搜档网
当前位置:搜档网 › 三角函数同步练习题

三角函数同步练习题

三角函数同步练习题
三角函数同步练习题

三角函数同步练习

第I 卷(选择题)

1.要得到函数y=sin2x 的图象,只需将函数y=sin (2x ﹣)的图象( ) A .向右平移个单位长度 B .向左平移个单位长度 C .向右平移个单位长度 D .向左平移个单位长度

2.sin cos y x a x =+中有一条对称轴是5

3

x π=

,则 ()sin cos g x a x x =+最大值为( )

A.

3 B.3 C.2

D.2

3.函数()cos f x x =的一个单调递增区间是( ) (A )(0)2

π

, (B )(,)22

ππ-

(C )(0)-π, (D )(0,)π

4.函数)2

(cos 2π

+=x y 的单调增区间是( )

(A )π(π,

π)2k k + k ∈Z (B )π

(π, ππ)2

k k ++ k ∈Z (C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Z

5.函数f (x )=Asin (ωx+φ)(其中A >0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x 的图象,则只要将f (x )的图象( )

A .向左平移个单位长度

B .向右平移个单位长度

C .向左平移个单位长度

D .向右平移个单位长度

6.为了得到函数y=sin (2x ﹣)的图象,可以将函数y=sin2x 的图象( ) A .向右平移个单位长度 B .向左平移个单位长度 C .向左平移个单位长度 D .向右平移个单位长度

7.角θ的终边过点P (﹣1,2),则sinθ=( ) A . B . C .﹣ D .﹣

8.已知

2

π

<α<π,3sin2α=2cosα,则cos (α﹣π)等于( ) A .

32 B .4

6 C .322 D .623 9.函数f (x )=sin (2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f (x )在[0,]上的最小值为( ) A .﹣ B .﹣ C . D .

10.在直径为4cm 的圆中,36°的圆心角所对的弧长是( ) A . cm B . cm C . cm D . cm 11.化简sin600°的值是( ) A .0.5 B .﹣0.5

C .

D .

12.已知函数f (x )=Asin (ωx+φ)的图象如图所示,则该函数的解析式可能是( )

A .f (x )=

43sin (23x+6π) B .f (x )=54sin (54x+51) C .f (x )=54sin (65x+6π) D .f (x )=54sin (3

2x ﹣51

第II卷(非选择题)

13.

已知tanα=4,则的值为.

14.设α、β,且sinαcos(α+β)=sinβ,则tanβ的最小值是.

15.已知扇形的半径为2,圆心角是弧度,则该扇形的面积是.

16.sin20°cos10°+cos20°sin10°=.

17.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示

(1)求此函数的解析式;

(2)求函数f(x)在区间上的最大值和最小值.

18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期的图象时,列表并填入了部分数据,如表:

ωx+φ0 π2π

x

Asin(ωx+φ)0 5 ﹣5 0

(1)请将上表数据补充完整,并求出函数f(x)的解析式;

(2)将y=f(x)的图象向左平移个单位,得到函数y=g(x)的图象.若关于x的方程g(x)﹣(2m+1)=0在[0,]上有两个不同的解,数m的取值围.

19.已知cosα=﹣,α为第三象限角.

(1)求sinα,tanα的值;

(2)求sin(α+),tan2α的值.

20.设函数

22

()(sin cos)2cos(0)

f x x x x

ωωωω

=++>的最小正周期为

2

3

π

(Ⅰ)求ω.

(Ⅱ)若函数

()

y g x

=的图像是由()

y f x

=的图像向右平移2

π

个单位长度得到,求

()

y g x

=的单调增

区间.

21.已知函数的图象经过三点,在区间有唯一的最小值.

(Ⅰ)求出函数f(x)=Asin(ωx+?)的解析式;

(Ⅱ)求函数f(x)在R上的单调递增区间和对称中心坐标.

22.

已知tan()=3+.

(Ⅰ)求tana的值;

(Ⅱ)求cos2(π﹣a)+sin()cos(+a)+2sin2(a﹣π)的值.

试卷答案

1.B

2.B

3.C

4.A

5.C

6.A

7.B.

8.C

9.A10.B11.D12.B

13.14.15.16.

17.【解答】解:(1)由图象可得A=,由=﹣﹣(﹣)=可得周期T=π,∴ω==2,∴f(x)=sin(2x+φ),

∵,∴

又0<φ<π,∴,故,可得,

∴此函数的解析式为:; (2)∵,∴,

∴f(x )在即x=0时取得最大值, f (x )在即时取得最小值.

ωx+φ 0 π

x

Asin (ωx+φ) 0

5 0 ﹣5

且函数表达式为f (x )=5sin (2x ﹣).

(2)通过平移,g (x )=5sin (2x+

),方程g (x )﹣(2m+1)=0可看成函数g (x ),x ∈[0,

]和

函数y=2m+1的图象有两个交点,当x ∈[0,]时,

2x+

∈[

],为使横线y=2m+1与函数g (x )有两个交点,只需≤2m+1<5,解得≤m<2.

19.【解答】解:(1)∵,α为第三象限角,

∴.

(2)由(1)得

20.解:(Ⅰ)

2222()(sin cos )2cos sin cos sin 212cos 2f x x x x x x x x ωωωωωωω=++=++++

sin 2cos 22)2

4x x x π

ωωω=++=++ 依题意得2223ππ

ω

=

,故ω=32. (Ⅱ)依题意得

: 5()3()2)2

244g x x x πππ?

?=-++=-+????

5232()

2

42

k x k k Z π

ππ

ππ-

-

+∈≤≤

解得227()

3

4312k x k k Z ππ

ππ++

∈≤≤

故()y g x =的单调增区间为: 227[,]()

34312k k k Z ππ

ππ++∈

21.【解答】解:(Ⅰ)由题意可得函数的周期T=2(﹣

)=1,

∴ω=

=2π,又由题意当x=

时,y=0,

∴Asin(2π×+?)=0即sin (+?)=0

结合0<?<

可解得?=

再由题意当x=0时,y=, ∴Asin =,∴A=

; (Ⅱ)由2kπ﹣

≤2πx+

≤2kπ+

可解得k ﹣≤x≤k+

∴函数的单调递增区间为[k ﹣,k+](k ∈Z ) 当2πx+

=kπ时,f (x )=0,解得x=﹣

, ∴函数的对称中心为

【点评】本题考查三角函数的图象和解析式,涉及单调性和对称性,属中档题. 22.【解答】(本小题满分12分) 解:(Ⅰ)由已知得=3+2

∴tanα=

.…

(Ⅱ)原式=cos2α+(﹣cosα)(﹣sinα)+2sin2α=

=

=

=.…

试卷答案

1.B

【考点】函数y=Asin (ωx+φ)的图象变换. 【专题】三角函数的图像与性质.

【分析】把函数y=sin2x 的图象向右平移个单位即可得到函数 y=sin2(x ﹣)=sin (2x ﹣) 的图象,把平移过程逆过来可得结论.

【解答】解:把函数y=sin2x 的图象向右平移个单位即可得到函数 y=sin2(x ﹣)=sin (2x ﹣) 的图象,

故要得到函数y=sin2x 的函数图象,可将函数y=sin (2x ﹣)的图象向左至少平移个单位即可, 故选:B .

【点评】本题主要考查函数 y=Asin (ωx+?)的图象变换规律,属于基础题. 2.B

方法一;sin cos y x a x =+=

当53x π=时,1

2

y a ==

平方得:

2231144

a a +=+ 求得a = =方法二:因为对称轴为5

3

π 所以可知此时的导函数值为0 'cos sin y x a x =-

555

'cos sin 0333y a πππ??=-= ???

所以12= 所以a = =注意;给三角函数求导也是一种办法,将三角函数求导后原三角函数的对称轴处的导函数都为0 3.C

【知识点】三角函数的图像与性质

【试题解析】因为在是减函数,在先增后减,在是减函数,在是增函数,故答案为:C 4.A 5.C

【考点】由y=Asin (ωx+φ)的部分图象确定其解析式. 【专题】三角函数的图像与性质.

【分析】由函数的图象的顶点坐标求出A,由特殊点的坐标求出ω,由五点法作图求出ω的值,可得f (x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.

【解答】解:由函数f(x)=Asin(ωx+φ)的图象可得A=﹣2,2sinφ=,∴sinφ=,结合|φ|<,可得φ=.

再根据五点法作图可得ω×+=π,求得ω=2,故f(x)=2sin(2x+).

故把f(x)=2sin(2x+)的图象向左平移个单位长度,可得y=2sin[2(x+)+]=2sin(2x+)=2cos2x的图象,

故选:C.

【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

6.A

【考点】五点法作函数y=Asin(ωx+φ)的图象.

【专题】三角函数的图像与性质.

【分析】先将函数变形,再利用三角函数的图象的平移方法,即可得到结论.

【解答】解:∵函数y=sin(2x﹣)=sin[2(x﹣)],

∴为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象向右平移个单位长度

故选A.

【点评】本题考查三角函数的图象的平移与伸缩变换,注意先伸缩后平移时x的系数,属于基础题.7.B

【考点】任意角的三角函数的定义.

【专题】三角函数的求值.

【分析】由条件利用任意角的三角函数的定义,求得sinθ的值.

【解答】解:由题意可得,x=﹣1,y=2,r=|OP|=,∴sinθ===,

故选:B.

【点评】本题主要考查任意角的三角函数的定义,属于基础题.

8.C

【考点】二倍角的正弦.

【专题】三角函数的求值.

分析:由条件求得sinα 和cosα 的值,再根据cos(α﹣π)=﹣cosα求得结果.

解:∵<α<π,3sin2α=2cosα,

∴sinα=,cosα=﹣.

∴cos(α﹣π)=﹣cosα=﹣(﹣)=,

故选:C.

【点评】本题主要考查二倍角公式、诱导公式的应用,属于中档题.

9.A

【考点】函数y=Asin(ωx+φ)的图象变换.

【专题】三角函数的图像与性质.

【分析】由函数图象的平移得到,再由函数为奇函数及φ的围得到

,求出φ的值,则函数解析式可求,再由x的围求得函数f(x)在[0,]上的最小值.

【解答】解:函数f(x)=sin(2x+φ)图象向左平移个单位得,

由于函数图象关于原点对称,∴函数为奇函数,

又|φ|<π,∴,得,

∴,

由于,∴0≤2x≤π,

∴,

当,即x=0时,.

故选:A.

【点评】本题考查了函数y=Asin(ωx+φ)型函数的图象和性质,考查了三角函数值域的求法,是中档题.

10.B

【考点】弧长公式.

【专题】三角函数的求值.

【分析】,再利用弧长公式l=αr即可得出.

【解答】解: =(弧度).

∴36°的圆心角所对的弧长==cm.

故选:B.

【点评】本题考查了弧长公式l=αr,属于基础题.

11.D

【考点】诱导公式的作用.

【专题】计算题;三角函数的求值.

【分析】利用诱导公式可求得sin600°的值.

【解答】解:sin600°=sin=sin240°=sin=﹣sin60°=﹣.

故选D.

【点评】本题考查诱导公式sin(2kπ+α)=sinα及sin(π+α)=﹣sinα的应用,属于基础题.12.B

【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.

【专题】函数思想;数形结合法;三角函数的图像与性质.

分析:函数的图象的顶点坐标求出A的围,由周期求出ω 的围,根据f(2π)<0,结合所给的选项得出结论.

解:由函数f(x)=Asin(ωx+φ)的图象可得0<A<1,T=>2π,

求得0<ω<1.

再根据f(2π)<0,结合所给的选项,

故选:B.

【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的图象特征,属于基础题.

13.

【考点】二倍角的余弦;同角三角函数基本关系的运用.

【专题】三角函数的求值.

【分析】由于已知tanα=4,利用同角三角函数的基本关系、二倍角公式化简为,从而求得结果.

【解答】解:由于已知tanα=4,则====,

故答案为.

【点评】本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于中档题.

14.

【考点】三角函数中的恒等变换应用.

【专题】方程思想;分析法;三角函数的求值.

【分析】由条件利用两角和差的正弦公式、同角三角函数的基本关系可得 2tan2α?tanβ+tanβ﹣tanα=0,再根据△=1﹣8tan2β≥0,求得tanβ的最小值.

【解答】解:∵sinαcos(α+β)=sinβ=sin[(α+β)﹣α],

∴sinαcos(α+β)=sin(α+β)cosα﹣cos(α+β)sinα,

化简可得 tan(α+β)=2tanα,即=2tanα,

∴2tan2α?tanβ﹣tanα+tanβ=0,

∴△=1﹣8tan2β≥0,

解得﹣≤tanβ≤,

∵β∈(,π),∴﹣≤tanβ<0,

故答案为:﹣.

【点评】本题主要考查两角和差的正弦公式,同角三角函数的基本关系,属于基础题.

15.

【考点】扇形面积公式.

【专题】计算题.

【分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.

【解答】解:根据扇形的弧长公式可得l=αr=×2=

根据扇形的面积公式可得S==

故答案为:

【点评】本题考查扇形的弧长与面积公式,正确运用公式是解题的关键.

16.

【考点】两角和与差的余弦函数.

【专题】转化思想;综合法;三角函数的求值.

【分析】由条件利用两角和的正弦公式,求得要求式子的值.

【解答】解:sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=,

故答案为:.

【点评】本题主要考查两角和的正弦公式的应用,属于基础题.

17.

【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.

【专题】函数思想;数形结合法;三角函数的图像与性质.

【分析】(1)由图象可得A值,由周期公式可得ω,代点结合角的围可得φ,可得解析式;

(2)由和三角函数的最值可得.

【解答】解:(1)由图象可得A=,由=﹣﹣(﹣)=可得周期T=π,

∴ω==2,∴f(x)=sin(2x+φ),

∵,∴

又0<φ<π,∴,故,可得,

∴此函数的解析式为:;

(2)∵,∴,

∴f(x)在即x=0时取得最大值,

f(x)在即时取得最小值.

【点评】本题考查三角函数的图象和解析式,涉及三角函数的最值,属中档题.

18.

【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.

【专题】函数思想;转化法;三角函数的图像与性质.

【分析】(1)根据五点法进行求解即可.

(2)根据函数平移关系求出函数g(x)的表达式,利用函数和方程之间的关系转化为两个函数的交点问题即可.

【解答】解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣,数据补全如下表:

且函数表达式为f(x)=5sin(2x﹣).

(2)通过平移,g(x)=5sin(2x+),方程g(x)﹣(2m+1)=0可看成函数g(x),x∈[0,]和函数y=2m+1的图象有两个交点,当x∈[0,]时,

2x+∈[,],为使横线y=2m+1与函数g(x)有两个交点,只需≤2m+1<5,解得≤m<2.

【点评】本题主要考查三角函数的图象和性质,利用五点法以及函数与方程的关系进行转化是解决本题的关键.

19.

【考点】二倍角的正切;同角三角函数基本关系的运用. 【专题】三角函数的求值.

【分析】(1)由条件利用同角三角函数的基本关系求得sinα的值,从而求得tanα的值.

(2)由(1)利用两角和的正弦公式求得sin (α+)的值,再利用二倍角的正切公式求得tan2α的值. 【解答】解:(1)∵,α为第三象限角, ∴,

∴.

(2)由(1)得

,.

【点评】本题主要考查同角三角函数的基本关系,二倍角的正切公式的应用,属于中档题. 20.解:(Ⅰ)

2222()(sin cos )2cos sin cos sin 212cos 2f x x x x x x x x ωωωωωωω=++=++++

sin 2cos 222)2

4x x x π

ωωω=++=++ 依题意得2223ππ

ω

=

,故ω=32. (Ⅱ)依题意得: 5()23()22)2

244g x x x πππ?

?=-++=-+????

5232()

2

42

k x k k Z π

ππ

ππ-

-

+∈≤≤

解得227()

3

4312k x k k Z ππ

ππ++

∈≤≤

故()y g x =的单调增区间为: 227[,]()

34312k k k Z ππ

ππ++∈

略 21.

【考点】由y=Asin (ωx+φ)的部分图象确定其解析式;正弦函数的图象. 【专题】函数思想;数形结合法;三角函数的图像与性质.

【分析】(Ⅰ)由题意可得函数的周期T,进而可得ω,代点可得?和A,可得解析式;

(Ⅱ)解2kπ﹣≤2πx+≤2kπ+可得函数的单调递增区间,解2πx+=kπ可得函数的对称中心.

【解答】解:(Ⅰ)由题意可得函数的周期T=2(﹣)=1,

∴ω==2π,又由题意当x=时,y=0,

∴Asin(2π×+?)=0即sin(+?)=0

结合0<?<可解得?=,

再由题意当x=0时,y=,

∴Asin=,∴A=

∴;

(Ⅱ)由2kπ﹣≤2πx+≤2kπ+可解得k﹣≤x≤k+

∴函数的单调递增区间为[k﹣,k+](k∈Z)

当2πx+=kπ时,f(x)=0,解得x=﹣,

∴函数的对称中心为

【点评】本题考查三角函数的图象和解析式,涉及单调性和对称性,属中档题.

22.

【考点】运用诱导公式化简求值.

【专题】计算题;转化思想;分析法;三角函数的求值.

【分析】(Ⅰ)由两角和的正切函数公式化简已知,整理即可求值.

(Ⅱ)利用诱导公式及同角三角函数关系式的应用,结合(Ⅰ)的结论即可求值.

【解答】(本小题满分12分)

解:(Ⅰ)由已知得=3+2,

∴tanα=.…

(Ⅱ)原式=cos2α+(﹣cosα)(﹣sinα)+2sin2α

=

=

=

=.…

【点评】本题主要考查了两角和的正切函数公式,诱导公式及同角三角函数关系式的应用,考查了计算能力,属于基础题.

三角函数基本概念

三角函数基本概念 1.角的有关概念 (1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角. (3)若α与β是终边相同的角,则β可用α表示为S ={β|β=α+k ·360°,k ∈Z }(或{β|β=α+2k π,k ∈Z }). 2.象限角 3.弧度与角度的互化 (1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么l =rα,角α的弧度数的绝对值是|α| = l r . (3)角度与弧度的换算①1°=π 180rad ;②1 rad =?π 180 (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =rα,则扇形的面积为 S =12lr =12 |α|·r 2 . 4.任意角的三角函数 三角函数 正弦 余弦 正切 定义 设是一个任意角,它的终边与单位圆交于点P (x ,y ),那么 y 叫做的正弦,记作sin x 叫做的余弦,记作cos x y 叫做的正切,记作tan α 三角函数 正弦 余弦 正切 各象限符号 Ⅰ 正 正 正 Ⅱ 正 负 负 Ⅲ 负 负 正 Ⅳ 负 正 负 各象限符号 口诀 一全正,二正弦,三正切,四余弦 5.三角函数线 设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM ,sinα=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.

三角函数的基本概念与诱导公式

三角函数的概念、基本关系式及诱导公式 一、角的相关概念 1、按旋转方向的不同形成_________,___________,___________ 2、终边位置的不同形成__________,__________,____________ 例如:第一象限角的集合________________ 终边在y 轴上角的集合_________________ 终边在x 轴上角的集合_________________ 3、终边相同的角的集合________________ 4、注意第一象限角、锐角的不同,钝角与第二象限角的不同 5、已知α是第二象限的角,则 2 α是第几象限的角? 二、弧度制与角度制: 1、弧度制的定义:圆周上弧长等于_______的弧所对的圆心角的大小为1弧度(1rad ) 2、 3602=π 180=π _______1=rad rad _______1= 弧度制与角度制的换算_________________________________ 3、扇形的弧长、面积公式 ____________________________________________ 例1、已知一扇形周长为)0(>C C ,当扇形中心角为多少弧度时,它的面积最大? 例2、扇形中心角为 120,则扇形面积与其内切圆的面积之比为_____________ 三、任意角的三角函数: 1、定义:设α是一个任意角,α的终边上任一点),(y x P O 为坐标原点,则 )(022y x r r OP +=>=则 r y = αsin r x =αcos x y =αtan y r =αcsc _____sec =α _____cot =α 实质是____________________ 2、三角函数的符号___________________________ 3、特殊角的三角函数值: ___________________________________________________________ 四、单位圆与三角函数线: 1、第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的角的三角函数线 2、三角函数线的应用——用来解决三角不等式

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

2018春人教版数学九年级下册281《锐角三角函数》同步测试

锐角三角函数 28、1_锐角三角函数_ 第1课时正弦[见B本P78] i\_园础达标 1 ?如图28-1-b 在△遊中,ZC=90°, AB=5,BC=3,则sinJ 的值是(C ) R 图28-1-1 A、错误! B、错误! C、错误! D、错误! 2。把△「磁三边的「长度都扩大为原来的3倍,则锐角月的正弦函数值(A ) A o不变B.缩小为原来的错误! Co扩大为原来的3倍D。不能确定 3.如图28-1-2,在Rt△磁中,ZC=90^ , AB=2BC,则sin5的值为(C ) 图28-1-2 A、错误! B、错误! C、错误!D o 1 3 4?在Rt△磁中,Zr=90°9AC=9, sin5=-则( A ) □ A.15 B. 12 C.9 Do 6 【解析】曲=错误!=错误! = 15,选A、 5O如图28— 1一3所示,△磁的顶点是正方形网格的格点,则sinJ的值为(B ) 图28-1-3 A、错误! B、错误! C、错误! D、错误! 6.如图28-1-4,角a的顶点为0,它的一边在x轴的正半轴上,另一边上有一点尸(3, 4), 则sin"的值是(D )

图28-1-4 A、错误! B、错误! C、错误! D、错误! 【解析】.\sin6r=错误!、故选D、 7.△丽Q中,ZC=90Q , sinJ=错误!,则sin^=_错误! 【解析】由sinJ=错误!可得错误二错误!,故可设BC=2a,AB=5a,r Fh勾股定理求得错误怙,再由正弦定义求得sin5=错误匸错误!=错误!、 8、如图图28-1-5,在0。中,过直径初延长线上的点C作00的一条切线,切点为D,若 AC=79AB=49则sinC的值为—错误!—? 图28-1-5 9.Rt AJ5C中,若Z(7=90° ,a=15, b=8,求sinE+sin万、 解:由勾股泄理有c=错误!=错误! = 17, 于是$:1山=错谋!, sin4错课!, 所以sinJ+sin5=错误! +错误!=错误!、 10?如图28-1-6所示,△磁中,ZC=90° ,sinJ=错误\,AC=2.求曲,必的长。解:VsinJ=错误!,???错误!=错误!,:?AB=3BC、 9:AC+BC=A^. :.2Z+BC=(3B^)\ :?BC=错谋!,:.AB=错诧、 11、在Rt△遊中,Z*90°,若J5=4,sinJ=错误!,则斜边上的高等于(B ) A、错误! B、错误! C、错误! D、错误! 12o如图28-1-7,在菱形肋G?中,%丄于伐DE=£ cm, sinE=错课!,则菱形個力的而积是_60_cm\ 图28-1-7 【解析】在Rt△宓中,sinJ=错误!, :.AD=错误!=错误! = 10 (cm), :.AB=AD=10 cm,

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

《281锐角三角函数_正弦》教学设计

《28.1锐角三角函数正弦》教学设计 紫阳县汉王镇初级中学----郭昌林 一、教材简析:本章的主要内容是让学生初步掌握三角函数的概念和用边角关系解直角三角形的方法。锐角三角函数概念是本章的难点,也是学习本章的关键,难点在于锐角三角函数的概念反映了角度与数值之间的对应关系。学生学习这一内容有一定的难度,需要借助实际问题来引入三角函数这一概念,并能使学生掌握运用三角函数的知识来解决实际问题的能力。同时注重培养学生的计算能力。 二、教学方法: (一)、运用类比教学,结合已学的基础知识,如一次函数、二次函数等知识内容,让学生理解三角函数的概念含义。 (二)、运用数形结合,借助直角三角形的性质,将实际问题抽象成具体的、学生容易接受的数学问题,运用三角函数和几何图形中的边角关系,使实际问题以图形形式直观形象地呈现,从而达到解决问题和提高学生计算能力目的。 (三)、运用转化对象,将抽象的数学应用问题转化为数学模型,把学生难懂的问题转化为易于接受的简单的问题加以解决。 三、教学目标 (一)、知识目标 1、通过对实际问题的探究,使学生能正确理解三角函数定义及正弦函数的概念。 2、理解在直角三角形中,当锐角度数一定时,这个角的对边与斜边的比值是固定的值。 (二)、能力目标 1、使学生能正确理解正弦函数定义,并能根据正弦函数定义正确进行相关计算。 2、结合对正弦函数定义的探究,培养学生由特殊到一般的演绎推理、分析、归纳的综合学习能力。 (三)、情感与态度目标 引导学生积极主动探究数学问题,培养学生学会思考,掌握归纳数学规律的方法。 四、教学重难点 (一)、重点:正确理解正弦函数的概念,会根据边长求出正弦值,或根据正弦值及一边长,求另一边的长等应用题。 (二)、难点:引导学生比较、分析并得出:在直角三角形中,任意锐角,它的对边与斜边的比值是固定的事实。 五、教学设计 教学内容教师活动学生活动设计意图一、情景导入 大家知道我们汉王中学教学楼有多高 吗?(运用多媒体演示) 教师提出问题,引导学生思考。 学生通过 观看多媒体 的演示,思考 老师提出的 问题。 问题的提出, 目的在于引出新 课和引起学生思 考。 激发学生兴趣 和求知欲望。 A M B N

三角函数的概念

三角函数的概念、同角三角函数的关系和诱导公式 题组一 一、 选择题 1.(安徽省百校论坛2011届高三第三次联合考试理) 已知3cos( )||,tan 222ππ ???-=<且则等于 ( ) A . B C D 答案 D. 2.(浙江省金丽衢十二校2011届高三第一次联考文)函数()sin sin(60)f x x x =++ 的最大 值是 ( ) A B C .2 D .1 答案 A. 3.(山东省莱阳市2011届高三上学期期末数学模拟6理)已知)2 ,2(,3 1sin π πθθ-∈-=,则)2 3sin()sin(θππθ--的值是( ) A 、 9 2 2 B 、922- C 、91- D 、91 答案 B. 4.(湖南省嘉禾一中2011届高三上学期1月高考押题卷)在区间[1,1]-上随机取一个数 ,cos 2 x x π的值介于0到 1 2 之间的概率为 ( ) A .1 3 B . 2 π C . 1 2 D . 23 答案 D. 5. (湖北省补习学校2011届高三联合体大联考试题理) 已知cos()0,cos()0,2 π θθπ+<->下列不等式中必成立的是( ) A.tan cot 2 2 θ θ > B.sin cos 2 2 θ θ > C.tan cot 2 2 θ θ < D.sin cos 2 2 θ θ < 答案 A.

6.(河南省鹿邑县五校2011届高三12月联考理)函数()3sin 23f x x π? ? =- ?? ? 的图像为C,如下结论中正确的是 ( ) A .图像C 关于直线6 x π = 对称 B .图像 C 关于点,06π?? ??? 对称 C .函数()f x 在区间5,1212ππ?? - ??? 内是增函数 D .由3sin 2y x =的图像向右平移 3 π 个单位长度可以得到图像C 。 答案 C. 7. (河南省辉县市第一高级中学2011届高三12月月考理)若cos 2sin αα+=则 tan α= A.12- B.2 C.1 2 D.-2 答案 B. 8. (北京四中2011届高三上学期开学测试理科试题) 已知,则 等于( ) A .7 B . C . D . 答案 C. 9.(福建省三明一中2011届高三上学期第三次月考理) 已知函数)(sin cos )(R x x x x f ∈=,给出下列四个命题: ①若;),()(2121x x x f x f -=-=则 ②)(x f 的最小正周期是π2; ③)(x f 在区间]4,4[π π-上是增函数; ④)(x f 的图象关于直线4 3π =x 对称; ⑤当??????-∈3,6ππx 时,)(x f 的值域为.43,43??????- 其中正确的命题为 ( ) A .①②④ B .③④⑤ C .②③ D .③④

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

第七章 三角函数及其有关概念

第七章 函数及其有关概念 一、角的概念: 1、正角、负角、零角:逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。 2、象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角。 3、轴线角:角的终边落在坐标轴上的角。终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ;终边在y 轴上的角的集合: {} Z k k ∈+?=,90180| ββ;终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ。 4、终边相同的角:与α终边相同的角2x k απ=+。 5、与α终边反向的角: (21)x k απ=++;终边在y=x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ;终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ 6、若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 7、成特殊关系的两角:(1)若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360;(2)若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ;(3)若角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 二、弧度制:l R α= 角度与弧度的换算公式: 360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 弧长公式:R l θ= ; 扇形面积:S=α2 2 12 1r r l =? 任意角三角函数: (一)任意角的三角函数定义: 三角函数 定义域 =)(x f sinx {}R x x ∈| =)(x f cosx {}R x x ∈| =)(x f tanx ? ?? ???∈+≠∈Z k k x R x x ,21|ππ且 =)(x f cotx {}Z k k x R x x ∈≠∈,|π且 =)(x f secx ? ?? ???∈+≠∈Z k k x R x x ,21|ππ且 =)(x f cscx {}Z k k x R x x ∈≠∈,|π且 (二)三角函数在各象限内的符号规律:

-高中三角函数知识点复习总结

第四章 三角函数 一、三角函数的基本概念 1.角的概念的推广 (1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+?=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量 (1)角度制与弧度制的概念 (2)换算关系:8157)180(1) (180'≈==οο ο π π弧度弧度 (3)弧长公式:r l ?=α 扇形面积公式:22 1 21r lr S α== 3.任意角的三角函数 y x x y x r r x y r r y = ===== ααααααcot tan sec cos csc sin 注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一) 诱导公式: α±? 2 k )(Z k ∈与α的三角函数关系是“立变平不变,符号 看象限”。如: ()?? ? ??--??? ??+απαπαπ25sin ;5tan ,27cos 等。 (二) 同角三角函数的基本关系式:①平方关系1 cos sin 22 =+αα; α ααα22 22tan 11cos cos 1tan 1+=?= +②商式关系 α α α tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。 (三) 关于公式1cos sin 22 =+αα的深化

() 2 cos sin sin 1ααα±=±; α ααcos sin sin 1±=±; 2 cos 2 sin sin 1α α α+=+ 如: 4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=- 注:1、诱导公式的主要作用是将任意角的三角函数转化为ο0~ο90角的三角函数。 2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 证明同角的三角恒等式。 三、两角和与差的三角函数 (一)两角和与差公式 ()βαβαβαsin cos cos sin sin ±=± ()β αβαβαsin sin cos cos cos μ=± ()β αβ αβαtan tan 1tan tan tan μ±= ± (二)倍角公式 1、公式βαα cos sin 22sin = cos 2α= 2 2cos 1α + sin 2α= 2 2cos 1α - ααααα2222sin 211cos 2sin cos 2cos -=-=-= α αα2tan 1tan 22tan -= α α ααα sin cos 1cos 1sin 2 tan -= += )sin(cos sin 22?ααα++=+b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注: (1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。 2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值 ①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 ②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 ③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 ④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

5.2 三角函数的概念(解析版).docx

5.2 三角函数的概念 A 组-[应知应会] 1.(2020·周口市中英文学校高一期中)已知角α终边经过点122P ?? ? ??? ,则 cos α=( ) A . 1 2 B C D .12 ± 【参考答案】B 【解析】由于1,r OP x === ,所以由三角函数的定义可得cos x r α==,应选参考答案B . 2.(2019·渝中·重庆巴蜀中学高一期末)若cos 0θ<,cos sin θθ-=那么θ的( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【参考答案】C 【解析】由题意得sin cos θθ==-, 即cos sin sin cos θθθθ-=-,所以sin θcos θ 0,即sin cos θθ≤,又cos 0θ<,所以sin 0,θ<θ位于第三象限,故选C. 3.若α为第二象限角,则下列各式恒小于零的是( ) A .sin cos αα+ B .tan sin αα+ C .cos tan αα- D .sin tan αα- 【参考答案】B 【分析】画出第二象限角的三角函数线,利用三角函数线判断出sin tan 0αα+<,由此判断出正确选项. 【解析】如图,作出sin ,cos ,tan ααα的三角函数线,显然~OPM OTA ??,且MP AT <,∵0MP >,0AT <,∴MP AT <-.∴0MP AT +<,即sin tan 0αα+<.故选B. 4.若角α的终边经过点()() sin 780,cos 330P ?-?,则sin α=( ) A B . 12 C D .1 【参考答案】C 【分析】利用诱导公式化简求得P 点的坐标,在根据三角函数的定义求得sin α的值.

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

§281锐角三角函数(四)

数学导学案(8) §28.1锐角三角函数(四) 课型:新课 主备:陆明和 审稿: 领导签字: 班级: 学生姓名: 【学习目标】1.进一步理解锐角三角函数的定义,并记住它们的符号; 2.理解锐角的三角函数值的范围,以及随角度的变化情况,互余角的三角函数关系; 3.熟练进行 30°、 45°、60°角三角函数的计算。 【学习重点】目标1、2、3。 【学习难点】目标1、2、3。 【学习过程】 一、 独立看书87~76P 完 二、 完成下列预习作业: 1.在正方形网格中,∠AOB 如图放置, 则cos ∠AOB 的值为( )。 A. 55 B. 552 C. 2 1 D. 2 2. 如图,在△ABC 中, ∠C= 90°, C D ⊥AB 于点D , AC =32,AB=23, 则tan ∠BCD 的值为( ) A. 2 B. 22 C. 36 D. 3 3. 3. 在Rt △ABC 中, ∠C= 90°, BC ∶AC= 3∶4, 则cosA = . 4. 如图,在Rt △ABC 中,∠C= 90°, AB =10cm ,sinA = 5 4 ,则BC= 。 5.计算: ?? ? -45tan 30 cos 60 sin 的值是 。 小组评价: 组长签字: 三、 师生合作探究,解决问题 探究一 如图,在等腰梯形ABCD 中,A D ∥BC, ∠DBC= 45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。若AD=2,BC=8, 求(1)BE 的长, (2) ∠CDE 的正切值。 探究二 求适合下列各式的锐角α (1)2sin α-1= 0 (2)12 1 cos 2=+α ※探究三 如图,在△ABC 中,AB= 15,BC= 14,ABC S 三角形 =84. (1) 求tanC 的值; (2) 求sinA 的值。 B A C

三角函数基本概念和表示

第三章三角函数 第一节三角函数及概念 复习要求: 1.任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式。 知识点: 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止 位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射 线的端点叫做叫的顶点。 2.角的分类 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角, 按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它为零角。 3.象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角。 (1)第一象限角的集合: |22, 2 k k k Z π απαπ ?? <<+∈ ???? (2)第二象限的集合:。 O

(3)第三象限角的集合: 。 (4)第四象限角的集合: 4.轴线角 角的顶点与原点重合,角的始边与轴的非负半轴重合。若角的终边落在坐标轴上,称这个角为轴线角。它不属于任何象限,也称为非象限角。 5.终边相同的角 所有与角α终边相同的角连同角α在内,构成的角的集合,称之为终边相同的角。记为: {} |360,S k k Z ββα==+?∈或 {} |2,S k k Z ββαπ==+∈。它们彼此相差 2()k k Z π∈,根据三角函数的定义知,终边相同的角的各种三角函数值都相等。 6.区间角 区间角是指介于两个角之间的所有角,如5| ,6 666π πππααα? ??? =≤≤ =????? ???。 7,角度制与弧度制 角度制:规定周角的1 360为1度的角,记作0 1,它不会因圆的大小改变而改变, 与r 无关 弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 或1弧度或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 8.角的度量 (1)角的度量制有:角度制,弧度制 (2)换算关系:角度制与弧度制的换算主要抓住180rad π=o 。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

相关主题