搜档网
当前位置:搜档网 › 第二章 晶体的结合

第二章 晶体的结合

第二章 晶体的结合
第二章 晶体的结合

第二章 晶体的结合

1.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。

解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。 2.有人说“晶体的内能就是晶体的结合能”,对吗

解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N 个原子在自由时的总能量之差,即0E E E N b -=。(其中b E 为结合能,N E 为组成这晶体的N 个原子在自由时的总能量,0E 为晶体的总能量)。而晶体的内能是指晶体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。 3.当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的

解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先引力大于斥力,总的作用为引力,0)(r f ,而相互作用势能)(r u 也开始急剧增大。 4.为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好

解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、导电性和导热性都较好。

5.有一晶体,在平衡时的体积为0V ,原子之间总的相互作用能为0U ,如果原子间相互作用能由下式给出:

n

m

r r r u β

α

+

-

=)(,

试证明弹性模量可由[])9/(00V mn U 给出。

解:根据弹性模量的定义可知

022V V dV U d V dV dP V K ????

??=???

??-= …………………(1) 上式中利用了dV

dU

P -

=的关系式。 设系统包含N 个原子,则系统的内能可以写成

)(2)(2n m r

r N r u N U β

α+-==

(2)

又因为可把N 个原子组成的晶体的体积表示成最近邻原子间距r 的函数,即

3r N Nv V β== (3)

上式中β为与晶体结构有关的因子(如面心立方结构,2/2=β)。

又因为

211231

2)(31)(

r N r n r m N dr dU Nr dV dU n m R ββαβ???? ??-==++ ………………(4)0

011222(231)(r r n m V r n r m N r N dr d dV dr dV U d =++????????????-?=βαβ ??

?

???+-+-?=n m n m r n r m r n r m N V 0002022

033291βαβα……………(5) 考虑平衡条件0)(

0=r dV

dU

,得n m r n r m 00βα=,那么(5)式可化为

??

?

???+-?=??????+-?=n m n m V r n n r m m N V r n r m N V dV U d 00200202222291291)(00βαβα )(92929102000

200020U V mn

r r N V mn r m n r n m N V n m m n -=??????+-?-=??????+-?=

βααβ ……(6) 将(6)式代入(1)式得:

[])9/(90002

00V mn U U V mn

V K =-?

=

6.上题表示的相互作用能公式中,若2=m ,10=n ,且两原子构成稳定分子时间距为

10103-?m ,离解能为4eV ,试计算α和β之值。

解:在平衡位置时有

K E r

r

r u -=+

-

=100

20

)(β

α

(1)

0102)(110

30=-=r r dr r du β

α …………(2) 将离解能4=k E eV 和10

010

3-?=r m 0

3A

=代入(1)和(2)式可得:

19105.4-?=αeV ·m 2,96109.5-?=βeV ·m 10。

7. 设某晶体每对原子的势能具

r

B r A -9

的形式,平衡时m r 10

0108.2-?=,结合能为J U 19108-?=,试计算A 和B 以及晶体的有效弹性模量。

解:由题意有以下方程成立:

???????=+-=-=-0

9)(201000

900

r B

r A dr

du U r B

r A r 把0r ,U 的具体数值代入上述方程组,即得:

???

????=?+?-?-=?-?-----0)108.2()108.2(9108108.2)108.2(210101019

10

910B

A B A 由此可得:9105

10

0578.1m J A ??=-,m J B ??=-281052.2

该晶体的有效弹性模量为:

0)(220V dV

u

d V K =

又∵ 3

r N Nv V β==

(上式中N 表示晶体中所含的原子个数,β表示与晶体结构有关的因子)

0)(91220r dr

u

d Nr K β==

)290(91301100r B r A Nr -β=11102797.391??N β 晶体的体弹性模量为×1010

Pa ,若要使晶体中相邻离子间距缩小%,问需要施加多大的力。

解:设KCl 晶体内包含N 个原胞,综合考虑到库仑吸引能和重叠排斥能,则系统的内能可以写成

??

?

???+-=n r B r A N U (1)

此外,由于KCl 每个原胞体积为3

2r ,则晶体的总体积为

3

2Nr V = (2)

其中(1)和(2)式中的r 都指KCl 晶体中相邻K +

和Cl -

之间的距离。 根据体弹性模量的定义有:

022V V dV U d V dV dP V K ????

??=???

??-= …………………(3) 设平衡时晶体内相邻离子间的距离为0r ,则平衡体积3

002Nr V =,那么平衡时的体弹性

模量为0

22V dV U d V K ???? ??=。又根据KCl 晶体内能表达式(1)式及平衡条件0)(0=V dV dU

,可得

01020=-+n r nB r A 或1

01-=n r n

A B 。 将(1)和(2)式代入(3)式,并利用平衡条件可得

33302r r n r

B

r A dr d dr d r K =???

?????? ??+-??? ??= 0

0022020181118r r n r r n r r B r A dr d r r B r A dr d r dr d r ==??? ??+-+??? ??+-??? ??= 上式中的前一项由于平衡条件而等于0,后一项求微商后利用平衡条件化简得 4

020300

18)1()1(2181r A

n r B n n r A r K n -=??

????++-=

+

由此知1

184

0-=n Kr A

当使晶体中相邻离子间距缩小%时,即使相邻离子间距变为00195.0%)5.01(r r r =-=,此时需施加的外力为

)195

.01(95.0120211211

-=+-

=-

=-+=n n r r r A r nB r A dr

du F )195

.01

()1(95.0181

220--=-n n Kr 查书中表及表可知,0.9=n ,10

01014.3-?=r m ,代入上式可得

9

1017.2-?=F N

9.由N 个原子(离子)所组成的晶体的体积可写成3

r N Nv V β==。式中v 为每个原子(离子)平均所占据的体积;r 为粒子间的最短距离;β为与结构有关的常数。试求下列各种结构的β值:

(1) 简单立方点阵; (2) 面心立方点阵; (3) 体心立方点阵; (4) 金刚石点阵; (5) NaCl 点阵;

解:(1)在简单立方点阵中,每个原子平均所占据的体积3

3

r a v ==,故1=β;

(2)在面心立方点阵中,每个原子平均所占据的体积3

332

2)2(4141r r a v ===

,故2

2

=

β; (3)在体心立方点阵,每个原子平均所占据的体积3339

34)32(2121r r a v ===

,故9

3

4=

β;

(4)在金刚石点阵中,每个原子平均所占据的体积3339

38)34(8181r r a v ===

,故9

3

8=

β; (5)在NaCl 点阵中,每个原子平均所占据的体积333)2(8

1

81r r a v ===

;故1=β。

10.对于由N 个惰性气体原子组成的一维单原子链,设平均每2个原子势为:

??????-=6120)(2)()(x x

u x u σσ

求:(1)原子间的平均距离0x ; (2)每个原子的平均晶格能; (3)压缩系数k 。

解:(1)在平衡时,有下式成立

06212)

(7

06130

1200

=???

????+-==x x u dx

x du x x σσ ……………(1) 由上式可得σ=0x

(2)设该N 个惰性气体原子组成的一维单原子链的总的相互作用势能为)(x U ,那么有

???

???

??-=

∑611210)(2)(2

)(j j j x x u N

x U σσ ………………(2) 设X 为2个原子间的最短距离,则有X a x j i =1,那么(2)式可化为 ??

????-=

612

)()(2

)(X B X A Nu X U σσ ………………(3) 其中(3)式中00048.2)31

211(2112

1212≈+++?==

∑ j j

a A , 07809.4)3

1

211(2212666≈+++??==∑

j

j a B 。 那么每个原子的平均晶格能为

06120

0)(07809.4)(00048.22

)(u u

N x U ≈?????

?

--=-

=σσσσε (3)根据压缩系数的定义可知 )(1

)(1112

22

dX dU dX N d Nx dV U d V dV dP V dP dV V k ==??

? ??-=?-

= ……(4) 将(3)式代入(4)式得:

86

141202707607809.4131200048.221u X X Nu N NX k X σσσσ≈??

??

?

??

???

????????????-???==

11.若NaCl 晶体的马德隆常数Μ=,晶格常数a=0

A ,幂指数n=9。晶体拉伸而达到稳定极限时,求:

(1) 离子间距增加多少 (2) 负压强的理论值是多大

解:(1)设该NaCl 晶体的含有N 个离子,则其相互作用势能为

???

?

??+-=n r B r Mq N r U 0242)(πε ………………(1) 上式中的r 指NaCl 晶体中相邻两离子间的距离。

又设NaCl 晶体处于平衡状态时,相邻两离子间的距离为0r ,则有a r 2

1

0=。 由平衡条件可知

042

)(0

12

02=???

???-==+=r r n r r r nB r Mq N dr

r dU πε ……………(2) 由(2)式可得:1

0024-=n r n

Mq B πε。

当晶体拉伸而达到稳定极限时,此时相邻离子间的引力达到最大值,即有

0)1(422

)

(1

1

2

3022

2=???

???++-==+=r r n r r r B n n r Mq N dr r U d πε ……(3) 将1

0024-=n r n

Mq B πε代入(3)式可得

45.32

64

.5219211

91

01

1

1=??

?

? ??+=?

?

?

??+=--r n r n 0A

因而离子间距增加了63.082.245.301=-=-=?r r r 0

A (2)由(1)问可求出晶体拉伸稳定时负压强的理论值为

1

1r r dr dU N P =???

??-=???

? ???--=-+100211210241421n n r Mq r r Mq πεπε

???

?

???????????-???????-=+--------191012191021921012219)1045.3(10854.814.34)1082.2()109.1(75.1)1045.3(10854.814.34)109.1(75.12191091.1-?-=Pa

12.已知有N 个离子组成的NaCl 晶体,其结合能为:

)4(2)(02n r

r e N r U β

πεα--=。

若排斥项

n

r

β

由ρ

r

ce

-

来代替,且当晶体处于平衡时,这两者对相互作用势能的贡献相同。试

求出n 和ρ的关系。

解:由平衡条件可知

0)4(2)(1

20020=+--=+n r r n r e N dr r dU β

πεα ………………(1) 由(1)式可求得

1

12

004-??

? ??=n e n r αβπε (2)

又由题意有

ρ

β

r n ce

r

-

= (3)

将(2)式代入(3)式可得: 0

ln ln ln r n C r ---

=βρ

?

?

?

??---??? ??-=-201

12

04ln 1ln ln 4e n n n C e n n αβπεβαβπε

13.假定在某个离子晶体中,某离子间的空间能够被一种介电常数为ε的均匀流体渗满而不至于影响离子间的排斥作用,但库仑相互作用减少为原来的ε/1。计算这种情况下NaCl 的点阵常数和结合能。

解:由题意可知,当NaCl 晶体被介电常数为ε的均匀流体渗满时,其相互作用势能为:

)4(2)(02n r

B r Mq N r U --=επε …………………

(1) 由平衡条件可知有

0)4(2)(1

20020=+--=+n r r nB

r Mq N dr r dU επε ……………(2) 由(2)式可求得NaCl 晶体处于平衡状态时,相邻两个离子间的距离为

1

12004-?

??

?

??=n Mq nB r επε

那么NaCl 的点阵常数为

1

1200422-???

?

??==n Mq nB r a επε

结合能为

??

?????+?-=-=---+---1

21102111020)()4()()4(2)(n n n n n n b nB Mq nB Mq N r U E επεεπε

14.考察一条直线,其上载有q ±交错的N 2个离子,最近邻之间的排斥能为

n R

A

(1)试证明在平衡时,

)1

1(42ln 2)(0020n

R Nq R U --=πε

(2)令晶体被压缩,使)1(00δ-→R R 。试证明在晶体被压缩过程中,外力做功的主项对每离子平均为

22

1

δC 。其中, 0

0242

ln )1(R q n C πε-=

解:(1)线型离子晶体的结合能为

???

?

????-±-=∑∑j n j n j j a A R a R q N R U 1

)1(4)(02πε )'

4(02n R

A R Mq N --=πε ……………………

(1) 其中(1)式中的)1

(∑±

=

j

j

a M ,即为线型离子晶体的马德隆常数,等于2ln 2;∑

=j

n j

a A A ' 当晶体处于平衡时,有平衡条件:

0)'

4()

(1

20020

=+--=+n R R nA R Mq N dR

R dU πε …………(2) 由(2)式可得

1

0024'-=n R n

Mq A πε ………………………

(3) 将(3)式代入(1),并将2ln 2=M 也代入(1)可得:

)11(42ln 2)(0020n

R Nq R U --=πε

(2)使)1(00δ-→R R ,当δ很小时,在0R R =附近把)(R U 展开为泰勒级数为

-+

-

=-==2022000)()(21)

()()]1([0

δδδR dR R U d R dR

R dU R U R U R R R R (4)

上式中根据平衡条件有

0)(0

==R R dR

R dU ,另有

)1(4'4)(3

02

12022

20

-=???

?

???????? ??-==+=n R Mq N R nA R Mq N dR d dR R U d R R n R R πεπε 离子晶体被压缩δ02NR l =?,外力所作的功的主项(略去二级以上微量)得 )()]1([00R U R U l F --=??δ

2

03

002)()1(421δπεR n R Mq N ?-= 22002'21

)1(42ln 221δδπεC n R Nq =-?=

上式中,)1(42

ln 2'0

02-=n R Nq C πε

压缩量δ02NR l =?是属于N 2个离子所共有的,即N 2个长度为0R 的线段的总压缩量为l ?。因此,外力对一个离子所做的功W 平均为

222

1

2'212δδC N C N l F W ==??=

上式中,)1(42

ln 2'0

02-==n R q N C C πε。

第二章金属的晶体结构与结晶(精)

第二章金属的晶体结构与结晶 教学目的及要求 通过本章的学习,使学生掌握常用纯金属的结构特点和性能特点,建立金属材料结构与性能之间的关系。 主要内容 1.材料的结合方式 2.金属的晶体结构与结晶 学时安排 讲课2学时。 教学重点 1.金属的三种典型的晶体结构 2.晶体缺陷及其对性能的影响 3.纯金属的结晶过程 教学难点 1.金属材料的晶体结构 2.各类缺陷对结构及性能的影响 第一节纯金属的晶体结构 一、晶体结构的基本概念 晶体结构:指在晶体内部,原子、离子或原子集团规则排列的方式。晶体结构不同,其性能往往相差很大。 晶格:为了便于分析研究,通常把将晶体中实际存在的原子、离子或原子集团等物质质点,抽象为空间中纯粹的几何点,而完全忽略它的物质性,这些抽象的几何点称为阵点。用假想的直线把这些阵点连接起来,得到周期性规则排列的三维空间格子称为晶格。 晶胞:组成晶格的能反映其特征和规律的最基本几何单元,称为晶胞。晶格可以看作是由许多大小和形状完全相同的晶胞紧密地堆垛在一起而成的。 晶格常数:晶胞各棱边的长度用a、b、c表示,称为晶格常数或点阵常数,其大小通常以埃为计量单位。晶胞各边之间的相互夹角分别以α、β、γ表示。a、b、c、α、β、γ称为晶胞的六个参数。 在研究晶体结构时,通常以晶胞作为代表来考查。

配位数和致密度:表示晶格中原子排列的紧密程度。 配位数:指晶格中与任一原子处于相距最近并距离相等的原子数目; 致密度(K):指晶胞中原子排列的致密程度,即晶胞中原子所占的体积与晶胞体积(V)的比值,比值K越大,致密度越大。 二、金属中常见的晶体结构类型 三种典型晶体结构特征: 晶体结构与材料性能:(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的金属较差。 第二节实际金属中的晶体缺陷 一、常见晶体缺陷及分类 晶体缺陷:实际晶体中排列不规则的区域称为晶体缺陷。 分类:按空间尺寸分为三种。 1.点缺陷。不规则区域在空间三个方向上的尺寸都很小,主要是空位、置换原子、间隙原子。 2.线缺陷。不规则区域在一个方向的尺寸很大,在另外两个方向的尺寸都很小,主要是位错。 3.面缺陷:不规则区域在两个方向的尺寸很大,在另外一个方向的尺寸很小,主要是晶界和亚晶界。 二、晶体缺陷对晶体性能的影响 1.点缺陷周围晶格发生畸变,材料的屈服强度提高,塑性韧性下降,电阻增加。

无机材料科学基础___第二章晶体结构

第 2 章结晶结构 一、名词解释 1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体 2.空间点阵与晶胞: 空间点阵是几何点在三维空间内周期性的重复排列 晶胞:反应晶体周期性和对称性的最小单元 3.配位数与配位多面体: 化合物中中心原子周围的配位原子个数 成配位关系的原子或离子连线所构成的几何多面体 4.离子极化: 在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶: 同一物质在不同的热力学条件下具有不同的晶体结构 化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构 6.正尖晶石与反尖晶石: 正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。 反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。 二、填空与选择 1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。 2.空间点阵是由 C 在空间作有规律的重复排列。( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。 4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为 6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 , 八面体空隙数为 12 ,四面体空隙数为 6 。 5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。

1第二章 晶体的结合答案(共90道题)

目录 第二章晶体的结合题目(共90道题) (2) 一、名词解释(共12道题) (2) 二、简答题:(共33道题) (3) 三、作图题(共2道题) (12) 四、证明题(共8道题) (13) 五、计算题(共35道题) (22)

第二章晶体的结合题目(共90道题) 一、名词解释(共12道题) 1.晶体的结合能 答:一块晶体处于稳定状态时,它的总能量(动能和势能)比组成此晶体的N个原子在自由状态时的总能量低,两者之差就是晶体的结合能。 2.电离能 答:一个中性原子失去一个电子所需要的能量。 3.电子的亲和能 答:指一中性原子获得一个电子成为负离子时所放出的能量。 4.电负性 答:描述化合物分子中组成原子吸引电子倾向强弱的物理量。 5.离子键 答:两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.共价键 答:量子力学表明,当两个原子各自给出的两个电子方向相反时,能使系统总能量下降,从而使两个原子结合在一起,由此形成的原子键 合称为共价键(原子晶体靠此种键相互结合)。 7.范德瓦尔斯键 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用称为范德瓦耳斯力。 8.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 9.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子

的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 10.葛生力 答:葛生力是极性分子的永久偶极矩间的静电相互作用。 11.德拜力 答:德拜力是非极性分子被极性分子电场极化而产生的诱导偶极矩间的相互作用。 12.伦敦力 答:伦敦力:非极性分子的瞬时偶极矩间的相互作用。 二、简答题:(共33道题) 1.试解释一个中性原子吸收一个电子一定要放出能量的现象. 答:当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一个电子一定要放出能量。 2.何理解电负性可用电离能加亲和能来表征? 答:使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱. 一个中性原子获得一个电子成为负离子所释放出来的能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征原子的电负性是符合电负性的定义的。

第二章材料中的晶体结构

第二章材料中的晶体结构 基本要求:理解离子晶体结构、共价晶体结构。掌握金属的晶体结构和金属的相结构,熟练掌握晶体的空间点阵和晶向指数和晶面指数表达方法。 重点:空间点阵及有关概念,晶向、晶面指数的标定,典型金属的晶体结构。难点:六方晶系布拉菲指数标定,原子的堆垛方式。 §2.1 晶体与非晶体 1.晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 2. 非晶体:非晶体在整体上是无序的;近程有序。 3. 晶体的特征 周期性 有固定的凝固点和熔点 各向异性 4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”) 5.晶体与非晶体的相互转化 思考题: 常见的金属基本上都是晶体,但为什么不显示各向同性? §2.2 晶体学基础 §2.2.1 空间点阵和晶胞 1.基本概念 阵点、空间点阵 晶格 晶胞:能保持点阵特征的最基本单元

2.晶胞的选取原则: (1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。 3. 描述晶胞的六参数 §2.2.2 晶系和布拉菲点阵 1.晶系 2. 十四种布拉菲点阵 晶体结构和空间点阵的区别 §2.2.3 晶面指数和晶向指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。 1.晶向指数的标定 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边

2021年固体物理 第二章 晶体的结合

第二章晶体的结合 一、 欧阳光明(2021.03.07) 二、填空体 1. 晶体的结合类型为:共价结合、离子结合、分子结合、金属结合和氢键结合。 2. 共价结合的特点方向性和饱和性。 3. 晶体中原子的相互作用力可分为两类吸引力和排斥力。 4. 一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。 5. 金属具有延展性的微观根源是金属原子容易相对滑动。 6. 石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。 7. GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。 二、基本概念 1. 电离能 始原子失去一个电子所需要的能量。 2.电子的亲和能 电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。 3.电负性 描述化合物分子中组成原子吸引电子倾向强弱的物理量。

4.共价键 原子间通过共享电子所形成的化学键。 5.离子键 两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.范德瓦尔斯力 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。 7.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 8.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 三、简答题 1.共价结合为什么有“饱和性”和“方向性”? 答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这

晶体场理论

§3-2 晶体场理论 ㈠ 晶体场模型 晶体场理论的基本观点:络合物的中心原子(或离子)和周围配体之间的相互作用是纯粹的静电作用。 ? 这种化学键类似于离子晶体中正、负离子间的静电作用,不具有共价键的性质。 在自由的过渡金属离子中,5个d 轨道是能量简并的,但在空间的取向不同。下面的角度分布图画出了各个d 轨道的空间取向, x y d x y x z d x z y z d y z x y d x 2 -y 2 x z d z 2 在电场的作用下,原子轨道的能量升高。 ① 在球形对称的电场中,各个d 轨道能量升高的幅度一致。 能量自由原子中的d 轨道 球对称电场中原子中的d 轨道 ② 在非球形对称的电场中,由于5个d 轨道在空间有不同取向,根据电场的对称性不同,各轨道 能量升高的幅度可能不同,即,原来的简并的d 轨道将发生能量分裂,分裂成几组能量不同的d 轨道。配体形成的静电场是非球对称的。 配位场效应:中心原子(或离子)的简并的d 轨道能级在配体的作用下产生分裂。 ㈡ 晶体场中的 d 轨道能级分裂 ⑴ 正八面体场(O h )中的d 轨道能级分裂 ① d 轨道的分裂 六个配体沿 x,y,z 轴的正负6个方向分布,以形成电场。配体的孤对电子的负电荷与中心原子d 轨道中的电子排斥,导致d 轨道能量升高。 ? 如果将配体的静电排斥作用进行球形平均,该球形场中,d 轨道能量升高的程度都相同,为E s 。

? 实际上各轨道所受电场作用不同, d z 2和d x 2-y 2的波瓣与六个配体正对,受电场的作用大,因此能量的升高程度大于在球形场中能量升高的平均值。而d xy 、d yz 、d xz 不与配体相对,能量升高的程度相对较少。 自由原子 xy yz xz d x 2-y 2d z 2 (d g 或e g )(d e 或t 2g ) 高能量的d z 2和d x 2-y 2轨道(二重简并)统称为d g 或e g 轨道;能量低的d xy 、d yz 、d xz 轨道(三重简并)统称为d e 或t 2g 轨道。前者是晶体场理论所用的符号,后者是分子轨道理论所用的符号。 e g 和t 2g 轨道的能量差,或者,电子从低能d 轨道进入高能d 轨道所需要的能量,称为分裂能,记做D 或10D q 。D q 是分裂能D 的1/10。八面体中的分裂能记做D O 。 ② d 轨道的能量 量子力学指出,在分裂前后,5个d 轨道的总能量不变。以球形场中d 轨道的能量为零点,有 ?? ???=+D =-03222g g g g t e O t e E E E E 解方程组,得到分裂后两组d 轨道的能量分别为 ??????? -=D -==D =q O t q O e D E D E g g 452 6532 ⑵ 正四面体场(T d )中的d 轨道能级分裂 ① d 轨道的分裂 坐标原点位于上图所示的立方体(红色线条)的中心,x,y,z 轴分别沿立方体的三条边方向。配体的位置如上图所示,形成正四面体场。 ? 在正四面体场中,d xy 、d yz 、d xz 离配体近,受电场的作用大,因此能量的升高程度大;而d z 2和d x 2-y 2 的能量则较低。 自自自自 自自自 x 2-y 2z 2 (d g 自e ) (d e 自t 2) 正四面体场中的分裂能记做D T 。 ? 正四面体场中只有四个配体,而且金属离子的d 轨道未直接指向配体,因而,受配体的排斥作用不如在八面体中那么强烈,两组轨道的差别较小,其分裂能D T 只有D O 的4/9。

固体物理 第二章 晶体的结合知识讲解

第二章晶体的结合 一、填空体 1. 晶体的结合类型为:共价结合、离子结合、分子结合、金属结合和氢键结合。 2. 共价结合的特点方向性和饱和性。 3. 晶体中原子的相互作用力可分为两类吸引力和排斥力。 4. 一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。 5. 金属具有延展性的微观根源是金属原子容易相对滑动。 6. 石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。 7. GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。 二、基本概念 1. 电离能 始原子失去一个电子所需要的能量。 2.电子的亲和能 电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。 3.电负性 描述化合物分子中组成原子吸引电子倾向强弱的物理量。 4.共价键 原子间通过共享电子所形成的化学键。 5.离子键 两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.范德瓦尔斯力 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。 7.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 8.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 三、简答题 1.共价结合为什么有“饱和性”和“方向性”? 答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这个特性称为共价键的饱和性。 方向性:两个原子在以共价键结合时,必定选取尽可能使其电子云密度为最大的方位,电子云交迭得越厉害,共价键越稳固。这就是共价键具有方向性的物理本质。

第二章 晶体的结合知识分享

第二章 晶体的结合 1.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。 2.有人说“晶体的内能就是晶体的结合能”,对吗? 解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N 个原子在自由时的总能量之差,即0E E E N b -=。(其中b E 为结合能,N E 为组成这晶体的N 个原子在自由时的总能量,0E 为晶体的总能量)。而晶体的内能是指晶体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。 3.当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的? 解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先引力大于斥力,总的作用为引力,0)(r f ,而相互作用势能)(r u 也开始急剧增大。 4.为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好? 解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、导电性和导热性都较好。 5.有一晶体,在平衡时的体积为0V ,原子之间总的相互作用能为0U ,如果原子间相互作用能由下式给出: n m r r r u β α + - =)(, 试证明弹性模量可由[])9/(00V mn U 给出。 解:根据弹性模量的定义可知 022V V dV U d V dV dP V K ???? ??=??? ??-= …………………(1) 上式中利用了dV dU P - =的关系式。

第二章晶体与晶体结构小结

小结 第二章晶体与晶体结构 内容: 金属的晶体结构: 合金的晶体结构 实际金属的晶体结构 第一节金属的晶体结构 晶体与非晶体 1. 晶体:指原子呈规则、周期性排列的固体。常态下金属主要以晶体形式存在。晶体具有各向异性。 非晶体:原子呈无规则堆积,和液体相似,亦称为“过冷液体”或“无定形体”。在一定条件下晶体和非晶体可互相转化。 2. 区别 (a)是否具有周期性、对称性 (b)是否长程有序 (c)是否有确定的熔点 (d)是否各向异性 3金属的晶体结构 晶体结构描述了晶体中原子(离子、分子)的排列方式。 1)理想晶体——实际晶体的理想化 ·三维空间无限延续,无边界 ·严格按周期性规划排列,是完整的、无缺陷。 ·原子在其平衡位置静止不动 2)理想晶体的晶体学抽象 (晶体)空间规则排列的原子→刚球模型→晶格(刚球抽象为晶格结点,构成空间格架)→晶胞(具有周期性最小组成单元)。 晶体学参数:a,b,c,α,β,γ

晶格常数:a,b,c 晶系:根据晶胞参数不同,将晶体分为七种晶系。 90%以上的金属具有立方晶系和六方晶系。 立方晶系:a=b=c,α=β=γ=90? 六方晶系:a1=a2=a3≠ c, α=β=90?, γ=120? 原子半径:晶胞中原子密度最大方向上相邻原子间距的一半。 晶胞原子数:一个晶胞内所包含的原子数目。 配位数:晶格中与任一原子距离最近且相等的原子数目。 致密度:晶胞中原子本身所占的体积百分数。 二.常见的金属晶格 晶胞晶体学参数原子半径晶胞原子数配位数致密度 2 8 68% BCC a=b=c,α=β =γ=90o FCC a=b=c, α= 4 12 74% β=γ=900 HCP a=b c, a/2 6 12 74% c/a=1.633, α =β=90o, γ =120o 第二节实际金属的晶体结构 理想晶体+晶体缺陷——实际晶体 实际晶体——单晶体和多晶体 单晶体:内部晶格位向完全一致,各向同性。 多晶体:由许多位向各不相同的单晶体块组成,各向异性。

第二章 晶体结构

晶体结构分类方法

(B) 2.1 符号中的第一个大写字母表示结构的类型,后面的数字为第个大写字母表示结构的类型后面的数字为顺序号,不同的顺序号表示不同的结构,例如A1是铜型结 结构等。 构,B2是CsCl型结构等,C3是FeS 2

Pearson符号 它所属的布喇菲点阵类型(例如P、I、F、C等),第三个数 等) 字表示单胞中的原子数。 2.2 金属单质的晶体结构 在元素周期表中,共有70多种金属元素。

由于金属键不具有饱和性和方向性,使金属的晶体结构倾向配位数(

将用原子刚性球模型讨论每个单胞所含的原子数以及这些构中的间隙等。 2.2.1 面心立方结构 结构符号是A1,Pearson 符号是c F4。 原子坐标为0 0 0,0 1/2 1/2,1/2 0 1/2和1/2 1/2 0 每个晶胞含4个原子 最紧密排列面是{111},密排方向 是<110>。原子直径是a/2<110>的 长度,即 面心立方结构的晶胞体积为a 3, 晶胞内含4个原子,所以它的致密 度η为4 2a r =423443443 3 33? ??? ????×=×=ππηa r 每个原子有个最近邻原子,它的 配位数(CN )是12。 74 .062 ==πa a

面心立方结构的最密 排面是{111},面心立 方结构是以{111}最密 排面按一定的次序堆 垛起来的。 第一层{111}面上有两个 可堆放的位置:▲和▼位 可堆放的位置▲和▼位 置,在第二层只能放在一 种位置,在面上每个球和 下层3个球相切,也和上 层3个球相切。 第一层为A,第 二放在B 位置, 第三层放在C 位 置,第四层在 置第四层在 放回A位置。 {111}面 按…abcabc… 顺序排列,这 就形成面心立 方结构。

第二章晶体结构

第二章 晶体结构 2.1 (1)证明:如图所示,六角层内最近邻原子间距为a ,而相邻两层间的最近邻原子间距为: ( )2 1 2 2 4 3 c a d +=, 当a d =时构成理想的密堆六角结构,此时有: ( )2 1 2 2 4 3 c a a +=, 由此解出,() 633.138 2 1==a c (2)解:(2)体心立方每个单胞包含2个基元,一个基元所占的体积为 23 c c a V = , 单位体积内的格点数为. 1 Vc 六角密堆积每个单胞包含6个基元,一个基元所占的体积为 3 2 1 222 23843436/323a a a c a c a a V s = ? ?? ???==???? ? ????= 因为密度不变,所以 s c V V 11=,即:3 3 2 22/a a c = nm a a c s 377.02 /6 1== nm a c s 615.0633.1== 2.2证明: 设简单六角布拉菲格子基矢如图示 :

∧ ∧∧ ∧ =+ = =z c a y a x a a x a a 321, 2 32 , 则其倒格子的三个基矢为 ()( )( ) ∧ ∧ ∧∧= == ?=???? ??-=?=z c b y a a a b y x a a a b ππ ππ ππ 223322233223 2133 211323 211 另知21,b b 的夹角为120度,且 a 34π= =,2313,b b b b ⊥⊥ 故简单六角布拉菲格子的倒格子仍为简单六角,倒格子的晶格常数分别为 a c 34, 2ππ,倒格 子相对于正格子绕c 轴旋转30度,(如图中标出321,,b b b 更清晰) 2.3 体心立方

第二章 晶体结构2.1

第二章 晶体结构 2.1 晶体结构 1 晶格和基元 理想晶体中原子排列是十分规则的,主要体现是原子排列具有周期性,或者称为是长程有序的。非晶体则不具有长程有序的性质,但是在非晶体中原子排列也不是杂乱无章、完全无序的,仍然保留有原子排列的短程序。1984年在实验中发现了一类和晶体、非晶体都不相同的固体,在这类固体中发现了已经证明在晶体中不可能存在的五重对称轴,使人们想到介于晶体和非晶体之间的固体,称为准晶体。在这一章我们首先讨论有关晶体的问题。 所有晶体的结构用晶格来描述,晶格是一种数学上的抽象,它是由数学上的几何点在空间有规律地作周期性的无限重复分布构成的。这种晶格的每一个格点上附有一群完全相同的原子,这样一个完全相同的原子群称为基元。当原子基元以相同的方式安置在每一个格点上,就构成了晶体结构。简单地说晶格加基元就形成晶体结构。由无数的小单晶体无规则地结合成的大晶体叫多晶体。 2 原胞和基矢 所有晶格的共同特点是具有周期性,通常用原胞和基矢来描述晶格的周期性,晶格的原胞 (Primitive cell) 是指一个晶格最小的周期性单元,对三维晶格来说是可以一个平行六面体,对二维晶格可以是一个平行四边形。原胞的选取是不唯一的。原则上讲只要是最小周期性单元都可以。判断最小周期性单元的标准只要考察这个重复单元中是否只包含一个格点。但是实际上各种晶格结构已经有习惯的原胞选取方式。晶格基矢是指原胞的边矢量,一般用a 1, a 2, a 3表示。原胞的体积为: Ω=a 1 ? a 2 ? a 3 (2.1.1) 简单立方晶格的立方单元就是最小的周期性单元,通常就选取它作为原胞。它的三个基矢为: ??? ??===k a j a i a a a a 3 21 (2.1.2) 体心立方晶格和面心立方晶格的立方单元都不是最小的周期性单元。在体心立方晶格中,通常由一个立方顶点到最近的三个体心得到三个晶格基矢: ()()()??? ? ? ???? -+=-+=-+=j i k a i k j a k j i a 222 3 21a a a (2.1.3) 以这三个晶格基矢为边的平行六面体就是相应的体心立方的原胞。 在面心立方晶格中,通常由一个立方顶点到三个相邻的面心的矢量作为晶格基矢: () ()() ??? ? ? ???? += += +=i k a k j a j i a 2 22 321a a a (2.1.4) 以这三个晶格基矢为边的平行六面体就是相应的面心立方的原胞。 图2.1.1 体心立方和面心立方晶格的单胞和原胞 作由晶格原点出发的所有晶格矢量的垂直平分面,这些垂直平分面所封闭的包含晶格原点的最小空间,称为Wigner -Seitz 原胞。体心立方和面心立方晶格的Wigner -Seitz 原胞如图1.1.2所示。

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

工程材料习题集参考答案(第二章)汇编

习题集部分参考答案 2金属的晶体结构 思考题 1.晶体和非晶体的主要区别是什么? 答:晶体和非晶体的区别在于内部原子的排列方式。晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。因为排列方式的不同,性能上也有所差异。晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。 2.何为各向异性? 答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。 3.为什么单晶体呈各向异性,而多晶体通常呈各向同性? 答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。 对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。 4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义? 答:晶体缺陷是指金属晶体中原子排列的不完整性。常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。 点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。过饱和的点缺陷还可以提高材料的强度。 线缺陷是各种类型的位错。对材料的变形、扩散以及相变起着非常大的作用。特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。 金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。晶界和亚晶界均可提高金属的强度。单位体积中的晶粒数目越多,晶界面积越大,晶格畸变越严重,材料的强度越高,同时材料的塑性也较好(同样的变形量可以分散到更多的晶粒中去进行,说明材料可以承受更大的变形量)。

第二章晶体的结构习题

第二章 晶体的结构习题 1.晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,0A ,0B 和0C 分别与基矢1a ,2a 和3a 重合,除0点外,0A ,0B ,和0C 上是否有格点若ABC 面的指数为(234),情况又如何 (答案: 只有A 点是格点; A 、B 、和C 都不是格点) 2.在结晶学中,晶胞是按晶体的什么特性选取的 3. 在晶体衍射中,为什么不能用可见光 4.温度升高时,衍射角如何变化X 光波长变化时,衍射角如何变化 (答案: 衍射角变小; 衍射角变大) 5.以刚性原子球堆积模型,计算以下各结构的致密度(一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度)分别为: (1)简立方,6π ; (2)体心立方,π83 ;(3)面心立方,π62 ; (4)金刚石结构,π16 3 。 6. 在立方晶胞中,画出(101),(021)晶面。 | 7. 六角晶胞的基矢 j a ai a 223+=, j a ai b 2 23+-=,ck c =。求其倒格基矢。 (答案: )33(2*j i a a +=π, )33(2*j i a b +-=π,k c c π2*=) 8. 证明以下结构晶面族的面间距: (1) 立方晶系:2/1222][-++=l k h a d hkl ; (2) (2)正交晶系:2/1222])()()[(-++=c l b k a h d hkl ; (3)六角晶系:2/12222])()(34[-+++=c l a hk k h d hkl 。 9.求晶格常数为a 的面心立方和体心立方晶体晶面族)(321h h h 的面间距。 (答案:2 /1232123212321])()()[(h h h h h h h h h a -+++-+++-; 2/1221213232])()()[(h h h h h h a +++++)。

第二章晶体的结合知识分享

第二章晶体的结合 1?试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非 常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在 整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时 偶极距或固有偶极距而形成,其结合力一般与r7成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O, F, N等)相结合形成 的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol。 2?有人说“晶体的内能就是晶体的结合能”,对吗? 解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N个原子在自由时的总能量之差,即E b E N E O。(其中E b为结合能,E N 为组成这晶体的N个原子在自由时的总能量,E0为晶体的总能量)。而晶体的内能是指晶 体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。 3?当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的? 解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先 引力大于斥力,总的作用为引力,f(r) 0,而相互作用势能u(r)逐渐减小;当2个原子 慢慢接近到平衡距离r°时,此时,引力等于斥力,总的作用为零,f(r) 0,而相互作用 势能u(r)达到最小值;当2个原子间距离继续减小时,由于斥力急剧增大,此时,斥力开始大于引力,总的作用为斥力,f(r) 0,而相互作用势能u(r)也开始急剧增大。 4?为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好? 解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而 是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、 导电性和导热性都较好。 5?有一晶体,在平衡时的体积为V。,原子之间总的相互作用能为U o,如果原子间相互作用能由下式给出: U(r) m n , r r 试证明弹性模量可由U o mn/(9V0)给出。 解:根据弹性模量的定义可知 K v dP v d2U dV V0 dV2V0 .............................................. (A \ (1) 上式中利用了P 的关系式。dV

晶体场理论

晶体场理论 晶体场理论(英语:Crystal field theory,首字母縮略字:CFT)是配位化学理论的一种,1929-1935年由汉斯·贝特和约翰·哈斯布鲁克·范扶累克提出。它以过渡金属配合物的电子层结构为出发点,可以很好地解释配合物的磁性、颜色、立体构型、热力学性质和配合物畸变等主要问题,但不能合理解释配体的光谱化学序列和一些金属有机配合物的形成。 晶体场理论将配位键看成纯离子键,着眼于中心原子的d轨道在各种对称性配位体静电场中的变化,简明直观,结合实验数据容易进行定量或半定量的计算。但在实际配合物中,纯离子键或纯共价键都很罕见,目前配合物的结构理论兼有晶体场理论和分子轨道理论的精髓,称之为配位场理论。 [编辑]概述 晶体场理论认为,配合物中心原子处在配体所形成的静电场中,两者之间完全靠静电作用结合,类似于正负离子之间的作用。在晶体场影响下,五个简并的d 轨道发生能级分裂,d电子重新分布使配合物趋于稳定。 [编辑]能级分裂 d原子轨道分为、、、和五种,其空间取向各不相同,但能级却是相同的,参见原子轨道。在一定对称性的配体静电场(负)作用下,由于与配体的距离不同,d轨道中的电子将不同程度地排斥配体的负电荷,d轨道开始失去简并性而发生能级分裂。能级分裂与以下因素有关: ?金属离子的性质; ?金属的氧化态,高氧化态的分裂能较大; ?配合物立体构型,即配体在金属离子周围的分布; ?配体的性质。 最常见的配合物构型为八面体,其中中心原子位于八面体中心,而六个配体则沿着三个坐标轴的正、负方向接近中心原子。 先将球形场的能级记为。和轨道的电子云极大值方向正好与配体负电荷迎头相碰,排斥较大,因此能级升高较多,高于。而、和轨道的电子云则正好处在配体之间,排斥较小,因此能级升高较小,低于。 因而d轨道分裂为两组能级: ?和轨道,能量高于,记为或轨道; ?、和轨道,能量低于,记为或轨道。

相关主题