搜档网
当前位置:搜档网 › 基于卷积神经网络的图像识别系统

基于卷积神经网络的图像识别系统

基于卷积神经网络的图像识别系统
基于卷积神经网络的图像识别系统

龙源期刊网 https://www.sodocs.net/doc/9b1081375.html,

基于卷积神经网络的图像识别系统

作者:李航厉丹朱晨姚瑶张丽娜

来源:《电脑知识与技术》2020年第10期

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

【CN110020684A】一种基于残差卷积自编码网络的图像去噪方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276255.3 (22)申请日 2019.04.08 (71)申请人 西南石油大学 地址 610500 四川省成都市新都区新都大 道8号 (72)发明人 罗仁泽 王瑞杰 张可 李阳阳  马磊 袁杉杉 吕沁  (51)Int.Cl. G06K 9/62(2006.01) G06N 3/04(2006.01) G06T 5/00(2006.01) (54)发明名称 一种基于残差卷积自编码网络的图像去噪 方法 (57)摘要 本发明公开了一种基于残差卷积自编码网 络的图像去噪方法,为了克服传统浅层线性结构 特征提取能力有限,现有基于深度学习的图像去 噪模型存在泛化能力弱等问题。以残差块、批归 一化层和自编码器组成的残差卷积自编码块为 基本去噪网络结构,提出了多功能去噪残差卷积 自编码神经网络。本发明公开的图像去噪方法, 在保持较高去噪质量和去噪精度的同时,不仅拥 有盲去噪能力,还能去除与训练集类型不相同的 噪声。权利要求书2页 说明书5页 附图2页CN 110020684 A 2019.07.16 C N 110020684 A

1.一种基于残差卷积自编码网络的图像去噪方法,其特征在于包括如下步骤: 步骤1、将预处理后的原图和对应含噪声的图像作为训练集和测试集,具体步骤如下: (1)将m*m像素的三通道原图预处理为单通道灰度图像,并对图像进行切割; (2)将预处理切割后的灰度图像加入相应噪声; (3)将原图的灰度图像及其对应的加噪图像作为一组数据,以原图像的灰度图像作为标签,制作训练集和测试集; 步骤2、构建残差卷积自编码块,主结构由n+2层卷积层组成,恒等映射部分由卷积自编码结构组成,残差卷积自编码块输出为: x n+2=f(x)+x cae x cae 为输入x经过卷积自编码器提取的潜在特征,f(x)为输入x经过n+2层卷积层输出的结果,n为大于1的正整数,其中,主结构第1层卷积核大小为1*1,激活函数为Swish;第2到第n+1层结构相同,均添加批归一化层,卷积核大小为3*3,激活函数为Relu;第n+2层卷积核大小为1*1,激活函数为Swish; 其中Relu激活函数为: Swish激活函数为: 式中β为x的缩放参数,β>0; 步骤3、网络结构主要由步骤2提出的残差卷积自编码块组成,网络共(n+2)*a+8层,a为大于2的正整数,第一层是一个用来降维的卷积层,中间层由残差卷积自编码块和残差卷积块组成,最后一层为一个全连接层; 步骤4、将步骤1预处理后的训练集,通过列队输入到步骤3搭建的网络模型中,采用误差反向传播,并以均方误差损失函数来衡量真实值与预测值的距离,通过数据集的每次迭代,使用梯度下降来调整神经元之间的权重以降低代价函数,进而优化网络,并以定量的峰值信噪比和定性的视觉感受判断网络去噪效果,初次保存网络模型的各个参数; 均方误差损失函数为: 式中,y i 为通过列队读入的标签数据,z i 为输出去噪后的数据,均方误差越小代表去噪后的数据与标签数据越接近,网络准确率越高; 峰值信噪比公式为: 其中M MSE 是原图和处理图像之间的均方误差,PSNR数值越大表示失真越小; 步骤5、将步骤1预处理后的测试集,输入到步骤4优化训练好的网络模型中,并通过定 权 利 要 求 书1/2页2CN 110020684 A

使用卷积神经网络的图像样式转换

《使用卷积神经网络的图像样式转换的研究》 院系信息工程学院 专业电子与通信工程 班级信研163 提交时间:2016年11月28日

使用卷积神经网络的图像样式转换的研究 湖北省武汉,430070 摘要:以不同的风格样式渲染图像的内容一直都是一个十分困难的图像处理任务。也可以说,以前主要限制因素是不知如何明确表示内容信息。在这里我们使用图像表示导出优化的能够识别对象的卷积神经网络,这使得高级图像信息显示。我们引入了一种可以分离和重组自然图像的图像内容和艺术风格的神经算法。这个算法允许我们生成高质量的新目标图像,它能将任意照片的内容与许多众所周知的艺术品的风格相结合。我们的结果提供了对卷积神经网络学习的深度图像表示的新理解,并且展示了他们的高水平图像合成和操纵的能力。 关键词:卷积神经网络;图像处理;神经算法 The Study of Image Style Transfer Using Convolutional Neural Networks LiWenxing School of Science,Wuhan University of Technology,Wuhan 430070,China Abstract: Rendering the content of an image in a different style has always been a difficult image processing task. It can also be said that the main limiting factor in the past is that I do not know how to clearly express the content information. Here we use an image representation to derive an optimized, object-aware convolutional neural network, which allows advanced image information to be displayed. We introduce a neural algorithm that can separate and reconstruct the image content and artistic style of natural images. This algorithm allows us to generate high-quality new target images that combine the content of any photo with the style of many well-known works of art. Our results provide a new understanding of the depth image representation of convolution neural network learning and demonstrate their ability to synthesize and manipulate high-level images. Keywords: Convolutional Neural Network;Image Processing;Neural algorithm

一种基于卷积神经网络的图像分类方法

F 福建电脑 UJIAN COMPUTER 福建电脑2018年第2期 基金项目:国家级大学生创新训练计划项目(201610719001);陕西省大学生创新训练计划项目(1495)。 0引言 图像分类就是利用计算机模拟人类对图像的理解和认知,自动根据图像的内容将图片划分到合适的类别中,它在智能识别、目标检测和信息搜索等计算机视觉领域有着广泛的应用,图像分类问题也一直是计算机视觉的基本问题。目前,关于图像分类的研究大多集中在医学图像、遥感图像等专业领域,而对于自然图像分类的研究较少,虽然分类的算法如K 最近邻算法[1]、决策树算法[2]、神经网络算法[3]、支持向量机算法[4]和一些混合算法[5]能达到较可观的分类效果,但对大数据库的分类,存在训练时间长,准确度低、易出现过拟合等缺点。 由于卷积神经网络[6](Convolutional Neural Network,CNN )具有输入图像不需预处理;特征提取和模式分类同时在训练中产生;权重共享减少了网络训练参数;很强的抗干扰能力等优点。本文首先分析探讨了卷积神经网络结构、原理,提出了一种改进的卷积神经网络,设计了基于该模型的图像分类算法,实验结果表明该模型能提取出大数据库中图像明显特征,可精确地对图像集进行分类。 1卷积神经网络及其改进 CNN 是将卷积运算引入到深度学习模型,属于多层前馈神经网络模型,但与传统不同的是它的输入是二维模式,可以直接处理二维模式,其连接权是二维权矩阵,称为卷积核,基本操作是二维离散卷积和池化。简单地说,CNN 就是能够自动的对于一张图片学习出最好的卷积核以及这些卷积核的组合方式。 1.1CNN 结构 CNN 一般由卷积层、池化层、全连接层和一个输出层(或分类器)组成。每层由多个二维平面块组成,每个平面块由多个独立神经元组成,如图1所示。 卷积层通过卷积运算提取图像的不同特征,包含若干组CNN 训练的参数,即进行学习的卷积核,当前层的卷积核对输入的一组图片做卷积运算,再经过激活函数得到新的特征图像,通常采用卷积离散型将输入原始图像的像素输出为新的像素点,可由公式(1)计算得出: (1) 其中,M β表示输入特征图像的子集;W γαβ表示卷积核;γ表 示网络层数;b γβ表示输出特征映射的偏置,f 表示激活函数,最常用的是sigmoid 函数与双曲正切函数。 卷积层后一般接入池化层来减小数据量,通过池化把输入的特征图像分割为不重叠的矩形区域,而对相应的矩形区域做运算,常见的有最大池化和均值池化。经过交替的卷积层和池化层之后,已经获得了高度抽象的特征图像,全连接层把得到的多个特征映射转化为一个特征向量以完全连接的方式输出,最后对提取的特征进行分类。 1.2CNN 工作原理 在CNN 中,通过神经网络的梯度反向传播算法实现对参数的学习训练,属于有监督学习。在进行学习训练过程中,输入信号的训练输出和实际输出会有一定误差,误差在梯度下降算法中逐层传播,逐层更新网络参数。假设样例(x ,y )的损失函数为C (W ,b ;x ,y ),如式(2)。 (2)为防止过拟合,需增加,L 2范数,如式(3)。 (3) 其中,h W ,b (x )为输入样本x 经过CNN 后的输出,y 为样本的标签真值,λ为控制强度。为了使代价函数尽可能的小,因此需要不断更新每一层的权重W 和偏置项b ,任意一层(假设为γ层)的权重更新如式(4)。 (4) 1.3CNN 的改进 在处理大数据集方面,由于卷积层和池化层数较少,获得的特征图相对不足,因此达不到较好的分类效果。针对该缺点,依据CNN 的卷积层和池化层设置灵活性,不同的结构设置会得到不同结果的特点,对传统CNN 进行了两方面的改进,一方面将卷积层和池化层层数分别增至3层,提高了各层提取图像特征的能力,使分类效果得到改善;另一方面设置卷积核大小为5×5,扫描的步长为2,在提高训练效率的同时也保证了分类精确度。 2基于改进CNN 的图像分类 一种基于卷积神经网络的图像分类方法 张琳林,曹军梅 (延安大学计算机学院陕西延安716000) 【摘要】利用卷积神经网络是深度学习的一种高效识别模型的思想, 将卷积神经网络应用于图像分类中,避免对图像进行复杂的预处理的同时也提高了图像分类的准确度。在分析卷积神经网络结构、 原理及特点的基础上,提出了一种改进的卷积神经网络模型,设计了基于该模型的图像分类算法, 并在大数据库CIFA R-10下进行实验验证,表明图像分类的准确度高,总结了网络模型对图像分类结果的影响因素。 【关键词】卷积神经网络;图像分类;卷积;池化;特征图像图1CNN 的基本结 构 DOI:10.16707/https://www.sodocs.net/doc/9b1081375.html,ki.fjpc.2018.02.021 46··

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

基于卷积神经网络的人脸识别

《计算机系统项目综合实践》课程报告报告题目:基于卷积神经网络的人脸识别 组长:班级:*学号:*姓名:* 在本项实践中的贡献百分比: 40 % 组员1:班级: * 学号: * 姓名:* 在本项实践中的贡献百分比: 35 % 组员2:班级: * 学号:* 姓名:* 在本项实践中的贡献百分比: 25 % 日期: 2019/12/18

一、课程实践目标和内容概述:(各组员对本部分内容撰写的贡献比例,组长:组员1:组员2 = 20% : 20% : 60%) 1. 打算设计和实现一个什么样的计算机综合系统?该系统有什么功能?为什么选择该系统作为实践内容? 基于卷积神经网络的人脸识别。 通过10个人的420张192*168大小单一色彩图片对系统进行训练,从而使系统能够识别这十个人,在通过220张人脸的图片进行识别,统计识别精度,通过调整参数不断使测试精度达到最优,获得使测试精度达到最大的参数集合。 人脸识别应用在生活中十分广泛,卷积神经网络用于人脸识别是一种基于特征的方法,区别于传统的人工特征提取和针对特征的高性能分类器设计,它的优点是通过逐层卷积降维进行特征提取,然后经过多层非线性映射,使网络可以从未经特殊处理的训练样本中,自动学习形成适应该识别任务的特征提取器和分类器,该方法降低了对训练样本的要求,而且网络的层数越多,学习到的特征更具有全局性。因此,我们小组打算将该系统作为实践内容。 2. 运用什么程序设计语言或开发工具实现系统?为什么采用这种开发语言或工具? 运用MATLAB实现。 MATLAB具有封装的卷积神经网络,我们只需要对其设置层数和参数即可。而且MATLAB将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,

基于深度卷积神经网络的人脸识别研究定稿版

基于深度卷积神经网络的人脸识别研究 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

基于深度卷积神经网络的人脸识别研究 深度卷积神经网络主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下人脸识别领域的应用。卷积神经网络模型需要设计一个可行的网络模型,将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。 本文的主要研宄内容和创新点如下: 1.介绍了卷积神经网络的基础理论知识。先从传统人工神经网络的模型结构、前向和反向传播算法进行了详细的分析;然后过渡到卷积神经网络的相关理论,对其重要组成部分如卷积层、激励层、池化层和全连接层进行了具体的阐述;最后对卷积神经网络训练时的一些注意事项进行了说明。 人工神经元是构成人工神经网络的基本计算单元,单个神经元的模型结构如下图所示。 其中, b X W b x w Z T+ = + =∑1 1 1 ) ( ) ( , z f x h h w = 卷积神经网路的基本结构简单的池化过程:

2.对深度学习框架TensorFlow的系统架构和编程模型作了一些说明,并对人脸数据进行预处理,包括人脸检测、数据增强、图像标准化和人脸中心损失。 TensorFlow的系统架构如下图所示 TensorFlow的编程模式 系统本地模式和分布式模式示意图 3.提出了基于改进的MyVGGNet和MySqueezeNet网络的人脸识别。首先分析了模型VGGNet-16和SqueezeNe的网络结构及相关参数,然后本文提出将原VGGNet-16和SqueezeNe的网络结构和参数进行优化,并在每个卷积层和激励层之间添加批归一化层,在VGGNet-16网络末尾用1个1 * 1的卷积层代替三个全连接层,还增加全局平均池化层,得到新的MyVGGNet和MySqueezeNet模型,最后在LFW数据集上分别获得9 4.3%和9 5.1%的准确率。 VGGNet-16 网络结构框图 MyVGGNet 网络框图 MyVGGNet网络训练时LFW测试集的准确率走势图 MyVGGNet网络在LFW上的ROC曲线图 4.提出了基于二叉树型融合网络BTreeFuseNet_v1和BTreeFuseNet_v2的人脸识别。首先对深度神经网络的优化问题和融合原理作了分析;然后结合残差学习,融入分支并行、融合和级联三种结构,采用ReLU函数、BN层、Dropout层、哈维尔方法和截断高斯函数初始化方法、Adam优化器等技巧,构建了两个层次深度为22和19的网络模型

卷积神经网络

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经认知机。 Trotin 等人提出了动态构造神经认知机并自动降低闭值的方法[1],初始态的神经认知机各层的神经元数目设为零,然后会对于给定的应用找到合适的网络规模。在构造网络过程中,利用一个反馈信号来预测降低阈值的效果,再基于这种预测来调节阈值。他们指出这种自动阈值调节后的识别率与手工设置阈值的识别率相若,然而,上述反馈信号的具体机制并未给出,并且在他们后来的研究中承认这种自动阈值调节是很困难的【8】。 Hildebrandt将神经认知机看作是一种线性相关分类器,也通过修改阈值以使神经认知机成为最优的分类器。Lovell应用Hildebrandt的训练方法却没有成功。对此,Hildebrandt解释的是,该方法只能应用于输出层,而不能应用于网络的每一层。事实上,Hildebrandt没有考虑信息在网络传播中会逐层丢失。 Van Ooyen和Niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据Hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易

相关主题