通 过三个碳原子相互连接而成的一类化合物 黄酮类:以2-苯基色原酮为母核,且3位上无含 氧基团取代的一类化合物 黄酮醇:在黄酮基本母核的3位上连有羟基或含 氧基团 二氢黄酮:黄酮基本母核的2、3位双键被氢化而 成 二氢黄酮醇:黄酮醇类的2、3位被氢化的基本母 核 交叉共轭体系:黄酮结构中色原酮部分本身无 色,但在2位上引入苯环后,即形成交叉共轭体 系,通过电子转移、重排,使共轭链延长而显出 颜色。在7位或4’位上引入-OH及-OCH3等助色 团后,产生p-π共轭,使化合物颜色加深。 溶解度:游离黄酮一般难溶于水,易溶于甲醇、 乙醇、乙酸乙酯、氯仿、乙醚等有机溶剂及稀碱 水中。引入羟基增多,水溶性增大,脂溶性降 低;而羟基被甲基化后,脂溶性增加。黄酮苷一 般易溶于水、甲醇、乙醇等强极性溶剂中,但难 溶于苯、氯仿、乙醚等有机溶剂中 平面型如黄酮、黄酮醇、查尔酮等溶解度较小, 非平面型如二氢黄酮及二氢黄酮醇的溶解性较 大,异黄酮的也较大 酸性:7,4’-二OH黄酮>7-或4’-OH黄酮>一 般酚羟基>5-OH黄酮 显色反应:(1)HCl-Mg反应:样品溶于甲醇或乙 醇1ml中,加入少许Mg,再加几滴浓HCl,一两 分钟显红~紫红色。(2)AlCl3反应:样品的乙醇 溶液和1%乙醇溶液AlCl3反应,生成黄色络合 物。(3)锆盐-枸橼酸反应:可鉴别黄酮类化合 物是否纯在3-或5-OH。样品的甲醇溶液加2%二氯 氧锆甲醇溶液。黄色不褪,有3-OH或3,5-OH, 如果减褪,无3-OH而有5-OH pH梯度萃取法:5%NaHCO3可萃取7,4’-二羟基 黄酮,5%NaCO3可萃取7-或4‘-羟基黄酮, 2%NaOH可萃取一般酚羟基的黄酮,4%NaOH可以萃 取5-羟基黄酮。 柱色谱分离 硅胶柱:利用极性差异,几乎适用于任何类型黄 酮(主要分离异黄酮、二氢黄酮,二氢黄酮醇及 高度驾机皇或乙酰化的黄酮及黄酮醇) 聚酰胺柱:通过酰胺羰基与黄酮类化合物分子上 的酚羟基形成氢键缔合而产生。化合物结构与Rf 值:酚羟基少>多;易形成分子内氢键>难;芳 香化程度低>高;异黄酮>二氢黄酮醇>黄酮> 黄酮醇;游离黄铜>单糖苷>双糖苷>叁糖苷 (含水移动相做洗脱剂);有机溶剂做洗脱剂反 之。洗脱能力由弱至强;水<甲醇或乙醇(浓度 由低到高)<丙酮<稀氢氧化钠水溶液或氨水< 甲酰胺<二甲基甲酰胺<尿素水溶液 紫外 黄酮类型带II(弱峰) 带I(强峰) 取代) 黄酮醇(3-OH 游离) 250-280 358-385 异黄酮245-270 310-330肩峰 二氢黄酮/醇370-295 300-330 查耳酮220-270低强度340-390 氢谱: 黄酮或黄酮类H-3是一个尖锐的单峰出现在 6.3 处 邻位耦合:耦合常数为8Hz左右 间位耦合:2-3Hz 对位耦合:很弱,数值很小或没有 5,7-二OH黄酮δppm:H-6小于 H-8 . 7- OH 黄酮: δppm:H-6 > H-8 6’δ比较大,5’较小 同时还要看 单峰S,就没有邻,间位双锋d说明有邻位或间位 其中一个双双锋dd就说明有邻,和间两个 生物合成途径 经验异戊二烯法则:基本碳架均是由异戊二烯以 头-尾顺序或非头-尾顺序相连而成;生源异戊二 烯法则:甲戊二羟酸是各种萜类化合物生物合成 的关键前体 单萜:无环,单环,双环,三环,环烯醚。知道 卓酚酮,环烯醚萜,薄荷醇,青蒿素的二级结构 和性质 性质:萜类多具苦味,单萜及倍半萜可随水蒸气 蒸馏,其沸点随其结构中的C5单位数、双键数、 含氧基团数的升高而规律性升高 提取:挥发性萜可用水蒸气蒸馏法;一般萜可用 甲醇或乙醇提取;萜内酯可先用提取萜的方法提 取出总萜,然后利用内酯的特性,用碱水提取酸 化沉淀的方法纯化;萜苷多用甲醇、乙醇或水提 取 柱色谱:吸附剂多用硅胶。中性氧化铝。含双键 者可用硝酸银络合柱色谱分离(利用硝酸银可与 双键形成π络合物,而双键数目位置及立体构型 不同的萜在络合程度及络合稳定性方面有一定差 异)。洗脱剂多以石油醚、正己烷、环己烷分离 萜烯,或混以不同比例的乙酸乙酯分离含氧萜 鉴识:卓酚酮类的检识 (硫酸铜反应:绿色结 晶);环烯醚萜的检识(Weiggering法:蓝色/紫红 色;Shear反应:黄变棕变深绿);薁类的检识 (Ehrlich反应:蓝紫绿;对-二甲胺基苯甲醛) 挥发油 也称精油,是存在于植物体内的一类具有挥发 性、可随水蒸气蒸馏、与水不相容的油状液体。 分为:芳香族,萜类,脂肪族 检识:化学测定常数:酸值、酯值、皂化值 提取方法:①蒸馏法:提取挥发油最常用的方 法,对热不稳定的挥发油不能用。②溶剂萃取 法:脂溶性杂质较多。③吸收法:油脂吸收法, 用于提取贵重挥发油。④压榨法:该方法可保持 挥发油的原有新鲜香味,但可能溶出原料中的不 挥发性物质。⑤二氧化碳超临界流体萃取法:有 防止氧化热解及提高品质的突出优点,用于提取 芳香挥发油 三萜 醋酐-浓硫酸反应(Liebermann-Burchard) 红-紫-蓝-绿色-褪色(甾体皂苷) 黄-红-紫-蓝-褪色(三萜皂苷) 胆甾醇沉淀法:胆甾醇复合物——乙醚回流提 取,去除胆甾醇,得皂苷。因为甾体皂苷比三萜 皂苷形成的复合物稳定. 甾类 C21甾醇C2H5 昆虫变态激素8-10个碳的脂肪烃 强心苷不饱和内酯环 甾体母核的C-17位上均连一个不饱和内酯环。根 据内酯环的不同:五元不饱和内酯环叫甲型强心 苷元;六元不饱和内酯环叫乙型。 苷和糖连接的顺序分: I型强心苷:苷元-(2,6-二去氧糖)x-(D-葡萄

鬼臼毒素生物合成研究进展_陆炜强

·综述· 鬼臼毒素生物合成研究进展 陆炜强,傅承新,赵云鹏 * (浙江大学生命科学学院濒危野生动植物保护生物学教育部重点实验室,浙江杭州310058) [摘要]鬼臼毒素(podophyllotoxin )是一种成功商品化的天然木脂素,其衍生物依托泊苷(etoposide )、替尼泊苷(tenipo-side )等在临床上广泛应用于抗肿瘤、抗病毒治疗。植物提取是鬼臼毒素的主要来源,面对野生资源压力,人们分别开展了植物野生变栽培、 植物细胞或器官培养、化学全合成等研究,以扩大鬼臼毒素来源。鬼臼毒素生物合成研究是开展植物规范化栽培和代谢工程的重要前提。20多年来尤其是近10年来,鬼臼毒素生物合成研究进展迅速,但鬼臼毒素的下游代谢以及整个合成途径基因水平的评述仍不足,因此作者专门针对鬼臼毒素的生物合成,对相关文献尤其是近10年的文献进行综述,重点介绍其合成途径关键环节的过程、主要产物、酶的特点与功能、已报道的酶编码基因等内容,以合理推测和概括鬼臼毒素的生物合成途径,同时对目前研究仍存在的问题和将来研究方向进行了讨论。 [关键词]鬼臼毒素;生物合成;规范化栽培;代谢工程[稿件编号]20101116002 [基金项目]国家科技支撑计划项目(2006BAI21B07);浙江省科技厅中药现代化专项(2006C13077)[通信作者]* 赵云鹏, Tel :(0571)88206463,E-mail :ypzhao @https://www.sodocs.net/doc/9913984473.html, [作者简介]陆炜强, Tel :(0571)88206463,E-mail :lwq-711@ 163.鬼臼毒素(podophyllotoxin , PTOX )是植物来源天然产物成功商品化的经典案例。从其发现至今已有近1个世纪的历史,其具有良好的抗肿瘤、抗尖锐湿疣、抗艾滋病毒活性 [1-3] ,虽然自身毒副作用较大,但其半合成衍生物在保证治 疗效果的同时,大大降低了毒性,在临床治疗淋巴癌、肺癌等多种癌症中得到广泛应用, 如依托泊苷(etoposide ,VP-16),替尼泊苷(teniposide ,VM-26),依托泊苷磷酸酯(etopophos ),azatoxin ,tafluposide 等[4]。鬼臼毒素的传统和主要来源是植物提取,来源植物主要分布于小檗科足叶草属Podophyllum 、桃儿七属Sinopodophyllum 、八角莲属Dysosma 、山荷叶属Diphylleia 、Jeffersonia 属,其他还有亚麻科亚麻属Linum ,柏科刺柏属Juniperus 、崖柏属Thuja 、Callitris 属,唇形科山香属Hyptis 、百里香属Thymus 、香科科属Teucrium 、荆芥属Nepeta 、Eriope 属等[5-7]。由于过度采挖、生境破坏和植物自身生长缓慢等原因,鬼臼类野生植物资源逐渐枯竭、物种濒危,已难以满足鬼臼毒素生产的需求,人工规范化栽培势在必行,但目前桃儿七S .hexandrum (异名:Podophyllum hex-andrum ,P .emodi )、八角莲D .versipellis 的栽培刚刚起步,其他来源植物的新资源开发程度也有待进一步深入 [8-10] 。此外,虽然化学全合成技术已经有所突破,但是 复杂的合成过程、极低的合成效率(约为5%),使人工全合成鬼臼毒素目前仍难以实现商业化 [3,11] 。近年来基于 生物技术的植物代谢工程快速发展,为鬼臼毒素替代资源的开发提供了更多途径,如植物细胞或器官培养、生物转化等,但仍存在效率低、成本高的共性问题,目前尚未产业化 [5,12-14] 。因此,要彻底解决鬼臼毒素的来源问题, 仍需要对上述3种途径的关键科学和技术问题深入研究。 实现药用植物规范化栽培和植物细胞或器官培养生产鬼臼毒素的前提之一是必须充分阐明鬼臼毒素的生物合成途径及其调控机制。因此,自20世纪80年代末以来,学者们以足叶草Podophyllum spp.、亚麻Linum spp.等植物的组织或细胞培养体系为研究系统,探讨了鬼臼毒素的生物合成途径,取得了长足进展。前人综述了不同时期鬼臼毒素生物合成不同方面的研究进展 [6,12,15-19] ,揭示了合成途径的大体 框架,为后续的研究提供了良好的基础和背景。但是前人的综述大多是对鬼臼毒素的资源、化学、药理、生物合成、细胞或器官培养等内容的全面评述,或者是对整个木脂素类生物合成的综述, 对于鬼臼毒素生物合成的论述不够全面、详细,比如对鬼臼毒素下游的代谢往往没有讨论,而且对近几年已有新进展的相关酶编码基因的分离、扩增、表达也较少涉及。因此,本文专门针对鬼臼毒素的生物合成,对相关文献尤其是近10年的文献进行综述,重点介绍其合成途径关键环节的过程、主要产物、酶的特点与功能、鬼臼毒素下游代谢、已报道的酶编码基因等内容,以期继续推动该领域的研究,实现优质种源筛选、株系改良、栽培和培养条件优化、生产体系调控,为鬼臼类植物规范化栽培和代谢工程的产业化奠定

微生物药物合成生物学研究进展

微生物药物合成生物学研究进展 武临专, 洪斌* (中国医学科学院、北京协和医学院医药生物技术研究所, 卫生部抗生素生物工程重点实验室, 北京100050) 摘要: 微生物次级代谢产物结构复杂多样, 具有抗细菌、抗真菌、抗肿瘤、抗病毒和免疫抑制等多种生物活性, 是微生物药物开发的源泉。当前, 微生物药物研究面临一些挑战: 快速发现结构新颖、生物活性突出的化合物; 理性化提高产生菌的发酵效价; 以及以微生物为新宿主, 实现一些重要天然药物的工业生产。合成生物学是在系统生物学和代谢工程等基础上发展起来的一门学科。本文对合成生物学在发现微生物新次级代谢产物、提高现有微生物药物合成水平和创制微生物次级代谢产物方面的研究进展进行了阐述。 关键词: 微生物药物; 合成生物学; 次级代谢产物; 生物合成 中图分类号: Q939.9; Q81; R914.5 文献标识码:A 文章编号: 0513-4870 (2013) 02-0155-06 Synthetic biology toward microbial secondary metabolites and pharmaceuticals WU Lin-zhuan, HONG Bin* (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China) Abstract: Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, anti- tumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms. Key words: microbial pharmaceuticals; synthetic biology; secondary metabolites; biosynthesis 来源于微生物的药物称为微生物药物(microbial medicine, microbial pharmaceuticals), 主要包括来源于微生物(特别是放线菌和真菌) 次级代谢产物的药物。 收稿日期: 2012-09-25; 修回日期: 2012-11-01. 基金项目: 国家“重大新药创制”科技重大专项资助项目(2012ZX09301002-001-016); 国家自然科学基金资助项目 (31170042, 81172964). *通讯作者 Tel: 86-10-63028003, E-mail: binhong69@https://www.sodocs.net/doc/9913984473.html,, hongbin@https://www.sodocs.net/doc/9913984473.html, 微生物药物例如抗生素, 在控制感染、免疫调节和治疗癌症等方面发挥了重要作用。目前, 已经从放线菌和真菌中发现了2万多种具有生物活性的次级代谢产物, 其中百余种成为微生物药物。随着对放线菌和真菌的持续开发利用, 直接从放线菌和真菌研制微生物新药难度越来越大, 主要原因在于: ①化合物排重难度很大(从微生物已经发现了25 000多种化合物); ②新微生物资源的分离培养工作没有突破性进展, 获得大量的、具有产生新次级代谢产物能 ·专题报道·

苦豆子生物碱的研究进展

苦豆子生物碱的研究进展 发表时间:2014-01-14T11:36:51.670Z 来源:《医药前沿》2013年11月第33期供稿作者:韩玉刚张浩 [导读] 此外,苦参碱还试用于治疗病毒性肝炎、病毒性心肌炎。 韩玉刚张浩(解放军第206医院临床药学科吉林通化 134000) 苦豆子(sophora alopecuroides L)是豆科槐属植物,别名苦豆根、苦甘草、西豆根、苦豆草、欧苦参等,我国西北省区及中亚细亚一带均有分布。药用根、根茎、全草及种子,味苦性寒,有清热解毒、祛风燥热、止痛杀虫等作用。近年来的研究发现,其还有抗癌、抗炎、抗菌的作用。关于化学成分的研究的研究已有报道,为了更好的开发利用该资源,我们对其种子中生物碱成分的研究和药理作用的研究。已有报道鉴定的生物碱有氧化苦参碱(oxymatrine OMT)、氧化槐果碱(oxysophocarpine OSC)、苦参碱(matrine MT)、槐果碱(sophocarpine SC)、槐定碱(sophoridine SRI)和槐胺碱(sophoramine SA)、莱曼碱(lehmannine LEH)、苦豆碱(aloperine ALC)。现将近几年苦豆子类生物碱在抗炎方面的资料进行综述如下。 杨志伟等发现苦参总碱、苦豆总碱具有明显而独特的抗柯萨基B3组病毒(CVB3)的作用,通过对(CVB3)与各个药物在37℃作用2小时,然后测定病毒的TCID50。结果提示苦参总碱和苦豆总碱能有效的抑制CVB3繁殖,两总碱主要效应可能是直接灭活游离病毒以及进入细胞内发挥抗病毒作用。而且具有免疫调节功能。此外,苦参碱还试用于治疗病毒性肝炎、病毒性心肌炎。 李凡等的研究发现苦豆碱对多种致炎剂所引起的急性炎症和Ⅲ,Ⅳ型变态反应有显著的抑制作用。从免疫的角度对其进行研究。苦豆碱有抑制巨噬细胞产生包细胞介毒1(IL-2)的作用(p<0.01),并能直接抑制小鼠脾细胞增殖反应,同时能抑制脾细胞对豆蛋白A(CorA)诱导的T细胞增殖反应(p<0.01),对多种致炎剂诱发的动物炎症有拮抗作用。魏立民等指出氧化苦参碱对大鼠急性胰腺炎具有良好的治疗效果,其机制可能与其抑制料性细胞因素的产生有关,有学者的系列报道提出,苦参碱是一种新的有希望的眼炎药物,能够对抗晶状体蛋白诱发的家兔虹膜炎、睫状体炎,但是它不通过影响花生四烯酸链,而可能是一种全新的抗炎机制,何丽华等在临床采用苦参碱制成阴道栓剂治疗慢性宫颈炎。有效率达95.9%,治愈率为49.78%,治疗宫颈糜烂有效率为97.33%,并无腹痛、出血、感染、复发等副作用,可弥补物理治疗的不足。另外它对滴虫性阴道炎、霉菌性阴道炎等亦有一定的治疗作用。氧化苦参碱iv和im治疗各型湿疹皮炎,取得明显效果,有效率为84.8%,氧化苦参碱对大鼠变异性接触性皮炎具有一定的疗效。苦豆子碱片(每片重0sg,含生物碱30mg)通过临床证明可治疗细菌性痢疾、肠炎。 黄秀梅等对四种苦豆子生物碱抗炎的考察,通过用LPS刺激体外培养的小鼠腹腔巨噬细胞,使之剂理依赖性地产生肿瘤坏死因子,观察对巨噬细胞产生肿瘤坏死因子的影响。结果这四种苦参碱、氧化苦参碱、槐定碱和槐果碱都能显著抑制小鼠腹腔巨噬细胞有LPS诱导产生地TNFa,并有明显地剂量反应关系,进一步证实了此类生物碱的抗炎作用与其直接抑制TNFa的分泌有关。 给大鼠灌胃苦豆碱可明显抑制组胺、PGE25-HT和角叉莱胶引起的组肿胀,苦豆碱还能抑制霉菌素引起的足肿胀,对大鼠PCA反应、Arthus反应、可逆性被动Arthus反应以及结核菌素引起的大鼠迟发型皮肤超敏反应也有显著抑制作用,并能抑制组胺引起的毛细血管通透性增加和白细胞游走于体外,对红细胞膜也有明显稳定作用。以上表明,苦豆碱抗炎与免疫抑制作用主要与其抑制白细胞游走,稳定溶酶体膜,抑制PG、组胺等炎症介质的合成释放有关。 甘乐文等的氧化苦参碱对大鼠肝纤维化的影响的研究发现苦参碱能显著减轻大鼠肝细胞变形坏死和纤维组织增生,降低升高的ALT、HA。氧化苦参碱对四氯化碳引起的小鼠肝损伤、氨基个乳糖所致小鼠肝损伤有保护作用、可抑制肝组织内炎症活动度,下调血清TNFa水平,且在大剂量治疗组抑制的效果更好,下调幅度更大。 陈伟忠等对苦参碱对大鼠试验性肝纤维化的影响研究发现降低乐血清中ALT,降低血清HA的含量。降低Hyp的含量,能显著减少大鼠肝细胞变性坏死和纤维组织增生。病理结果显示治疗肝细胞变性坏死较模型组轻,结缔组织形成减少,说明苦参碱有抗纤维化作用,推测苦参碱可能通过保护肝细胞,抑制单核-巨噬细胞、枯否细胞分泌细胞因子而达到防治肝纤维化的作用。 苦豆子生物碱在抗炎,抗过敏有着很好的疗效,特别是在肝炎,肝硬化这些疑难杂症,博尔泰力就是用苦豆子生物碱做的制剂,治疗肝炎效果显著,得开发。豆子生物碱在妇科炎症也有广阔天地。为了更好的开发中药的苦豆子,对苦豆子生物碱的药理作用考察是很重要的。特别是抗病毒方面,有待于基础研究和临床应用进一步密切合作。 参考文献 [1].杨志伟,周娅,曹秀琴等。苦豆总碱、苦参总碱体外抗柯萨B3病毒的作用,宁夏医学杂志,2002,24(12):707-710. [2].魏立民,张兴荣,马述春等。生长抑素及氧化苦参碱治疗大鼠急性胰腺炎的试验研究。第二军医大学学报,1999,20(9):633-635. [3].黄秀梅,李波,沈连忠等。四种苦豆子生物碱对巨噬细胞产生肿瘤坏死因子a的影响。中药药理与临床,2001,17(3):12-14. [4].韩春雷,陈学荣,马俊江等。氧化苦参碱对大鼠变应性接触性皮炎药效学作用。北京医科大学学报,1996.28(1):59-61. [5].何丽华,刘世连,杨丽楠等。中药苦豆子治疗宫颈糜烂75例。中国民间疗法,2000,8,(10):32. [6].彭建华,于华等。博尔泰力治疗慢性乙型肝炎的临床疗效观察。中国城乡企业卫生,2001,6,(3):30. [7].陈伟忠,张俊平,许青等。苦参碱对大鼠实验性肝纤维化的影响。第二军医大学学报,1996,17(5):424-426. [8].周清荣,张园梅,申悦平等。苦参素治疗慢性乙型肝炎32例。中西医结合肝病杂志,2003,13(3):174-176. [9].李凡,石艳春,黄红兰等。苦豆碱对小鼠免疫细胞功能的影响。白求恩医科大学学报,1997,23(6):603-605. [10].甘乐文,王国俊,李玉莉等。氧化苦参碱对大鼠肝纤维化的影响。第二军医大学学报,1999120(7):445-448.

11氨基酸生物合成汇总

10氨基酸生物合成 第十章氨基酸生物合成 10.1氮素循环 10.2生物固氮的生物化学 10.2.1生物固氮的概念 10.2.2固氮生物的类型 10.2.3固氮酶复合物 10.2.4生物固氮所需的条件 10.2.5固氮过程的氢代谢 10.3硝酸还原作用 10.3.1硝酸还原酶 10.3.2亚硝酸还原酶 10.4氨的同化 10.4.1谷氨酸合成 10.4.2氨甲酰磷酸的合成 10.5氨基酸的生物合成 10.5.1氨基酸的合成与转氨基作用 10.5.2各族氨基酸的合成 10.5.3一碳基团代谢 10.5.4 SO2-4还原 第十章氨基酸生物合成 本章提要氮素是组成生物体的重要元素。自然界中的不同氮化物相互转化形成氮素循环。气态氮通过自生和共生微生物将N2还原成NH+4。植物根系吸收硝态氮(NO-3),通过硝酸还原酶和亚硝酸还原酶将NO-3还原成NH3,再经谷氨酰胺合成酶和谷氨酸合酶同化为谷氨酸,后者是各种形态无机氮同化为有机氮的主要形式。谷氨酸与来自碳代谢中间物的各种碳骨架(α-酮酸)之间转氨形成各种氨基酸。 10.1 氮素循环 氮素是生物的必需元素之一。在生命活动中起重要作用的化合物,如蛋白质、核酸、酶、某些激素和维生素、叶绿素和血红素等均含有氮元素。因此,在动、植物和微生物的

生命活动中氮素起着极其重要的作用,整个生物界在生长发育的全部过程中都进行着氮素代谢。 自然界中的不同氮化物经常发生互相转化,形成一个氮素循环(nitrogen cycle)。生物界的氮代谢是自然界氮循环的主要因素。在自然界氮循环中,还包括工业固氮和大气固氮(如闪电)等把N2转变为氨和硝酸盐的过程。 在地球表面的大气组成中,尽管N2占大约80%,但N2是一稳定的不易发生反应的物质。在氮素循环中,第一步是将N2还原为氨,可由工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的2/3,由工业合成氨或其他途径合成的氨只有1/3左右。在土壤中含量丰富的硝化细菌进行着氧化氨形成 NO-3的过程,因此土壤中几乎所有氨都转化成了硝酸盐,这个过程称为硝化作用。 植物和微生物可吸收土壤中的NO-3,然后还原形成氨,再经同化作用把无机氮转化为有机氮,这些有机氮化合物又可随食物或饲料进入动物体内,转变为动物体的含氮化合物。各种动植物遗体及排泄物中的有机氮经微生物分解作用,形成无机氮。这样,在生物界,总有机氮和总无机氮形成了一个平衡。

紫草宁生物合成途径中的代谢与调控教学总结

紫草宁生物合成途径中的代谢与调控 1.背景知识介绍 1.1 紫草及紫草宁 紫草(学名:Lithospermum erythrorhizon),为紫草科紫草属植物。又名山紫草、紫丹、紫草根,分布于日本、朝鲜以及中国大陆的辽宁、山西、湖南、甘肃、山东、湖北、广西、四川、陕西、贵州、江西、河北、河南等地,生长于海拔50米至2,500米的地区,多生长在山坡草地,目前尚未由人工引种栽培。紫草是一种重要的药用植物,其功效是凉血,活血,解毒透疹。用于血热毒盛,斑疹紫黑,麻疹不透,疮疡,湿疹,水火烫伤。紫草根部富含红色的萘醌类次生代谢产物——紫草宁及其衍生物。 紫草宁又称紫草素,英文名称:Shikalkin,英文别名: 5,8-Dihydroxy-2-(1-hydroxy-4-methylpent-3-enyl)naphthalene-1,4-dione,即5,8-二羟基-2-[(1R)-1-羟基-4-甲基戊-3-烯基]萘-1,4-二酮,结构式如下: 紫草宁为赤褐色针状晶体(由苯重结晶)。熔点149℃。旋光度-167°±10°(在苯中)。能溶于普通有机溶剂,以及甘油动植物油脂和碱性水溶液。难溶于碳酸氢碱溶液。与氢氧化碱金属作用显蓝色。 由于紫草素具有多种生物学活性,以紫草素为先导化合物开发抗炎、抗肿瘤、抗病毒新药的研究已成为热点课题,除此之外,紫草素还是良好的天然色素,已广泛用于食品、化妆品和印染工业中。 1.2紫草宁及其衍生物的药理作用

1.2.1 抗肿瘤活性 近年来,紫草次生代谢物的抗肿瘤活性倍受关注。紫草素能够抑制肝癌肿瘤细胞增殖[1]、诱导生殖系统肿瘤细胞凋亡[2],并兼具调控机体免疫的功能。紫草素在体外一定浓度范围内能抑制人白血病K562细胞增殖,诱导其凋亡。甲基丙烯酰紫草素具有较好的体内外抗肿瘤作用,作用机制可能与诱导细胞凋亡和抑制NF-zB p50的活性有关[3]。乙酰紫草素可通过诱导细胞凋亡来抑制胃癌SGC-7901细胞在体内外的增殖[4]。 1.2.2 抗炎活性 紫草素能有效减轻由中波紫外线(UVB)引起的表皮角蛋白细胞炎症,起到保护皮肤的作用;还可以减弱小神经胶质细胞的炎症反应,达到保护神经系统的作用。 1.2.3 降胆固醇活性 研究发现,从硬紫草根部氯仿提取物中分离出的三种化合物—乙酰紫草素、异丁基紫草素和β-羟基异戊酰紫草素均具有抑制人类酰基辅酶A-胆固醇酰基转移酶-1和人类酰基辅酶A-胆固醇酰基转移酶-2的活性。酰基辅酶A-胆固醇酰基转移酶是胆固醇生物合成途径的关键酶,乙酰紫草素、异丁基紫草素和β-羟基异戊酰紫草素通过抑制该酶的活性,从而达到降低胆固醇含量,防治动脉粥样化的目的。 紫草的药理作用除了上述内容之外,还有降血糖活性,抗生育、抗免疫缺陷、抗凝血、保肝护肝、抗前列腺素生物合成、抗菌及清除活性氧作用等。 1.3紫草及紫草宁的市场 紫草是我国传统中药材,多家中药饮片厂以紫草为主要原料研制开发生产了约500多种(规格)中成药、特药、新型中药,以及几十种中药饮片。这些产品投入市场后很受消费者欢迎,销量增加,对紫草的需求量也随之逐年大幅攀升。

合成生物学的研究进展

第!期中!国!科!学!基!金"# !! !学科进展与展望! 合成生物学研究的进展 !!"中国科学院院士$ 本文于!%%&年’!月!"日收到$张春霆" !天津大学生命科学与工程研究院"天津(%%%)!# "摘!要#!本文简要介绍了合成生物学发展的历史背景与定义"它的主要研究内容"包括基因线路$合成基因组$合成药物与生物基产品或材料等%探讨了合成生物学与基因工程的异同"介绍了合成生物学在中国的发展情况"讨论了伦理道德与安全问题"最后展望了合成生物学的发展前景% "关键词#!合成生物学!基因线路!合成基因组!合成药物!合成生物基产品或材料!合成*+,序列 !!合成生物学的历史背景与定义 ’--%年人类基因组计划启动!随后模式生物基因组计划也快速实施!产生了大量的基因组*+,序列信息"由于新技术的出现!又促进了转录组学#蛋白质组学和代谢组学等的产生和发展"这一切又催生了一系列新兴交叉学科!如生物信息学和系统生物学等"基础研究的成果最终要转化为生产力!而合成生物学在!’世纪初的出现则是上述学科发展的一个合乎逻辑的结果"那么什么是合成生物学呢$合成生物学网站是这样介绍的%合成生物学包括两重意义%&’’新的生物零件&./01’#组件&234563’和系统的设计与构建(&!’对现有的#天然存在的生物系统的重新设计!以造福人类社会&711.%))89:; 173156<5=>=?9$=0?)’"维基百科全书是这样描述的%合成生物学旨在设计和构建工程化的生物系统!使其能够处理信息#操作化合物#制造材料#生产能源#提供食物#保持和增强人类的健康和改善我们的环境&711.%))3:$@5A5.325/$=0?)@5A5)B9173156*<5=>=; ?9’" "!合成生物学的主要研究内容 "#!!基因线路$$%&%’())(*)+(’% 说起基因线路或基因回路!最早可追溯到C/6=<和D=:=2关于半乳糖操纵子模型的经典工作" !"#$%&杂志在!%%%年发表了基因振荡和基因双稳态两个基因线路!被认为是奠基性的工作"现在则 已发表了大量的有关基因线路的工作!本文不拟详加介绍"一个典型的基因线路是基因双稳态线路+’,!由两个蛋白质编码基因与两个相对应的启动子组成"线路是这样设计的%蛋白质’的表达抑制了蛋白质!的表达!系统只有蛋白质’存在(反之!蛋白质!的表达抑制了蛋白质’的表达!系统只有蛋白质!存在"可在双稳态线路中加入诱导物!促使系统在两个稳定状态之间任意翻转"基因线路有广泛的应用!因篇幅所限不能展开介绍!下面只介绍(个应用例子" &’’大肠杆菌照相术+!, 首先从集胞兰细菌基因组中克隆两个基因并转入大肠杆菌!使之能生成对光敏感的藻青素!简称E F G"接着利用大肠杆菌中双组份信号转导系统’()*+,-./!将与E F G共价结合的脱辅基蛋白与’()*的组氨酸激酶结构域融合构成一个嵌合体!成为一个光敏部件"同时!将0-.1基因与2"3*基因融合!通过在2"3*基因上游引入0-.1启动子使其表达依赖于,-./"通过这一基因线路!2"3*基因的表达就会受光调控"当有红光照射时&相当于被摄物体的光亮部分’!’()*的自磷酸化被抑制!从而,-./不能被磷酸化激活!2"3*基因关闭!由涂抹在琼脂基片上的菌苔形成的底片保持原色"当没有红光照射时&相当于被摄物体的黑暗部分’!过程正好相反!’()*的自磷酸化被激活!从而使2"3*基因被磷酸化的,-./激活而表达!其产物为半乳糖苷酶!催化菌苔中的B;?/>&一种化合物’反应生成

Roquefortine类生物碱的研究进展

第32卷第2期2013年4月 中国海洋药物 CHINESE JOURNAL OF MARINE DRUGS Vol.32 No.2 April,2013 Roquefortine类生物碱的研究进展△* 汤枝鹏,朱天骄,顾谦群,李德海* (海洋药物教育部重点实验室,中国海洋大学医药学院,山东青岛266003) 摘 要:Roquefortine是由真菌生产的一类结构复杂生物碱化合物,这类化合物来源于组氨酸和色氨酸,包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单双键与四环母核相连。此类化合物具有抗革兰氏阳性细菌和抗肿瘤活性。本文主要从化合物的发现,生物活性,生物合成途径以及化学合成这几个方面对这类化合物的研究作全面的回顾。 关键词:Roquefortine;次级代谢产物;真菌 中图分类号:R931.6 文献标志码:A 文章编号:1002-3461(2013)02-076-09 真菌次级代谢产物是天然产物非常重要的来源之一,它们具有丰富的结构类型和良好的生物活性,如抗菌,免疫抑制,促进生长等,是药物先导化合物的重要来源;同时某些次级代谢产物会对人和动物的健康造成损害,被称为真菌毒素[1]。Roquefor-tine类生物碱都是从来源于各种环境下的真菌中分离得到的,roquefortine C在高浓度时具有神经毒性,是1种常见的真菌毒素。该类化合物的结构特征是包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单键或双键与四环母核相连。其复杂的结构特征引起了化学家的广泛兴趣,对于化合物的化学合成和生物合成研究工作正在广泛开展。 1 Roquefortine类化合物的发现 Roquefortine C(1)是第一个被分离得到具有吲哚吡咯二酮哌嗪骈合而成的四环母核结构的roquefortine类化合物。1975年日本的Ohmomo等人在1株Penicillium roqueforti中分离得到3个生物碱类化合物,分别命名roquefortine A-C。其中只有roquefortine C的结构符合本文论述的结构类型。1976年法国的Scott等人在1株青霉中再次分到了化合物(1),并阐明了其化学结构,至此以后roquefortine C多次被不同的课题组重 复分离[2-5]。1978年Ohmono再次从上述真菌中分离得到了化合物(2)[6],它是化合物(1)的3位和12位双键被还原的产物,被认为是roqueforti-ne C生物合成的前体。1994年Musuk等从来源于木薯的1株Penicillium verrucosum var.cy-clopium中分离得到化合物(3),它是化合物(1)6位N的甲醛基取代物[7]。化合物(4)是Ko-zlovsky等于1996年分离得到的,它是化合物(1)14位N的乙基化衍生物[8]。2003年Kozlovsky等从来源于俄罗斯冻土的Penicillium aureovi-rens中分离到了化合物(5),它是化合物(2)16N的羧乙基衍生物[9]。化合物(6)是2005年由BenClark等人从澳大利亚土壤中的Gymnoascusreessii中分离得到,它是该类化合物中唯一从非青霉属的真菌中分离得到的天然产物[10],它是化合物(1)17位C上发生异戊烯基化的产物。2009年Du等从1株深海来源的青霉属真菌F23-2中分离得到了4个化合物(7~10)[11-12],其中16位N上来源于乙酸甲羟戊酸途径的侧链取代以及11a位的甲氧基取代都是首次报道,也是首次从深海来源样品中发现该类化合物。化合物(11)不是天然产物,而是化合物1在酸碱作用或紫外线照射的条件下发生双键异构化生成,其双键构型是Z式[13]。 *△基金项目:高等学校博士学科点专项科研基金(20100132120026);山东省优秀中青年科学家科研奖励基金计划(BS2010HZ027); 中国海洋大学“青年英才工程”科研支持经费资助  作者简介:汤枝鹏(1987-),男,硕士研究生,主要从事海洋微生物活性次级代谢产物研究。 *通讯作者:李德海,男,副教授Tel.:0086-532-82031619;fax:0086-532-82033054;E-mail:dehaili@ouc.edu.cn  收稿日期:2012-09-18 DOI:10.13400/https://www.sodocs.net/doc/9913984473.html,ki.cjmd.2013.02.013

相关主题