搜档网
当前位置:搜档网 › 几种常用的吸收塔.

几种常用的吸收塔.

几种常用的吸收塔.
几种常用的吸收塔.

几种常用的吸收塔

1.1裸塔-------啥都没怎么脱

have nothing ! how to do !

noBUF、no氧化风机、no除雾器、no旁路、no净烟道烟囱防腐三下五除二 , 中国的三无产品!

最新发明科技,世界最先进的一种电厂湿法烟气脱硫吸收塔,最具经济型,性价比,适合广谱脱硫,

————中国制造!中国的!世界的!

1.2裸塔脱硫烟塔概述

本发明专利为烟气脱硫吸收塔(裸塔)及脱硫烟塔,应用于电厂烟气及各种燃煤锅炉、硫酸工业、钢铁工业、有色冶金工业、石油化工以及燃煤工业窑炉等各行业排烟脱硫,各项性能指标均优越于目前世界盛行的各种脱硫技术,其迷人的性能,令世人瞩目。流畅优美的裸塔造型,天□地○,婀娜多姿,令人沉醉痴迷,完全杜绝了塔内烟气湍流、偏流、回流等现象。裸塔(空塔)工艺结构独具匠心,运行原理慧眼独识,瞬间完成脱硫,排烟碱性,无垢运行,净烟气无酸雾、无亚硫酸盐、石膏、烟尘等污垢,因此不设除雾器,为使排烟水雾携带量最少,降低工艺水耗,或可安装现场即可制安的简易除雾器,取材廉价不锈钢薄板或薄铝皮,耐高温、无施工火患、无烟气“旁路”时运行火患,容易洗涤更换,吸收塔出口至烟囱无需防腐,通过塔内涂覆高温防腐材料,裸塔具备了旁路烟道之功能,因此取消了与吸收塔配套的旁路烟道及其挡板门、FGD进出口档板门,裸塔,名副其实的空塔,运用自然原理,通过特殊工艺结构设计,塔内烟气压损实践了0的突破,因此取消了增压风机,大幅度降低了浆液池搅拌功率。通过特殊工艺结构设计,一塔得道,“鸡犬升天”,取消罗茨氧化风机,仅用廉价的通用离心风机,也可以不用任何氧化风机,仅用自然风即可完成氧化。裸塔实乃脱硫烟道,占地之少,惟一烟道尔!建设投资、设备成本,可降至10%左右,运行维护费用大大降低,锅炉容量、燃烧煤质

(0.*%—6%高硫煤以及更高含量的劣质煤) 适应广泛。60万千瓦锅炉裸塔仅高约25米。塔内烟气流速5-6m/s,喷淋接触时间1秒,高效吸收(1s)、高效脱硫(0.99)、瞬间响应、极易控制,无需前馈,仅用一单回路PID即游刃有余,玩脱硫工艺流程于掌股之间而得心应手,惬意欲仙。他还可以与烟囱珠联璧合,完美整合为脱硫烟塔GDS (flue gas desulfurization stack ),隐形脱硫,简单至极,惟一烟囱尔!一竿揭起,独霸天下!

先进简易的湿式磨机配套工艺,实现单回路PID控制。

世界各国都非常重视环保洁净煤燃烧技术,尤其欧美、日本等发达国家,相继成立重点实验室,投入大量资金,有些技术比较成功,脱硫、脱氮、脱汞达到很高的指标,但造价非常高,不利于普及,其综合社会效益、性价比无法提升,工业总排放量无法得以保证,不是目前经济实力甚至美国经济实力也无法大量商业应用。

由于本发明专利技术的各种应用实例具有建、运行维护成本极低、高效低耗,故可广普脱硫,实现全球范围的SO2的“0”排放,目前我国SO2年排放量仍然有2200多万吨,已经远远超出大气驰骋在能力,同时因湿法石灰石脱硫工艺可脱出近50%的氮氧化物,所以不必脱硝,酸雨依然会得到很好的治理,让大气处理并循环利用于植物尤其农业,氮元素是农作物及植物的不可或缺的营养元素,

吸收塔

尤其氮氧化物可以制造臭氧,擎天女娲,“炼石补天”,有天公若此,何“哭”不“笑”呢。

氮肥主要包括尿素、硝铵、氯化铵、碳酸氢铵,2009年一季度,我国农用氮、磷、钾化学肥料(折纯)产量实现快速增长,达到1500万吨,同比增长了11%。其中氮肥产量最高,达到1140.万吨,同比增长9.44%。由此可见氮元素在农业中的重要地位。

道法自然,取利天工,以逸待劳,变废为宝。有艺自天上来,何不悦乎。

裸塔技术实现了质的飞跃,勇摘五“0”桂冠、大胆实践一个全免检,具有骄人的性能:

烟气0压损

响应0延迟(ζτξ0延时)

出口0污垢

烟囱0排放(除尘、脱硫)

电机0功耗

硝酸全排放

彻底而全面解决燃煤电厂烟气大气污染问题,一路绿灯,光耀万家,无为而治、大道至简,脱硫概念得到高度概括,脱硫技术得到革命性升华,令人神奇向往,欲罢不能。

裸塔,制造了中国第二个“神七”!

裸塔,将走出中国,走向世界!

裸塔,将踏遍世界,誉满全球!

一百多年的脱硫研究与应用,技术业已成熟,性能不断提高,社会需要进步,不足需要克服,面对成绩和背后高昂的代价,轻松的脚步有些沉重,百尺竿头需进步,有志敢欺泰山高。

中国需要魄力、开拓进取需要魄力,进步发展需要魄力,总要有且必须有第一个品尝不管是蜘蛛还是螃蟹的人,也许因为这种魄力的缺乏、冒险意识的认识不足,也许因此而没有业绩,也许因此中国的自主技术极少有自主品牌、成套装置的商业运营业绩,没有业绩就没有业务,恶性循环,胎死腹中,我们应该学习一下我们引进的友邦技术是如何获得第一个业绩的。长长的周期,长长地等待,官僚主义思想,安居乐业观念,不是我们这样的发展中国家可以拖得起的。

从理论到实践总得飞跃,人类历史就是由这无数次飞跃联赘而成,缺一次都没今天,而飞跃都是没有业绩参考的,依据只有可行性分析和魄力,也只有有社会责任感、有魄力的领导才能实践这个飞跃,也只有届时职工才能得到预谋福利,社会效益得以提高,煤炭不再白白燃烧。

这个跨时代的历史重任需要有历史使命感的领导,敢于承担责任、勇于肩挑重任的领导,胆子大一些,步子大一些,改革才是硬道理,裸塔届时将垄断中国乃至世界现役脱硫装置脱硫技改、现役无脱硫机组改造、新建机组建设、及各种燃煤锅炉、硫酸工业、钢铁工业、有色冶金工业、石油化工以及燃煤工业窑炉等各行业排烟脱硫装置设备等的脱硫市场,霸冕脱硝,半壁江山呀!!啊!

他将影响、改变国家电力规划、环保规划、新标准的制定,电力结构、投资政策、倾向等,大力促进了“十二五”环保规划的实施,电厂SO2年排放总量将大大减少,可望降低到几百万吨甚至几十万吨,大大小小的燃煤锅炉都可轻松一脱!

脱光中国,脱光世界看灵魂。

本技术各种优势集锦一身,光彩熠熠,帝国即将对中国乃至世界实行“新三光政策”:扒光、脱光、绿光!

应用裸塔技术,一台装置一年仅用电即可节约近3千万kwh(按600MW 机组BUF 5500kw、氧化风机2000kw、0.7负荷率、年运行5000h计)、节煤1万多吨,全国火电装机容量已达7.5亿千瓦,全上裸塔装置1年将节电近375亿度,节煤1300万吨,这已经相当于一个中等发达国家的全年用电量,如中欧奥地利06年用电为670亿度。两台600MW机组假设投资8千万改造,2-3年即可收回成本,脱硫装置也可创造利润!一夜之间扒掉所有脱硫装置不是不可能的!或者说,势在必行!我们极其低廉的建设、运行、维护成本为这种可能提供了有力的保障,绿水蓝天工程是利国利民、人人

欢迎拥护的公益事业。国家发展改革委、环保总局《规划》到2015年和2020 年分别达到10 亿千瓦和12 亿千瓦,以保障国民经济的稳步发展、GDP的持续快速增长,实际现在已经突破9亿千瓦,年底国家装机就接近十二五末之装机容量10亿千瓦,整整提前一个“五”的进度,中电联预计2020

年装机将达到16亿千瓦,届时裸塔的技术优势、经济效益更加明显、可观,等效从外星球年开采近二千多万吨煤,而去年我国煤炭消费约为28亿吨,电煤消费约占50%,这已不是一个小比例,日本、南朝鲜、北朝鲜能源、煤炭都很匮乏,每年要花大量外汇进口一次能源,日本是世界第二大能源进口国,去年进口的动力煤也只有1亿吨。北朝鲜煤炭存量也只有6亿吨,加上技术手段落后难以开采,夜间的北朝鲜在卫星地图上已被“抠掉”。世界上还有好多国家没有煤炭资源或非常少。

上裸塔同时每年少排放3千万吨CO2温室气体,不类似其他工业,这是绝对的减少,不需要后续再排放,缓解了温室气体的矛盾,响应了世界环保呼声,声援并实践了世界温室气体减排行动。因此,目前的国民,不仅是电厂人谈硫色变、痛心捶足,更有甚者,煤、油有限、不可再生!

全国6000千瓦及以上电厂的发电厂用电率为5.90%,比上年增加0.07个百分点。其中,水电厂用电率为0.36%,比上年下降0.06个百分点;火电厂用电率为6.79%,比上年增加0.17个百分点。

分析表明,四个方面原因导致了2008年火电厂用电率增加。一是因2008年电力需求趋缓、水电出力较好以及部分地区实施奥运保电工作,增加了机组旋转备用容量,受此影响,火电机组负荷率大幅下降;二是2008年有一大批机组新增脱硫设施以及空冷设备投入运行;三是全年新增机组容量较大,而需求不足导致机组负荷基数较低,生产运行不稳定;四是电煤煤质下降,造成厂用电率上升。

图1 2008年火电厂用电率低于全国平均水平的省(市)

2008年,全国10个省(市)火电厂用电率低于全国平均水平,主要集中在华中、华东等新增高效发电机组容量较多的地区,以及节能和环保压力相对较大、煤炭资源较缺、成本管理相对水平较高的地区。

图2 与上年相比,2008年火电厂用电率有所下降的省(区、市)

60万千瓦发电机组裸塔脱硫装置后最少可使厂用电率下降1.25%。

本技术甚至可以停建脱销装置(见《可行性分析报告》),由此产生的建设、运行、维护成本的删剪及一次能源的节约将是不可估量的,开源节流,扬良抑莠,农工共进,协调发展,使社会经济建设真正走向良性可持续发展轨道,尽早实现全民小康生活目标。

应用该技术,使电厂脱硫建设、运行维护成本大为降低,在脱硝装置淡出市场后,电厂负担得以减轻,利润得以恢复,有更多的资金与时间、场地等条件来建设脱硫,投资脱硫,积极响应脱硫政策,悦而为之,乐而宣之,裸塔事业拥有广阔的前景和潜力,将发扬光大,大有可为。

2. 填料塔

它由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成,塔外壳多采用金属材料,也可用塑料制造。

吸收塔

填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。

填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5~1.2m/s,气速过大会形成液泛,喷淋密度6~8m3/(m2,h)以保证填料润湿,液气比控制在2~10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。

3.湍球塔

它是填料塔的一种特殊形式,运行时塔内填料处于运动状态,以强化吸收过程。在塔内栅板间放置一定数量的轻质小球填料(直径29~38mm),吸收剂自塔顶喷下,湿润小球表面,气体从塔底进入,小球被吹起湍动旋转,由于气、液、固三相充分接触,小球表面液膜不断更新,增加了吸收推动力。提高了吸收效率。

该塔制造、安装、维修较方便,可以用大小、质量不同的小球改变操作范围。该塔处理风量较大,空塔气速1.5~6.0m/s,喷淋密度20~110m3/(m2·h),压力损失1 500~3 800Pa,而且还可处理含尘气体。其缺点是

塑料小球不能承受高温,小球易裂(一般0.5~1年),需经常更换,成本高。

4.板式塔

板式塔是在塔内装有一层层的塔板,液体从塔顶进入。气体从塔底进入,气液的传质、传热过程是在各个塔板上进行。板式塔种类很多。大致可分为二类:一类是降液管式,如泡罩塔、筛孔板塔、浮阀塔、S形单向流板塔、舌形板塔、浮动喷射塔等;另一类是穿流式板塔,如穿流栅孔板塔(淋降板塔)、波纹穿流板塔、菱形斜孔板塔、短管穿流板塔等。

(1)筛孔板塔

筛孔直径一般取5~10mm,筛孔总面积占筛板面积的10%~18%。为使筛板上液层厚度保持均匀,筛板上设有溢流堰,液层厚度一般为40mn左右,筛板空塔风速约为1.0~3.5m/s,筛板小孔气速6~13m/s,每层筛板阻力300~600Pa。筛孔板塔主要优点是构造简单,处理风量大,并能处理含尘气体。不足之处是筛孔堵塞清理较麻烦,塔的安装要求严格,塔板应保持水平;操作弹性较小。

(2)斜孔板塔

斜孔板塔是筛孔板塔的另一形式。斜孔宽10~20m,长10~15mm,高6mm。空塔气流速度一般取1~3.5m/s,筛孔气流速度取10~15m/s。气体从斜孔水平喷出,相邻两孔的孔口方向相反,交错排列,液体经溢流堰供至塔板(堰高30mm),与气流方向垂直流动,造成气液的高度湍流,使气液表面不断更新,气液充分接触,传质效果较好,净化效率高,同时可以处理含尘气体,不易堵塞,每层筛板阻力约为400~600Pa。该塔结构比筛孔板塔复杂,制造较困难,安装要求严格,容易发生偏流。

(3)文氏管吸收器

文氏管吸收器通常由文氏管、喷雾器和旋风分离器组成,操作时将液体雾化喷射到文氏喉管的气流中,气流速度为60~100m/s,处理100m3/min的废气需液体雾化喷人量为40L/min。文氏管吸收器结构简单、设备小、占空间少、气速高、处理量大、气液接触好、传质较容易,特别适用于捕集气流中的微小颗粒物。但因气液并流,气液接触时间短,不适合难溶或反应速度慢的气液吸收,而且压力损失大(800~9000h),能耗高。

absorption tower(column) 用以进行吸收操作的塔器。利用气体混合物在液体吸收剂中溶解度的不同,使易溶的组分溶于吸收剂中,并与其他组分分离的过程称为吸收。操作时,从塔顶喷淋的液体吸收剂与由塔底上升的气体混合物在塔中各层填料或塔盘上密切接触,以便进行吸收。伴有化学反应的吸收叫化学吸收。按吸收时气液作用方式吸收塔可分为表面式、膜式、喷淋式和鼓泡式等。

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收低浓度SO2填料吸收塔设计 第一部分设计任务、依据和要求 一、设计任务及操作条件 1、混合气体(空气中含SO 2 气体的混合气体)处理量为90 kmol/h 2、混合气体组成:SO 2 含量为7.6%(摩尔百分比),空气为:92.4%(mol/%) 3、要求出塔净化气含SO 2为:0.145%(mol/%),H 2 O为:1.172 kmol/h 4、吸收剂为水,不含SO 2 5、常压,气体入塔温度为25°C,水入塔温度为20°C。 二、设计内容 1、设计方案的确定 2、填料吸收塔的塔径、填料层高度及填料层压强的计算。 3、填料塔附属结构的选型与设计。 4、填料塔工艺条件图。 三、H2O- SO2 在常压20 °C下的平衡数据

四、 气体与液体的物理性质数据 气体的物理性质: 气体粘度()0.0652/G u kg m h =? 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ= 液体的物理性质:液体粘度 3.6/()L u kg m h =? 液体扩散系数625.310/L D m s -=? 液体密度 3998.2/L kg m ρ= 液体表面张力 4273/92.7110/L dyn cm kg h σ==? 五、 设计要求 1、设计计算说明书一份 2、填料塔图(2号图)一张

第二部分 SO2净化技术和设备 一、SO2的来源、性质及其危害: 1、二氧化硫的来源 二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。这些燃料经燃烧都产生并排放出二氧化硫,占所有排放总量的96%. 二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要有自然来源和人为来源两大类: 自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这部分二氧化硫占地球上二氧化硫来源的43%。随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排放总量的90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二氧化硫和二氧化碳是造成我国大气污染的主要原因。由于我国部分地区燃用高硫煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈刺激性气味。分子量64.07 密度为1.4337kg/m3 (标准状况下),密度比空气大。溶解度:9.4g/mL(25℃)熔点-76.1℃(200.75K)沸点-10℃ (263K)

水吸收二氧化硫填料塔

化工原理课程设计 设计名称水吸收SO2-空气混合气填料塔的设计学院能源与环境学院 班级环境131 学号 201301144120 姓名高鹏垒 指导教师石凤娟 2016年1月 22 日

化工原理课程设计任务书 一、设计题目 水吸收SO 2-空气混合气填料塔的设计:试设计一座填料吸收塔,用20℃的清水吸收 SO 2-空气混合气中的 SO 2。已知入口空气中含SO 2的摩尔分率为0.05,操作压力为 101.3KPa,相对湿度为70%。要求SO 2的回收率为96%。采用清水进行吸收,吸收剂的用 量为最小用量的1.5倍。 二、设计操作条件 (1)入塔炉气流量:1200(1800)+n*10=1400h m /3 (说明: n 为学号尾数后两位) (2)常压101.3KPa 。 (3)操作温度20℃。 三、填料类型 选用聚丙烯阶梯环填料,填料规格自选。 四、工作日 每年300天,每天24h 连续运行。 五、厂址 河南省周口市。 六、设计内容 (1)填料塔的物料衡算; (2)填料塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)填料塔接管尺寸计算; (6)绘制生产工艺流程图(A2号图纸) (7)绘制填料塔装配图(A1号图纸) (8)对设计过程的评述和有关问题的讨论。

摘要: 介绍了吸收技术的基本知识;叙述了水吸收SO2的设计方案和流程;根据操作条件设计出符合要求的填料塔,包括塔设备的工艺尺寸计算、填料选择及辅助设备的选型和计算。 关键字:课程设计SO2吸收填料塔

目录 一、前言 0 1、吸收技术概况 0 2、吸收在工业生产中的应用 (1) 3、吸收设备 (1) 二、填料塔设计 (2) 1、吸收剂的选择 (2) 2、吸收流程的选择 (3) 2.1 气体吸收过程分类 (3) 2.2吸收装置的流程 (4) 3、吸收塔设备及填料的选择 (5) 3.1 吸收塔设备 (5) 3.2 填料的选择 (5) 4、吸收剂再生方法的选择 (6) 5、操作参数的选择 (7) 5.1操作温度的确定 (7) 5.2操作压力的确定 (7) 三、填料塔工艺设计计算 (8) 1、基础物性数据 (8) 1.1液相物性数据 (8) 1.2气相物性数据 (8) 1.3气液两相平衡时的数据 (8) 2、物料衡算 (9) 3、填料塔的工艺尺寸计算 (10) 3.1塔径的计算 (10) 考虑到填料塔内部的压力降,塔的操作压力为101.3KPa (10) 3.2泛点率校核和填料规格 (11) 填料规格校核............................................................... 11 阶梯环的径比要求:d D >8 .................................................... 11 3.3液体喷淋密度校核 . (11) 4、填料层高度计算 (12) 4.1传质单元数的计算 (12) 4.2传质单元高度的计算 (12) 4.3填料层高度的计算 (14) 5、填料塔附属高度的计算 (14) 6、液体分布器的简要设计 (15) 6.1液体分布器的选型 (15) 6.2分布点密度及布液孔数的计算 (16) 6.3塔底液体保持管高度的计算 (17) 7、其它附属塔内件的选择 (17) 7.1 填料支撑板 (17) 7.2 填料压紧装置与床层限制板 (17)

二氧化碳吸收塔设计(可编辑修改word版)

《化工原理》课程设计水吸收二氧化碳填料塔设计 学院医药化工学院 专业精细化工 班级 姓名 学号 指导教师 年月日

目录 概述 (1) 1.设计题目 (1) 2.操作条件 (1) 3.填料类型 (1) 4.设计内容 (1) 4.1吸收剂的选择 (1) 4.2装置流程的确定 (1) 4.3填料的类型与选择 (2) 5.填料吸收塔的工艺尺寸的计算 (2) 5.1基础物性数据 (2) 5.1.1液相物性数据 (2) 5.1.2气相物性数据 (2) 5.1.3气液相平衡数据 (2) 5.2物料衡算 (2) 5.3填料塔的工艺尺寸计算 (3) 5.3.1塔径计算 (3) 5.3.2填料层高度计算 (4) 6.填料层压降计算 (6) 7.液体分布器建简要设计 (7) 7.1液体分布器的选型 (7) 7.2分布点密度计算 (7) 7.3布液计算 (7) 8.吸收塔接管尺寸计算 (8) 9.要符号说明 (8) 9.1料的特性参数 (8) 9.2符号说明 (8) . 附图(工艺流程简图、主体设备设计条件图)

概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气 体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传 质设备。吸收操作在化学工业中是一种重要的分离方法,本次设计采用水吸收空气中的二氧化碳,处理流量为 3800m3/h,其中进塔二氧化碳的体积分数为 7%,二氧化碳的吸收率达到 95%。吸收效果以减少对大气的污染,属于物理吸收。影响吸收的因素主要为溶质在吸收剂中的溶解度, 其吸收速率主要 决定于气相或液相与界面上溶质的浓度差,以及溶质从气 相向液相传递的扩散速率。本设计本设计采用 4 个同类型的吸收塔并联,塔高 8.4m,塔径 2.9m,采用聚丙烯阶梯填料,具有通量大、阻力小、传质效率高等优点,可以达到较好的通过能力和分离效果。一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。 1.设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的二氧化碳气体。混合气体的处理量为3800 m3/h,其中含二氧化碳为7%(体积分数),混合气体的进料温度为25℃。要求: 二氧化碳的回收率达到95% 。 2.操作条件 (1)操作压力:常压(2)操作温度:20℃ (3)吸收剂用量为最小用量的 1.5 倍。 3.填料类型 公称直径为50mm 的聚丙烯塑料阶梯环 4.设计内容 设计方案的确定 4.1吸收剂的选择 因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。 4.2装置流程的确定 用水吸收CO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆

吸收塔的计算

第4节吸收塔的计算 吸收过程既可在板式塔内进行,也可在填料塔内进行。在板式塔中气液逐级接触,而在填料塔中气液则呈连续接触。本章对于吸收操作的分析和计算主要结合连续接触方式进行。 填料塔内充以某种特定形状的固体填料以构成填料层。填料层是塔实现气、液接触的主要部位。填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。 通常填料塔的工艺计算包括如下项目: (1)在选定吸收剂的基础上确定吸收剂的用量; (2)计算塔的主要工艺尺寸,包括塔径和塔的有效高度,对填料塔,有效高度是填料层高度,而对板式塔,则是实际板层数与板间距的乘积。 计算的基本依据是物料衡算,气、液平衡关系及速率关系。 下面的讨论限于如下假设条件: (1)吸收为低浓度等温物理吸收,总吸收系数为常数; (2)惰性组分B在溶剂中完全不溶解,溶剂在操作条件下完全不挥发,惰性气体和吸收剂在整个吸收塔中均为常量; (3)吸收塔中气、液两相逆流流动。 吸收塔的物料衡算与操作线方程式 全塔物料衡算图2-12所示是一个定态操作逆流接触的吸收塔,图中各符号的意义如下:

V -惰性气体的流量,kmol (B )/s ; L —纯吸收剂的流量,kmol (S )/S ; Y 1;、Y 2—分别为进出吸收塔气体中溶质物质量的比,kmol (A )/kmol (B );X 1、X 2——分别为出塔及进塔液体中溶质物质量的比,kmol (A )/kmol (S )。注意,本章中塔底截面一律以下标“l ”表示,塔顶截面一律以下标“2”表示。 在全塔范围内作溶质的物料衡算,得: VY 1+LX 2=VY 2+LX 1 或V (Y 1-Y 2)=L (X 1-X 2) (2-38) 一般情况下,进塔混合气体的流量和组成是吸收任务所规定的,若吸收剂的流量与组成已被确定,则V 、Y 、L 及X 2。为已知数,再根据规定的溶质回收率,便可求得气体出塔时的溶质含量,即: Y 2=Y l (1-фA ) (2-39) 式中фA 为溶质的吸收率或回收率。 通过全塔物料衡算式2-38可以求得吸收液组成X 1。于是,在吸收塔的底部与顶部两个截面上,气、液两相的组成Y 1、X l 与Y 2、X 2均成为已知数。 2.吸收塔的操作线方程式与操作线 2 1 图2-12 物料衡算示意图

111水吸收二氧化硫填料吸收塔设计说明书完整版

吉林化工学院 化工原理课程设计 题目处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 教学院 专业班级 学生姓名 学生学号 指导教师 2011 年 12 月 5 日

课程设计任务书 1、设计题目:处理量为2550~3200m3/h水吸收二氧化硫过程填料吸收塔的设计 。 矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO 2入塔的炉气流量为3100m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小用量的1.5倍。 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=20℃ (3)选用填料类型及规格自选。 3、设计任务: 完成吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,撰写设计说明书。 处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 化工原理教学与实验中心 2011年11月

目录 摘要.................................................................................................................................IV 第一章绪论. (1) 1.1 吸收技术概况 (1) 1.2 吸收设备发展 (1) 1.3 吸收在工业生产中的应用 (3) 第二章吸收塔的设计方案 (4) 2.1 吸收剂的选择 (4) 2.2 吸收流程选择 (5) 2.2.1 吸收工艺流程的确定 (5) 2.2.2 吸收工艺流程图及工艺过程说明 (6) 2.3 吸收塔设备及填料的选择 (7) 2.3.1 吸收塔设备的选择 (7) 2.3.2 填料的选择 (8) 2.4 吸收剂再生方法的选择 (10) 2.5 操作参数的选择 (11) 2.5.1 操作温度的确定 (11) 2.5.2 操作压强的确定 (11) 第三章吸收塔工艺条件的计算 (12) 3.1 基础物性数据 (12) 3.1.1 液相物性数据 (12) 3.1.2 气相物性数据 (12) 3.1.3 气液两相平衡时的数据 (12) 3.2 物料衡算 (12) 3.3 填料塔的工艺尺寸计算 (13)

毕业论文水吸收二氧化硫填料塔设计

水吸收二氧化硫填料塔设计 作者陈福茂 单位港口航道与近海工程学院专业港口航道与海岸工程学号1303010317

摘要:本设计的目的在于除去工业放空尾气中的有害物质。尾气的初始条件为:20℃,常压下,体积流量为2500m3/h混合气(空气+SO2),其中SO2体积分数5%,出塔SO2含量为0.25%。设计方案:用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸收剂,且SO2不作为产品,故属用纯溶剂吸收过程。对于水吸收SO2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。根据以上条件本设计的结果如下:塔径D=1.2m;填料层高度h=5000mm;填料设计层压降△P=107.91×5=539.55Pa。 关键词:水,二氧化硫,填料塔吸收塔 Water Absorption of Sulfur Dioxide in a Packed Tower Abstract:The absorption of the design aims to remove harmful substances in the exhaust of industrial venting. The sulfur dioxide absorption water, design and operating conditions for the task is: At the temperature of 20 and under the atmospheric pressure,the gas mixture (air + SO2)in the amount of procesing : 2500m3/h, volume fraction of sulfue dioxide in the inlet gas mixture:5﹪, emissions (sulfur dioxide by volume) : 0.25﹪. Design scheme: The sulfur dioxide absorption water, to belong to medium solubility absorption process, in order to improve the mass transfer efficiency, choose counter-current absorption process, because water absorbent do, and sulfur dioxide, not as products, so the pure solvents. Choice of filler: the process of water absorption of SO2, the operating temperature and operating pressure is low, the industry usually use plastic bulk packing. In the plastic bulk packing, plastic ladder ring packing performance is better, therefore the DN38 polypropylene ladder ring packing is being choiced. The design of the tower diameter is 1.2m, packing layer height is 5000mm, packing design pressure drop is 539.55Pa. Key Words: H2O; SO2;Packed Tower

合成氨车间二氧化碳吸收塔设计毕业设计

摘要 在工业合成氨的生产过程中,粗原料气经过一氧化碳变换以后,变换气中除氢气外,还有二氧化碳和甲烷等成分,其中二氧化碳含量多达15%-35%。二氧化碳不仅降低氨合成催化剂的活性,又是制造尿素、碳酸氢铵等氮肥的原料,因此要想法除去。 本设计的目的是根据所给技术特性参数,合理设计Ι段二氧化碳吸收塔,用来脱除变换气中的二氧化碳气体。根据《GB150-1998钢制压力容器》、《JBT4710-2005钢制塔式容器》等标准,通过常规设计方法步骤进行设计,包括塔体的筒体和封头壁厚计算和水压试验,接管、接管法兰、人孔法兰和塔内件的选取,裙座的计算和设计,开孔补强计算,风载荷和地震载荷的计算和校核,以及筒体和裙座的应力分析等。强度校核时,大部分情况下将受压元件的应力限制在材料的需用应力以内,用来确保设计的安全性和经济性。 关键词:二氧化碳合成塔;填料塔;合成氨

引言 塔设备又称塔器,塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。用以使气体与液体、气体与固体、液体与液体或液体与固体密切接触,并促进其相互作用,以完成化学工业中热量传递和质量传递过程。 二氧化碳吸收塔,是利用碳酸钾溶液来脱去变换气中的二氧化碳气体,要保证较高的脱碳效率和设备的安全性能,必须对吸收塔系统进行合理的设计,包括吸收塔的尺寸设计,吸收塔材料的选择以及塔部件的选取。吸收塔的主要部件有外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体、液体进出口接管等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。塔内件是填料塔的组成部分,它与填料及塔体共同构成一个完整的填料塔。塔内件的作用是使气液在塔内更好地接触,以便发挥填料塔的最大效率和最大生产能力,因此塔内件设计的好坏直接影响填料性能的发挥和整个填料塔的性能。另外,填料塔的“放大效应”除填料本身因素外,塔内件对它的影响也很大。填料塔的内件主要有:填料支撑装置、填料压紧

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型 1 吸收塔塔型的选择 在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。 目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。 由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。 2 喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。 另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s。许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。 (2)液气比(L/G) L/G决定了SO2的吸收表面积。在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。 根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。 美国能源部编制的FGD-PRISM程序的优化计算,L/G以15L/m3为宜,此时,SO2的去除效率已接近100%。L/G超过15.5L/m3后,脱硫效率的提高非常缓慢,而且提高L/G将使浆液循环泵的流量增大,增加循环泵的设备费用,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用。 (3)吸收塔浆池尺寸 吸收塔浆池尺寸可通过以下工艺设计参数确定: 1)石膏颗粒(晶种)生长的停留时间 湿法脱硫系统中,亚硫酸钙、硫酸钙的析出是在循环浆液的固体颗粒(晶种)表面上进行的,为了晶体的生长和结晶,循环浆池里的石膏颗粒必须有足够的停留时间,反应时间也必须足够长。停留时间的计算公式为: RT=(V×ρ×SC)/TSP 其中:RT—停留时间(min);TSP—石膏成品产量(干基)(kg/min);V—浆池体积(m3);ρ—浆液密度(kg/m3);SC—浆液含固量(%)。如生产的石膏要在水泥或石膏行业使用,FGD的石膏成品含水量必须<10%,石膏必须结晶成平均直径为35~50μm的立方晶体,停留时间必须>15小时。对于抛弃系统,由于石膏成品要被抛弃,石膏成品含水量可>15%,这样系统的停留时间可缩小到10小时左右。 2)石灰石溶解的停留时间 如要求吸收塔内的石灰石充分溶解,则石灰石在循环浆池内必须有足够长的停留时间。一般来说,石灰石的停留时间须>4.3min。石灰石溶解的停留时间按下式计算: T=V/(N×RF) 其中:T—停留时间(min);V—浆池体积(m3);N—循环泵数;RF—单台循环泵流量(m3 /h)。 3)氧化反应的体积和氧气从空气转移到液体的深度氧气从空气转移到液体的深度,是指吸收塔浆液池内释放氧化空气的曝气管或喷枪的位置。亚硫酸盐或亚硫酸氢盐的氧化分为两部分,一部分是吸收塔内烟气中的氧气进入浆液液滴的自然氧化,另一部分是空气通过曝气管网进入浆液池后的强制氧化。

化工原理课程设计---用水吸收二氧化硫常压填料塔

摘要 在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是: ① 回收或捕获气体混合物中的有用物质,以制取产品; ② 除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。吸收操作仅为分离方法之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。 一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一。二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。 本次化工原理课程设计,我设计的题目是:炉气处理量为h m 34200炉气吸过程填料吸收塔设计。本次任务为用水吸收二氧化硫常压填料塔。具体设计条件如下: 1、混合物成分:空气和二氧化硫; 2、二氧化硫的含量:08.0(摩尔分率) 3、操作压强;常压操作 4、进塔炉气流量:h m 34200 5、二氧化硫气体回收率:%98 吸收过程视为等温吸收过程。 关键词:吸收、填料塔、二氧化硫、低浓度。

The Abstract In the chemical production, gas absorption process is using the mixture of gases, the components in liquid or chemical reaction activity of solubility differences. In the chemical industry, gas absorption purpose is to: (1) recovery or capture gas mixture of the useful materials in order to making products; 2) remove the harmful process gas composition, make gas purification, so as to further processing;in order to avoid the atmospheric pollution. Generally speaking, the complete absorption process should include absorption and desorption two parts. In the chemical production process, the raw material of the gas purification, protect the environment, to use gas absorption process. As one of the main equipment packed tower. Sulfur dioxide packing absorption tower, water solvent, reasonable economy, purification degree is high, the pollution is small. In addition, because water and sulfur dioxide reacts sulfuric acid, have a lot of use. The principles of chemical engineering course design,My design task is the sulfur dioxide absorption water atmospheric packed tower. The specific design conditions as follows: 1, mixture composition: air and sulfur dioxide; 2, sulfur dioxide levels in: (Moore points rate) 3, operating pressure; Atmospheric pressure operation 4, into the tower furnace gas flow: 5, sulfur dioxide gas recovery: The absorption process as the isothermal absorption process. Keywords: absorption, packed tower, sulfur dioxide, low concentration.

CO2吸收塔设计

摘要 塔设备是化工、炼油生产中最重要的设备之一,是一种重要的单元操作设备。它可使气(或汽)液或液液两相之间进行充分接触,达到相际传质及传热的目的。常见的、可在塔设备中完成的单元操作有:蒸馏、吸收、解收、萃取、气体的洗涤等。此外,工业气体的冷却与回收、气体的湿法制作和干燥,以及兼有气液两相传质和传热的增湿和减湿等也可在塔设备中完成。 塔设备按其结构特点可以分为板式塔、填料塔和复合塔3类。本次设计选用填料塔作为吸收塔,主要考虑填料塔的以下优点:填料塔结构简单、压力降小,传热效率高,便于采用耐腐蚀的材料制造等,对于热敏性及容易起泡的物料更显出优越性。 本次设计内容包括:发展概况及应用的了解,塔体的选型,填料的选择,工艺计算(包括物料衡算,模拟计算,工艺尺寸计算,高度计算,压降计算,分布装置设计,支撑装置设计);机械计算(包括塔釜设计,上部筒体机械设计,开孔与开孔补强计算,强度设计和稳定设计,支座的选型和设计,接管的选用,法兰的选取),设备的制造及安装等,最后利用CAD将其装配图和部分零件图分别绘制出。 关键词:填料塔;二氧化碳;气液传质;逆相混合

Abstract Tower is one of the most important equipment in chemical industry and oil production, it is also an important handling equipment. It will enable gas(or steam) liquid or liquid-liquid connnecting fully and reaching the purposes of transfering media and heat . Commonly, operation can be completed in tower are: distillation, absorption, of the admission, extraction, washing of the gases. In addition, recycling and cooling of gas in industrial , the gas production of wet and dry, and both two-phase of gas-liquid mass transfering and heat transfering by the humidification and wet,could also be done in the tower. The struction of tower can be divided into plate tower, packed tower and the tower due to its characteristics . The packed tower is choosen as the absorber in the design, Given to the following advantages of the tower: the structure of the tower is simple, the pressure is small , the efficiency of heat conveying is high , and it could be made by corrosion-resistant materials easily, such as manufacturing, thermosensitive and sparkling materials more easily Demonstrate superiority. The design includes: Development and application of knowledge of the tower, and the selection of the structer about the tower, the choice of packing terms and caculating(including the caculating about material balance, simulation caculating, process size, height, the pressure drop, the distribution of design, Design Support Unit); mechanical calculations (including the reactor design of the tower, the design of the upper shell, the opening and the opening reinforcement, the strength of the design and stability of the design, the selection and design of the bearing ,the choice to take over, the selection of flange ), The manufacture the map of assemble and parts with the help of CAD. Key words:Packed tower;Carbon dioxide;Gas-liquid mass transfer; Reverse mixed

化工原理课程设计℃时水吸收二氧化硫填料塔的设计完整版

化工原理课程设计℃时水吸收二氧化硫填料塔 的设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《化工原理》 课程设计报告 题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计 系别:环境科学与工程学院 专业班级:环境工程11(2)班 姓名:陈新林 学号: 指导教师:郑育英 (课程设计时间:2013年12月30日——2014年1月5日) 广东工业大学 目录 1.课程设计目的 (1) 2.课程设计题目描述和要求 (1) 3.课程设计报告内容 (4) 塔径计算 (7) 塔径的计算 (8) (8)

(9) (9) 填料层高度的计算 (9) 传质单元数的计算 (9) (10) (11) 填料塔附属高度的计算 (11) 2 (13) 4.总结 (26) 参考文献 (27)

1. 课程设计目的 化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。化工原理课程设计是以实际训练为主的课程,学生应在过程中收集设计数据,在教师指导下完成一定的设备设计任务,以达到培养设计能力的目的。单元过程及单元设备设计是整个过程和装备设计的核心和基础,并贯穿于设计过程的始终,从这个意义上说,作为相关专业的本科生能够熟练地掌握典型的单元过程及装备的设计过程和方法,无疑是十分重要的。 2.课程设计题目描述和要求 设计题目描述 (1) 设计题目 二氧化硫填料吸收塔及周边动力设备与管线设计 (2) 设计内容 根据所给的设计题目完成以下内容: (1)设计方案确定; (2)相关衡算; (3)主要设备工艺计算; (4)主要设备结构设计与算核; (5)辅助(或周边)设备的计算或选择; (6)制图、编写设计说明书及其它。 (3) 原始资料 设计一座填料吸收塔,用于脱除废气中的SO ,废气的处理量为1000m3/h,其 2 为2%(摩尔分率),采用清水进行逆流吸收。要求塔吸收效率达98%。中进口含SO 2 吸收塔操作条件:常压:;恒温,气体与吸收剂温度:303K 清水取自1800米外的湖水。示意图参见设计任务书。 ⒈设计满足吸收要求的填料塔及附属设备; ⒉选择合适的流体输送管路与动力设备(求出扬程、选定型号等),并核算离心泵安装高度。 设计要求 设计时间为一周。设计成果要求如下: 1.完成设计所需数据的收集与整理 2.完成填料塔的各种计算

解吸塔及蒸氨塔的改造与计算

解吸塔及蒸氨塔的改造与计算 唐伯国林长青张振欧黄洁 (天津博隆塔器新技术开发有限公司300193)我国目前尿素装置多采用水溶液全循环法生产工艺。在生产过程中会形成一定数量的含NH35%~8%的稀碳铵液,浓度太低不能利用,直接排放既污染环境又损失氨。国家废液排放标准中要求含NH3≤0.07%(质量百分数,下同),随着人们对环保要求的重视,有些地方排放废水中含氨量要求指标更低。利用解吸塔将碳铵液中残余的氨和CO2解吸出来,返回吸收系统,既提高氨的利用率,又可使排放废水达到排污标准。 这样对解吸塔的基本要求是: (1)解吸后的排放废液应尽量少地含氨,降低氨耗,减小污染。 (2)解吸后塔顶的解吸气要返回系统,含水量应尽量少,有利于实现系统水平衡。 近年来,世界能源供应日益紧张,节能降耗已成为主要发展方向,从合成氨尾气中回收有价值的气体并加以综合利用,已成为人们普遍关心的问题。合成尾气主要由两部分气体组成:合成放空气和液氨贮槽弛放气,其组分与生产操作有关。合成氨厂将其中的氨清洗后制成稀氨水,氨水浓度一般在15%,再利用蒸氨塔将稀氨水汽提得到99%以上的浓氨,使氨得到充分回收。同时蒸氨塔塔底排放液也要达到排放标准,不会影响环境。 多年来我公司与各合成氨生产厂协作,完成了多项解吸塔与蒸氨

塔的技改工作。本文将以解吸塔和蒸氨塔的各一个改造实例,介绍它们的模拟计算工作,并对相关的问题提出分析意见。 1解吸塔 某生产厂家原解吸塔为DN800,操作压力为0.35MPa,处理量较小,塔釜液出口含NH3指标为0.08%,不能达到国家的废液排放标准。为了增大处理量并能够达到国家的排放标准,该厂决定新增1台解吸塔,委托我公司进行设计。解吸液组分为:NH36.0%、CO20.99%、尿素0.94%,要求处理量为20~25m3/h、排放废液中含NH3≤0.03%。对该塔进行了详细计算,最终确定设计方案,塔径为 1000、所选用的填料为规整填料。开车后操作稳定,解吸塔塔顶解吸气中含NH3为35%,返回系统,塔底排放废液中含NH3为0.023%,满足设计要求。 1.1工艺流程 (1)较早期的解吸塔工艺流程如图1所示。 图1较早期的碳铵解吸塔工艺流程示意图图2经改进的碳铵解吸塔

化工原理课后习题答案第七章吸收习题解答

第七章 吸 收 7-1 总压101.3 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用, 通过实验测定其亨利系数E 为4.13 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。(溶液密度近似取为1000kg/m 3) 解:溶质在液相中的摩尔分数:50 640.0139100050 1864 x ==+ 二氧化硫的平衡分压:* 3 4.13100.0139kPa=57.41kPa p Ex ==?? 相平衡常数:634.1310Pa 40.77101.310Pa E m P ?== =? 7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数), 求填料塔出口水溶液中硫化氢的最大浓度。已知塔内温度为20℃,压强为1.52×105 Pa ,亨利系数E 为48.9MPa 。 解:相平衡常数为:6 5 48.910321.711.5210 E m P ?===? 硫化氢的混合气进口摩尔浓度:1534 0.04305953429 y = =+ 若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即: 41max 0.0430 1.3410321.71 y x m -= ==? 7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。 (1)含 NO 2 0.003(摩尔分率)的水溶液和含NO 2 0.06 (摩尔分率) 的混合气接触,总压为101.3kPa ,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =1.68×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。 解:(1)相平衡常数为:513 1 1.6810Pa 1.658101.310Pa E m P ?===? * 1 1.658 0.0030.00498 y m x ==?=

相关主题