搜档网
当前位置:搜档网 › 简述荧光与磷光的产生原理及应用

简述荧光与磷光的产生原理及应用

简述荧光与磷光的产生原理及应用
简述荧光与磷光的产生原理及应用

简述荧光与磷光的产生原理及应用,并说明有机物结构是如何影响荧光的。

具有荧光性的分子吸收入射光的能量后,其中的电子从基态(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。处于各激发态的电子通过振动驰豫、内转移等无辐射跃迁过程回到第一电子激发单重态的最低振动能级。然后再由这个最低振动能级跃迁回到基态时,发出荧光。

由第一激发单重态的最低振动能级,有可能以系间窜跃方式转至第一激发三重态,再经过振动驰豫,转至其最低振动能级,由此激发态跃回至基态时,便发射磷光。

荧光与磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层间跃迁产生的;而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。

荧光主要用于元素及有机化合物的荧光测定,照明,印刷防伪技术,生化和医药方面等。

磷光分析主要用于测定有机化合物,如石油产品、多环芳烃、农药、药物等方面。

有机物结构对荧光的影响主要有以下方面:(1)跃迁类型:相对于n→π*跃迁,π→π* 跃迁能发出较强的荧光(较大的量子产率)。(2)共轭效应:增加体系的共轭度,荧光效率一般也将增大。(3) 刚性平面结构:多数具有刚性平面结构的有机分子具有强烈的荧光。(4)取代基效应:给电子基团使荧光增强,吸电子基团,会减弱甚至会猝灭荧光;卤素取代基随原子序数的增加而荧光降低;取代基的空间障碍对荧光也有影响;立体异构现象对荧光强度有显著的影响。

电镜题目

1、从电子显微镜可以得到哪些信息?

答:形貌、高分辨像、电子衍射图象、X射线能谱分析.

2、透射电子显微镜和扫描电子显微镜有何不同?它们分别适合什么样的样品?

答:TEM采用透过薄样品的电子束成像来显示样品内部组织形态与结构,可同时观察微观组织形态及分析材料的结构与成分;而SEM利用电子束在样品表面扫描激发出来的代表样品表面特征的信号成像,可观察样品表面形貌及做成分分析、成分分布. TEM适用于薄样品,SEM适用于厚样品.

3、为取高分辨真实像的TEM相片,制备试样应主意哪些问题?

答:TEM的试样制备是获取高分辨率真实像的前提,为了避免或减少电子穿透试样时的能量损失,从而减少色差,试样要制作得足够薄,一般需小于100 nm ;但又要尽可能保持试样原来状态.

高级植物生态学试题

《高级植物(生理)生态学》课程考试试题 生命科学学院周晓丽学号:G2004477 一、名词解释(30分) 1.光补偿点和光饱和点 光补偿点:光合作用吸收的二氧化碳与呼吸作用放出的二氧化碳数量相等时的光强。阴生植物的光补偿点低于阳生植物,C3植物低于C4植物。 光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。 2.CO2饱和点和CO2补偿点 CO2饱和点:CO2浓度增加到一定程度时光合速率不再增加,此时环境中CO2的浓度称二氧化碳饱和点。 CO2补偿点:光合作用释放的氧气与呼吸作用消耗的氧气相等时外界环境中的CO2浓度,就是光合作用的CO2补偿点。 3.量子产率与羧化效率 量子产率:体系吸收每一个光子所引发的某种事件的数目。符号为ψ,Y。积分量子产率为Ф=事件数/吸收光子数。对于光化学反应,ψ=反应物消耗(或产物产生)的数量/吸收光子数量。微分量子产率为φ=(d[x]/dt)/n。式中d[x]/dt为某可测量量的变率,n为单位时间内所吸收的光子数(摩尔或爱因斯坦)。ψ可用于光物理过程或光化学反应。 羧化效率:在低CO2浓度条件下,CO2浓度是光合作用的限制因子,直线的斜率(CE)受羧化酶活性和量的限制。因而,CE被称为羧化效率。CE值大,则表示Rubisco的羧化效率较高。 4.叶面积指数:单位土地面积上植物植株绿叶面积与土地面积的比值。是反映作物群体大小的较好的动态指标。 5.植物的碳同位素区异:主要指C3、C4在植物体内的不同含量。

二、简答题(40分) 1、画图示意光合速率的光响应曲线,并标示出暗呼吸、光补偿点和光饱和 点。 光和响应曲线 2、如何理解叶绿素荧光动力学中的F V/F m和NPQ,它们在分析植物光合生 理分析有何意义? 调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。 调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其测量快速、简单、可靠、且测量过程对样品生长基本无影响,目前已成为光合作用领域发表文献最多的技术。 调制叶绿素荧光仪的工作原理 1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber 博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。 所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

荧光和磷光

第七章分子发光分析 一.教学内容 1.荧光和磷光分析法的基本原理(光谱的产生、各种光谱的特征、光谱与化合物结构的关系、强度及影响因素等) 2.荧光和磷光仪器 3.荧光、磷光分析法的特点及大致应用 4.化学发光的基本原理、发光类型、仪器及大致应用 二.重点与难点 1.分子的去激发过程及荧光、磷光的发射 2.荧光、磷光的发射与物质结构的关系 3.各种光谱的特征、区别与联系 4.荧光(磷光)强度表达式的意义及影响因素 三.教学要求 1.基本掌握荧光和磷光发射的原理及与物质结构的关系 2.了解各种光谱的绘制方法、特征与联系 3.掌握强度表达式的意义、影响因素及适应性 4.掌握荧光、磷光仪器的组件、工作流程及异同点 5.基本了解化学发光分析法的原理、发光类型、仪器、特点及大致应用 6.了解荧光、磷光分析的大致应用 第一节分子荧光和磷光分析 一、基本原理 (一)荧光和磷光的产生

在电磁辐射基础中,已经简单地讨论过荧光及磷光的产生机理。这里将根据分子结构理论,将进一步讨论。 处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s,而三重态分子具有顺磁性,其激发态的平均寿命为10-4~ 1s以上(通常用S和T分别表示单重态和三重态)。处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。 下面结合荧光和磷光的产生过程,进一步说明各种能量传递方式在其中所起的作用。设处于基态单重态中的电子吸收波长为λ1和λ2的辐射光之后,分别激发至第二单重态S2及第一单重态S1。

荧光和磷光的产生过程

荧光和磷光的产生过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1.荧光和磷光的产生过程 荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光 激发态振动弛豫内转换振动弛豫发射荧光S 磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光 激发态振动弛豫内转换系间跨越振动弛豫S 发射荧光 2.激发光谱和发射光谱概念,有何异同 (1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长) (2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长) 同:都是给样品能量使之发光测量发光强度 异:控制的变量不同。 3.化合物荧光与结构的关系 a.具有一定的荧光量子产率 b.具有合适的结构

如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π * π型、取代基为给电子基团 4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫 A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。 B.荧光猝灭:指荧光物质与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。 C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。 D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。 时间为10-12s 5.实时定量PCR与普通PCR的区别 所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在之中,通过对每个Ct值的计算,根据获得定量结果。具有重现性,误差小的特点。 传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过扩增到达平台期时,检测重现性。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

叶片荧光测量实验报告

叶片荧光测量实验报告 1.实验目的 2.实验方法 利用PAM100,荧光成像系统测量叶绿素荧光 3.实验原理及一些参数的意义 荧光的变化反映光合与热耗散的变化。 光化学淬灭(Photochemical Quenching):由于光合作用引起的荧光下降,反映了光合活性的高低。 qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’) (基于“沼泽模型”) qL=(Fm’-F)/(Fm’-Fo’)·Fo’/F=qP·Fo’/F (基于“湖泊模型”) 非光化学淬灭(Non-Photochemical Quenching):由于热耗散引起的荧光下降。 qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo) NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1 ,不需测定Fo’,适合野外调查qN或NPQ反映了植物耗散过剩光能转化为热的能力,反映了植物的光保护能力。 Fv/Fm =(Fm-Fo)/Fm : PS II的最大量子效率,反映植物潜在最大光合能力,高等植物一般在0.8-0.84之间,当植物受到胁迫(Stress)时,Fv/Fm显著下降。 ΦPS II = Yield = (Fm’-Fs)/Fm’ = ΔF/Fm’= qP·Fv’/Fm’: 任一光照状态下PS II的实际量子产量(实际光合能力、实际光合效率)

不需暗适应,不需测定Fo’,适合野外调查。 Y(NPQ)=1-Y(II)-1/(NPQ+1+qL(Fm/Fo-1)):调节性能量耗散,PS II 处调节性能量耗散的量子产量。若Y(NPQ)较高,一方面表明植物接受的光强过剩,另一方面则说明植物仍可以通过调节(如将过剩光能耗散为热)来保护自身。Y(NPQ)是光保护的重要指标。 Y(NO)=1/(NPQ+1+qL(Fm/Fo-1)):非调节性能量耗散 PS II处非调节性能量耗散的量子产量。若Y(NO)较高,则表明光化学能量转换和保护性的调节机制(如热耗散)不足以将植物吸收的光能完全消耗掉。也就是说,入射光强超过了植物能接受的程度。这时,植物可能已经受到损伤,或者(尽管还未受到损伤)继续照光的话植物将要受到损伤。Y(NO)是光损伤的重要指标。 P:光合速率,即相对电子传递速率rETR Pm: 最大光合速率,即最大相对电子传递速率rETRmax α:初始斜率,反映了光能的利用效率 β:光抑制参数 Ik=Pm/α:半饱和光强,反映了样品对强光的耐受能力。

荧光和磷光的产生过程

1.荧光和磷光的产生过程? 荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光 S0激发态振动弛豫内转换振动弛豫发射荧光 磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光 S0激发态振动弛豫内转换系间跨越振动弛豫发射荧光 2.激发光谱和发射光谱概念,有何异同? (1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长) (2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长) 同:都是给样品能量使之发光测量发光强度 异:控制的变量不同。 3.化合物荧光与结构的关系? a.具有一定的荧光量子产率 b.具有合适的结构 如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π* π型、取代基为给电子基团 4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫? A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。 B.荧光猝灭:指荧光物质分子与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。 C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。 D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。 时间为10-12s 5.实时定量PCR与普通PCR的区别? 所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。具有重现性,误差小的特点。 传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量。加入内标后,可部分消除终产物定量所造成的不准确性。但即使如此,传统的定量方法也都只能算作半定量、粗略定量的

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

第4章第1节_叶绿素荧光参数及意义-v2

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而 光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能 量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

光合色素的荧光现象和磷光现象

光合色素的荧光现象和磷光现象 叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。叶绿素为什么会发荧光呢?当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)(图3-3)。叶绿素分子有红光和蓝光两个最强吸收区。如果叶绿素分子被蓝光激发,电子跃迁到能量较高的第二单线态;如果被红光激发,电子跃迁到能量较低的第一单线态。处于单线态的电子,其自旋方向保持原来状态,如果电子在激发或退激过程中自旋方向发生变化,该电子就进入能级较单线态低的三线态。由于激发态不稳定,迅速向较低能级 chl + h ────→chl* (3-6) 基态光子能量激发态 状态转变,能量有的以热的形式释放,有的以光的形式消耗。从第一单线态回到基态所发射的光就称为荧光。处在第一三线态的叶绿素分子回到基态时所发出的光为磷光。荧光的寿命很短,只有10-8~10-10s。由于叶绿素分子吸收的光能有一部分消耗于分子内部的振动上,发射出的荧光的波长总是比被吸收的波长要长一些。所以叶绿素溶液在入射光下呈绿色,而在反射光下呈红色。在叶片或叶绿体中发射荧光很弱,肉眼难以观测出来,耗能很少,一般不超过吸收能量的5%,因为大部分能量用于光合作用。色素溶液则不同,由于溶液中缺少能量受体或电子受体,在照光时色素会发射很强的荧光。 另外,吸收蓝光后处于第二单线态的叶绿素分子,其贮存的能量虽远大于吸收红光处于第一单线态的状态,但超过的部分对光合作用是无用的,在极短的时间内叶绿素分子要从第二单线态返回第一单线态,多余的能量也是以热的形式耗散。因此,蓝光对光合作用而言,在能量利用率上不如红光高。 叶绿素的荧光和磷光现象都说明叶绿素能被光所激发,而叶绿素分子的激发是将光能转变为化学能的第一步。现在,人们用叶绿素荧光仪能精确测量叶片发出的荧光,而荧光的变化可以反映光合机构的状况,因此,叶绿素荧光被称为光合作用的探针。

荧光和磷光的产生过程资料

学习资料 1.荧光和磷光的产生过程? 荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光 S0 激发态振动弛豫内转换振动弛豫发射荧光 磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光 S0 激发态振动弛豫内转换系间跨越振动弛豫发射荧光 2.激发光谱和发射光谱概念,有何异同? (1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长) (2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长) 同:都是给样品能量使之发光测量发光强度 异:控制的变量不同。 3.化合物荧光与结构的关系? a.具有一定的荧光量子产率 b.具有合适的结构 如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π* π型、取代基为给电子基团 4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫? A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。 B.荧光猝灭:指荧光物质分子与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。 C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。 D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。 时间为10-12s 5.实时定量PCR与普通PCR的区别? 所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。具有重现性,误差小的特点。 传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量。加入内标后,可部分消除终产物定量所造成的不准确性。但即使如此,传统的定量方法也都只能算作半定量、粗略定量的 仅供学习与参考

调制叶绿素荧光仪原理简介

调制叶绿素荧光仪调制叶绿素荧光仪原理简介 原理简介刘君华 (河北先河环保科技股份有限公司,河北,石家庄,050035ljh51@https://www.sodocs.net/doc/9a12771564.html,) 1)调制叶绿素荧光 调制叶绿素荧光全称脉冲-振幅-调制 (Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。 调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其测量快速、简单、可靠、且测量过程对样品生长基本无影响,目前已成为光合作用领域发表文献最多的技术。 2)调制叶绿素荧光仪的工作原理 1983年,WALZ 公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber 博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。 所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频率,检测器只记录与测量光同频的荧光,因此调制荧光仪允许测量所有生理状态下的荧光,包括背景光很强时。正是由于调制技术的出现,才使得叶绿素荧光由传统的“黑匣子”(避免环境光)测量走向了野外环境光下测量,由生理学走向了生态学。 所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1s)的强光关闭所有的电子门(光合作用被暂时抑制),从而使叶绿素荧光达到最大。饱和脉冲(Saturation Pulse,SP)可被看作是光化光的一个特例。光化光越强,PS II 释放的电子越多,PQ 处累积的电子越多,也就是说关闭态的电子门越多,F 越高。当光化光达到使所有的电子门都关闭(不能进行光合作用)的强度时,就称之为饱和脉冲。 打开饱和脉冲时,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,F 达到最大值。

简述荧光与磷光的产生原理及应用

简述荧光与磷光的产生原理及应用,并说明有机物结构是如何影响荧光的。 具有荧光性的分子吸收入射光的能量后,其中的电子从基态(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。处于各激发态的电子通过振动驰豫、内转移等无辐射跃迁过程回到第一电子激发单重态的最低振动能级。然后再由这个最低振动能级跃迁回到基态时,发出荧光。 由第一激发单重态的最低振动能级,有可能以系间窜跃方式转至第一激发三重态,再经过振动驰豫,转至其最低振动能级,由此激发态跃回至基态时,便发射磷光。 荧光与磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层间跃迁产生的;而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。 荧光主要用于元素及有机化合物的荧光测定,照明,印刷防伪技术,生化和医药方面等。 磷光分析主要用于测定有机化合物,如石油产品、多环芳烃、农药、药物等方面。 有机物结构对荧光的影响主要有以下方面:(1)跃迁类型:相对于n→π*跃迁,π→π* 跃迁能发出较强的荧光(较大的量子产率)。(2)共轭效应:增加体系的共轭度,荧光效率一般也将增大。(3) 刚性平面结构:多数具有刚性平面结构的有机分子具有强烈的荧光。(4)取代基效应:给电子基团使荧光增强,吸电子基团,会减弱甚至会猝灭荧光;卤素取代基随原子序数的增加而荧光降低;取代基的空间障碍对荧光也有影响;立体异构现象对荧光强度有显著的影响。 电镜题目 1、从电子显微镜可以得到哪些信息? 答:形貌、高分辨像、电子衍射图象、X射线能谱分析. 2、透射电子显微镜和扫描电子显微镜有何不同?它们分别适合什么样的样品? 答:TEM采用透过薄样品的电子束成像来显示样品内部组织形态与结构,可同时观察微观组织形态及分析材料的结构与成分;而SEM利用电子束在样品表面扫描激发出来的代表样品表面特征的信号成像,可观察样品表面形貌及做成分分析、成分分布. TEM适用于薄样品,SEM适用于厚样品. 3、为取高分辨真实像的TEM相片,制备试样应主意哪些问题? 答:TEM的试样制备是获取高分辨率真实像的前提,为了避免或减少电子穿透试样时的能量损失,从而减少色差,试样要制作得足够薄,一般需小于100 nm ;但又要尽可能保持试样原来状态.

荧光和磷光的产生过程

1.荧光和磷光的产生过程 荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光 S0 激发态振动弛豫内转换振动弛豫发射荧光 磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光 S0 激发态振动弛豫内转换系间跨越振动弛豫发射荧光 2.激发光谱和发射光谱概念,有何异同 (1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长) (2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长) 同:都是给样品能量使之发光测量发光强度 异:控制的变量不同。 3.化合物荧光与结构的关系 a.具有一定的荧光量子产率 b.具有合适的结构 如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π * π型、取代基为给电子基团 4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫 A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。 B.荧光猝灭:指荧光物质分子与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。 C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。 D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。 时间为10-12s 5.实时定量PCR与普通PCR的区别 所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。具有重现性,误差小的特点。 传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量。加入内标后,可部分消除终产物定量所造成的不准确性。但即使如此,传统的定量方法也都只能算作半定量、粗略定量的方法。

叶绿素荧光

叶绿素荧光叶绿素荧光作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因此通过研究叶绿素荧光来间接研究光合作用的变化是一种简便、快捷、可靠的方法。目前,叶绿素荧光在光合作用、植物胁迫生理学、水生生物学、海洋学和遥感等方面得到了广泛的应用。 1叶绿素荧光的研究历史 叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现,当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色¬¬——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并使用了“fluorescence”一词。 1874年,Müller发现叶绿素溶液稀释后,荧光强度比活体叶子的荧光强得多。尽管Müller提出叶绿素荧光和光合作用之间可能存在相反的关系,但由于他的实验没有对照,实验条件控制不严格,因此人们并没有将叶绿素荧光诱导(瞬变)现象的发现归功于Müller。 Kautsky是公认的叶绿素荧光诱导现象的发现者。1931年,Kautsky和Hirsch用肉眼观察并记录了叶绿素荧光诱导现象(Lichtenthaler,1992;Govindjee,1995)。他们将暗适应的叶子照光后,发现叶绿素荧光强度随时间而变化,并与CO2的固定有关。他们得到的主要结论如下:1)叶绿素荧光迅速升高到最高点,然后下降,最终达到一稳定状态,整个过程在几分钟内完成。2)曲线的上升反映了光合作用的原初光化学反应,不受温度(0℃和30℃)和HCN处理的影响。若在最高点时关掉光,则荧光迅速下降。3)荧光强度的变化与CO2的固定呈相反的关系,若荧光强度下降,则CO2固定增加。这说明当荧光强度降低时,较多的光能用于转变成化学能。4)奇怪的是(照光后)CO2的固定有一个延滞期,似乎说明“光依赖”的过程对CO2固定过程的进行是必需的。另一个未得到解释的现象是若在荧光诱导结束后关掉光,则荧光水平的恢复需要很长时间。在Kautsky的发现之后,人们对叶绿素荧光诱导现象进行了广泛而深入的研究,并逐步形成了光合作用荧光诱导理论,被广泛应用于光合作用研究。由于Kautsky的杰出贡献,叶绿素荧光诱导现象也被称为Kautsky效应(Kautsky Effect)。 2叶绿素荧光的产生及其量子产量 细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量子得到能量后,从基态(低能态)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,1fs=10-15s)内,通过振动弛豫向周围环境辐射热量,回到最低激发态。最低激发态的叶绿素分子可以稳定存在几纳秒(ns,1ns=10-9s)。 处于较低激发态的叶绿素分子可以通过几种途径释放能量回到稳定的基态。能量的释放方式有如下几种(图3.3)(Campbell et al.,1998;Roháček & Barták,1999;Malkin & Niyogi,2000):1)重新放出一个光子,回到基态,即产生荧光。由于部分激发能在放出荧光光子之前以热的形式逸散掉了,因此荧光的波长比吸收光的波长长,叶绿素荧光一般位于红光区。2)不放出光子,直接以热的形式耗散掉(非辐射能量耗散)。3)将能量从一个叶绿素分子传递到邻近的另一个叶绿素分子,能量在一系列叶绿素分子之间传递,最后到达反应中心,反应中心叶绿素分子通过电荷分离将能量传递给电子受体,从而进行光化学反应。以上这3个过程是相互竞争的,往往是具有最大速率的过程处于支配地位。对许多色素分子来说,荧光发生在纳秒级,而光化学发生在ps级,因此当光合生物处于正常的生理状态时,天线色素吸收的光能绝大部分用来进行光化学反应,荧光只占很小的一部分。

叶绿素荧光分析方法

叶绿素荧光分析方法 叶绿素荧光分析具有观测手续简便,获得结果迅速,反应灵敏,可以定量,对植物无破坏、少干扰的特点。它既可以用于叶绿体、叶片,也可以遥感用于群体、群落。它既是室内光合基础研究的先进工具,也是室外自然条件下诊断植物体内光合机构运转状况、分析植物对逆境响应机理的重要方法。现在人们可以通过叶绿素荧光分析估计量子效率、光合能力,利用荧光参数计算光合电子传递速率、胞间CO2浓度,并且试图利用荧光参数快速筛选遗传变异的植物。有人甚至预言,将来荧光分析可能会代替气体交换测定。20世纪80年代以来,调制荧光仪,特别是便携式荧光仪的商品化,使荧光分析在光合作用研究中得到这样广泛的应用,以至如果不懂荧光分析技术,便很难看懂近年的光合作用研究文献。 1.基本原理 光合机构吸收的光能有三个可能的去向:一是用于推动光化学反应,引起反应中心的电荷分离及后来的电子传递和光合磷酸化,形成用于固定、还原二氧化碳的同化力(ATP和NADPH);二是转变成热散失;三是以荧光的形式发射出来。由于这三者之间存在此消彼长的相互竞争关系,所以可以通过荧光的变化探测光合作用的变化(图4-1)。实际上,以荧光形式发射出来的光能在数量上是很少的,还不到吸收的总光能的3%。在很弱的光下,光合机构吸收的光能大约97%被用于光化学反应,2.5%被转变成热散失,0.5%被变成红色(在体内,叶绿京的荧光发射峰在685nm左右)的荧光发射出来;在很强的光下,当全部PSII反应中心关闭时,吸收的光能95%~97%被变成热,而2.5%~5.0%被变成荧光发射[l]。在体内,由于吸收的光能多被用于光合作用,叶绿素a荧光的量子产额(即量子效率)仅仅为0.03~0.06。但是,在体外,由于吸收的光能不能 图4-1叶绿素分子的光激发 被用于光合作用,这一产额增加到0.25~0.30[2]。在室温条件下,绝大部分荧光来自PS II 天线[1,3],而不是反应中心的叶绿素a分子[4,5]。这是因为反应中心的叶绿素分子仅占叶绿素总量的几百分之一。叶绿素荧光发射的高峰在685nm(天线色素)和695nm(反应中心)。在体内,决定荧光产额的主要因素是电子的第一个稳定的醌受体QA的氧化还原状态。实际上,在暗适应的健康叶片和良好的叶绿体,所有的QA都处于还原态时的最大荧光产额与所有的QA 都处于氧化态时的最小荧光产额之比大致为5~6[6]。然而,这个比值可以发生很大变化,取决于照光状态和一些处理。多种因素影响荧光强度:激发光强,反应中心对激发能的捕获和转化速率,激发能以热的形式耗散的程度和两个光系统间能量的分配等。当PS II的光化学反应被阻止时,最大荧光产额的减少是反应中心和天线热耗散增加的反映。由于可以测定完整叶片的荧光,叶绿素a荧光诱导动力学可以成为原位检测PS II重要步骤的极好的探针[5]。1.1 叶绿素荧光诱导动力学 当一片经过充分暗适应的叶片从黑暗中转入光下后,叶片的荧光产额会随时间发生规律性的

叶绿素荧光参数的意义

Fo 当PSII 反应中心都处于开放状态时的最小荧光。 Fm 暗适应后执行饱和脉冲当PSII 反应中心都处于关闭状态时的最大荧光产量 Fo’ 光下最小荧光 Fo’ = 1/(1/Fo-1/Fm+1/Fm’) Fm’光下执行饱和脉冲当PSII 反应中心都处于关闭状态时的最大荧光产量 F’ 执行饱和脉冲前的实时荧光产量。 Fv/Fm and Y(II) PSII 的最大量子产量(Fv/Fm)和实际量子产量(Y(II)) 这两个参数表示的都是PSII 将吸收的光能转化成化学能的效率。测Fv/Fm 前,样品必需经 过充分的暗适应以确保PSII 所有的反应中心都处于开放状态并且非光化学淬灭达到最小。 不同植物的暗适应时间不同,阴生叶片和阳生叶片的暗适应时间也不相同。 Y(II)反映的是光下叶片的实际光能转化效率。只有当照光强度(光化光)达到一定水平时 Y(II)的信息才能真实的反映光合的状态,因为在光强很弱时卡尔文碳同化过程可能无法正 常运转而Y(II)可能会比较高。 qP and qL 光化学淬灭系数 这两个参数表示的是PSII 中处于开放状态的反应中心所占的比例。其中qP 是基于沼泽模型的(puddle model,Schreiber et al. 1986 as formulated by van Kooten and Snel, 1990)。qL 是基于湖泊模型的(lake model, Kramer et al. 2004)。 qN and NPQ 非光化学淬灭参数 这两个参数都和基于跨膜质子梯度和玉米黄质的非光化学淬灭相关。 Y(NO) and Y(NPQ) 非光化学淬灭的量子产量 这两个是Kramer 等在2004 年提出的新参数。Y(NPQ)是指PS II 处调节性能量耗散的量子产量。若Y(NPQ)较高,一方面表明植物接受的光强过剩,另一方面则说明植物仍可以通过调 节(如将过剩光能耗散为热)来保护自身。Y(NPQ)是光保护的重要指标。Y(NO)是指PS II 处非调节性能量耗散的量子产量。若Y(NO)较高,则表明光化学能量转换和保护性的调节 机制(如热耗散)不足以将植物吸收的光能完全消耗掉。也就是说,入射光强超过了植物能 接受的程度。这时,植物可能已经受到损伤,或者(尽管还未受到损伤)继续照光的话植物 将要受到损伤。Y(NO)是光损伤的重要指标。Y(II)+Y(NO)+Y(NPQ)=1

相关主题