搜档网
当前位置:搜档网 › 平面向量中的三角形四心题目

平面向量中的三角形四心题目

平面向量中的三角形四心题目
平面向量中的三角形四心题目

平面向量中的三角形四心问题

向量是高中数学中引入的重要概念,是解决几何问题的重要

工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。

一、重心(barycenter)

三角形重心是三角形三边中线的交点。重心到顶点的距离与

重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。

结论1:

是三角形的重心

所在平面内一点,则为若G GC GB GA ABC G ?=++?0

的重心

为故上

在中线同理可得上

在中线这表明,,则中点为证明:设ABC G CF BE G AD G GD GA GC

GB GA GC GB GA GC

GB GD D BC ?=-∴+=-?=+++=,,

202

的重心

是证明:的重心

是所在平面内一点,则为若ABC G GC GB GA PC PG PB PG PA PG PC PB PA PG ABC G PC PB PA PG ABC ??=++?=-+-+-?++=??++=?0

0)()()()(3

1)(3

1P

二、垂心(orthocenter)

三角形的三条高线的交点叫做三角形的垂心。

结论3:

的垂心是所在平面内一点,则为若ABC H HA HC HC HB HB HA ABC ???=?=??H 为三角形垂心

故同理,有证明:H AB

HC CB HA AC

HB AC HB HC HA HB HC HB HB HA ⊥⊥⊥?=??=-???=?,00

)(

可知命题成立由结论同理可证得,得,证明:由的垂心

是所在平面内一点,则为若3)()(H 222222222

22222HA

HC HC HB HB HA HA

HC HC HB HA HC HB HC HB HA CA HB BC HA ABC H AB HC AC HB BC HA ABC ?=?=??=??-+=-++=+??+=+=+?

三、外心(circumcenter)

三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。

结论5:

命题成立

证明:由外心定义可知的外心是所在平面内一点,则

是若ABC O OC OB OA ABC O ??==?

结论6:

的外心

是(所在平面内一点,则

是若ABC O AC OA OC CB OC OB BA OB OA ABC O ???+=?+=?+?)()()

的外心

为故故证明:ABC O OC

OB OA OA

OC OC OB OB OA OA

OC AC OA OC OC

OB CB OC OB OB OA OB OA OB OA BA OB OA ?==?-=-=--=?+-=?+∴-=-+=?+222222222222)()())(()(

四、内心(incenter)

三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。

结论7:

的内心

是所在平面内一点,则

为若ABC P CB CB CA CA OC BC BC BA BA OB AC AC AB AB OA OP ABC P ??>????

? ??++=????? ??++=????? ??++=?)0(321λλλλ

的内心

为故的平分线上

在同理可得,平分线上

在即边夹角平分线上在由平行四边形法则知,为方向上的单位向量分别,证明:记ABC P C B P A P AC AB e e e e AP AC AC AB AB OA OP e e AC AB ?∠∠∠++=?????

? ??++=,,)()(,2121112

1λλ

结论8:

的内心是所在平面内一点,则是若ABC P PC c PB b PA a ABC P ??=++?0 是平分线

同理可得其他的两条也的平分线

是由角平分线定理,即不共线,则

与由于证明:不妨设ACB CD a b DB DA DB b DA a c b a DB DA PC DB b DA a PC c b a PC c DB PD b DA PD a PC c PB PA a PC

PD ∠==+=++=++++?=++++?=++=0

,0,0

)()(0)()(0b λλλλλ

三角形四心的向量特征及应用

本文发表于中国数学会主办的《数学通报》2010年第12期 三角形“四心”的向量特征及应用 浙江省上虞市春晖中学 林国夫(邮编:312353) 翻阅近几年各省的竞赛、模拟和高考试题,笔者发现有关三角形的“四心”(即重心,垂心,内心和外心)的向量特征的试题频频出现.考虑到比较熟悉的三角形的重心的向量形式0=++GC GB GA 具有很好的完美性,出于兴趣,笔者对三角形的其余“三心”的向量特征进行了探究,得到了类似于重心的优美的向量表达式,并撰此拙文供读者参考. 1 三角形重心的向量特征 定理1 已知为G ABC Δ的重心,记CGA BGC AGB ΔΔΔ,,的面积为 ,,,CGA BGC AGB S S S ΔΔΔ则=++,且.CGA BGC AGB S S S ΔΔΔ== 证明 如图1,为的重心,为边上的中线,则G ABC ΔAD BC 32= )(31)(2132+=+×=.即)(3 1?+?=?. 故0=++GC GB GA . 由于3:1)32(:22:2::=×===ΔΔΔΔAD AG S S S S ABD AGB ABC AGB . 即ABC AGB S S ΔΔ=31,同理ABC BGC S S ΔΔ=31,ABC CGA S S ΔΔ=3 1, 故 .CGA BGC AGB S S S ΔΔΔ==说明 我们还可以得到更进一步的结果: (1)为G ABC Δ的重心的充要条件为 =++.(2)与+共线.并可以得到下面一个有用的推论. 推论1 已知是不共线三点,点是平面内一点,且C B A ,,P ABC PB PA 21λλ+3λ+=, 其中0321≠??λλλ.记CPA BPC APB ΔΔΔ,,:||:|2的面积为则,,,CPA BPC APB S S S ΔΔΔCPA BPC S S ΔΔ:|APB S Δ|:|13λλλ=. 证明 如图2,记PC PC PB PB PA PA 3'2'1',,λλλ===,根据定理1可知, 点P 是的重心,且'''C B A Δ1:1:1::''''''=ΔΔΔPA C PC B PB A S S S . 由于)''sin ''2 1(:)sin 21 (:''PB A PB PA APB PB PA S S PB A APB ∠??∠??=ΔΔ | |||1'21'λλ?=?=PB PB PA PA ,即||||21''λλ?=ΔΔPB A APB S S ,

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= ==故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故C tan B tan A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA || BC || BA |AC | AB |( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++ 若O 是ABC ?的内心,则c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平分 线所在直线); 二. 范例 (一).将平面向量与三角形内心结合考查 例1 .O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足+ +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

平面向量与三角形四心学案

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆圆心):外心到三角形各顶点的距离相等。 二、典例分析 [例]已知点G 是ABC ?内任意一点,点 M 是ABC ?所在平面内一点. (1)动点P 满足)(++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ?的_________. (2)若存在常数λ,满足()(0)AB AC MG MA AB AC λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (3)动点P 满足:??? ? ??++=B AC C MA MP sin sin λ,()0,λ∈+∞,则直线AG 一定通过ABC ?的 . (4)若存在常数λ,满足()(0)sin sin AB AC MG MA AB B AC C λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (5)若存在常数λ,满足()(0)cos cos AB AC MG MA AB B AC C λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (6)若点D 是ABC 的底边BC 上的中点,满足GD GB GD GC = ,则点G 的轨迹可能通过 ABC ?的__________. (7)??=?=?GA GC GC GB GB GA G 为ABC ?的___________. (8)?=++G 是ABC ?的___________. (9 )==?G 为ABC ?的___________.

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

(完整版)三角形四心与向量.docx

三角形“四心 ”向量形式的充要条件应用 知识点总结 1.O 是 ABC 的重心 OA OB OC 0 ; 若 O 是 S BOC S AOC S AOB 1 S ABC OA OB OC 0 ; ABC 的重心,则 3 故 uuur uuur uuur uuur G 为 ABC 的重心 . PG 1 ( PA PB PC ) 3 2.O 是 ABC 的垂心 OA OB OB OC OC OA ; 若 O 是 ABC (非直角三角形 )的垂心,则 S BOC : S : S tan A : : AOC AOB tan B tan C 故 tan AOA tan BOB tan C OC 0 2 2 2 3.O 是 ABC 的外心 | OA | | OB | | OC | (或 OA OB OC ) 若 O 是 : : sin : : ABC 的外心则 S BOC S AOC S AOB BOC sin AOC sin AOB sin2A : sin2B: sin2C 故 sin 2A OA sin 2BOB sin 2C OC OA ( AB AC OB BA BC OC CA CB ) 0 4. O 是内心 ABC 的充要条件是 ) ( ) ( | AB | AC | BA | | BC | | CA | | CB | 引进单位向量,使条件变得更简洁。如果记 AB , BC , CA 的单位向量为 e 1 , e 2 ,e 3 ,则刚才 O 是 ABC 内心的充要条件 可以写成 OA (e 1 e 3 ) OB (e 1 e 2 ) OC (e 2 e 3 ) , O 是 ABC 内心的充要条件也可以是 aOA b OB cOC 0 。若 O 是 ABC 的内心,则 S BOC : S AOC : S AOB a : b : c 故 aOA bOB cOC 0或 sin A OA sin BOB sin COC 0 ; uuur uuur uuur uuur uuur uuur r ABC 的内心 ; A | AB | PC | BC | PA |CA | PB 0 P 是 e 1 e 2 uuur uuur 向量 AB AC )( 0) 所在直线过 ABC 的内心 ( 是 BAC 的角平分线所在直 B C ( uuur uuur | AB | | AC | 线) ; P 范 例 ( 一)将平面向量与三角形内心结合考查 例 1.O 是平面上的一定点, A,B,C 是平面上不共线的三个点, 动点 P 满足 OP OA ( AB AC ) , 0,则 AB AC P 点的轨迹一定通过 ABC 的( ) (A )外心( B )内心( C )重心( D )垂心 AB uuur uuur uuur 又 OP OA AP ,则原 解析:因为 是向量 AB 的单位向量设 AB 与 AC 方向上的单位向量分别为 e 1和 e 2 , AB

三角形“四心”向量表示

三角形四心的向量问题 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心??=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA |OC | BC || BA |( OB AC | AB |OA =-?=-?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则 刚 才 O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++

平面向量与三角形的四心

专题9:平面向量与三角形的四心 三角形的四心: 1. 外心: 2. 内心: 3. 垂心: 4. 重心: 例1. O 是ABC ?所在平面上一点,且OA OB OC ==,则O 是ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例2. O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足 (),0AB AC OP OA AB AC λλ=++>,则点P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例3. 点P 是ABC ?所在平面上一点,若PA PB ?=PC PB ?=PA PC ?,则点P 是 ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例4. 证明:点P 是ABC ?所在平面上一点,有 G 是ABC ?的重心?1()3 PG PA PB PC =++

针对训练: 1. O ,P 两点在ABC ?所在平面内,且(OP OA)(AB AC)0-?-=,则点P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 2. 已知A,B,C 是平面上不共线的三点,O 是ABC ?的重心,动点P 满足 111(OA OB 2OC)322 OP =++,则点P 一定为ABC ?的( ) A. AB 边中线的中点 B. AB 边中线的三等分点(非重心) C. 重心 D. AB 边的中点 3. 在同一个平面上有ABC ?及一点O 满足关系式: 222222OA BC OB CA OC AB +=+=+,则点O 一定为ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 4.已知O 是平面上的一定点,A,B,C 是平面上不共线的三点,动点P 满足: ()OP OA AB AC λ=++,则P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 5. 在ABC ?所在平面上的一动点M 满足22 2AM BC AC AB ?=-,则动点M 的轨迹必过ABC ?的________________(内心,垂心,外心,重心)。 6. 已知A,B,C,D 是平面上四个不共线的点,若0)()2(=-?-+,则ABC ?的形状是( ) A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

平面向量的应用——三角形四心的性质

平面向量的应用——三角形四心的性质 一 知识点精讲 三角形四“心”向量形式的充要条件 设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ?的外心2 22O A O B O C ?== . (2)O 为ABC ?的重心 0OA OB OC ?++= . 证明: 证明: (3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=? . 证明: (4)O 为ABC ?的内心0aOA bOB cOC ?++= . 证明: 二 典例解析 一、重心 1. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++ ,(0)λ∈+∞, ,则P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心 2. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足sin ||sin ||( C AC B AB + +=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的( ). A.外心 B.内心 C.重心 D.垂心 二、垂心 3. O 是ABC △所在平面上一点,222222||||||||||||+=+=+,O 是ABC △___ A.外心 B.内心 C.重心 D.垂心 4. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足

cos ||cos ||( C AC B AB + +=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的( ). A.外心 B.内心 C.重心 D.垂心 三、内心 4.(2003江苏) 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ?? ? =++ ??? ,(0)λ∈+∞, ,则动点P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心 四、外心 5. 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2 cos cos OB OC AB AC OP AB B AC C λ??+ ?=++ ??? ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的. A.外心 B.内心 C.重心 D.垂 心 6. (2005湖南).设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1= ABc PBC S S ??, λ2= ABC PCA S S ??, λ3= ABC PAB S S ??,定义),,()(321λλλ=p f ,若G 是△ABC 的重心,)61 ,31,21()(=Q f ,则( ) A .点Q 在△GA B 内 B .点Q 在△GB C 内 C .点Q 在△GCA 内 D .点Q 与点G 重合 定理:设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,则有 =++???S S S PBC PAC PAB 五 判断三角形的形状及求最值 7.在△ABC 中,已知向量2 1 0( = =?+ BC AC AB 满足与,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

平面向量题型三三角形“四心”与向量结合

题型三 三角形“四心”与向量结合 (一)平面向量与三角形内心 1、O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足 +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 2、已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ?+?+?=,则P 是三角形的( ) A 外心 B 内心 C 重心 D 垂心 3、在三角形ABC 中,动点P 满足:CP AB CB CA ?-=22 2 ,则P 点轨迹一定通过△ABC 的: ( ) A 外心 B 内心 C 重心 D 垂心 (二)平面向量与三角形垂心 “垂心定理” H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ?=?=??点H 是△ABC 的垂心. 证明:由⊥?=??=-???=?00)(, 同理AB HC ⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 4、已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足: 0PA PC PA PB PB PC ?+?+?=,则P 点为三角形的 ( ) A 外心 B 内心 C 重心 D 垂心 5、点O 是三角形ABC 所在平面内的一点,满足?=?=?,则 点O 是ABC ?的 ( ) (A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点 (C )三条中线的交点 (D )三条高的交点 6、在同一个平面上有ABC ?及一点O满足关系式: 2 O A +2 BC =2 OB +2 CA = 2 OC +2 AB ,则O为ABC ?的 ( ) A 外心 B 内心 C 重心 D 垂心 (三)平面向量与三角形重心 “重心定理” G 是△ABC 所在平面内一点,++=0?点G 是△ABC 的重心. 证明 图中GE GC GB =+

三角形“四心”与向量的完美结合

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心;

(完整版)三角形“四心”的向量表示

三角形“四心”的向量表示 我们都知道,在三角形中,因为有三条边和三个内角,所以有很多的性质。在三角形众多的“心”中,有几个是学生应该掌握的,主要是四个心:重心,内心,外心,垂心。不仅要理解其定义、性质,还需了解和分析其向量的表示形式。由于向量是一种研究几何图形的另一种工具,所以我们有必要对它们进行整理和归纳,让同行借鉴。 一.各心的定义。 1. 重心:三角形三条边的中线的交点。其性质一是连接重心和顶点,延长后必交于对应边的中点。其性质二是重心把中线长分成2:1。 2. 垂心:三角形三边的高线的交点。其性质为垂心与顶点的连线必与对应的边垂直。 3. 外心:三角形三边的中垂线的交点,即三角形的外接圆的圆心。其性质是外心到三顶点等距离。 4. 内心:三角形三内角平分线的交点,即三角形的内切圆的圆心。其性质是内心到三边等距离。 二.各心的向量表示。 在三角形ABC 中,点O 为平面内一点,若满足: 1.0=++OC OB OA ,则点O 为三角形的重心。 分析:由OB OC OA +=-,以OC OB ,为邻边作一平行四边形OBEC , 点D 为BC 中点,如图,由向量的平行四边形法则, 有OB OC OE +=,交BC 于D ,从而有OA AO OD OE -===2 故O 为重心。

E C B 2==,则点O 为三角形的外心。 3 .OA OC OC OB OB OA ? =? =?, +=+=+,则点O 为三角形的垂心。 分析:由OA OC OC OB OB OA ?=?=?有三个等式,其中一个如OC OB OB OA ?=?, 则有0)(=-OC OA OB ,有0=?CA OB ,故AC OB ⊥。同理可证,点O 为三角 形的垂心。 D C 而在三角形ABC 中,记OA a =,OB b =,OC c =,则由2222BO AC CO AB +=+ 2222)()(+-=+-,展开为c a b a ?=?22,则0)(=?- 故OB AC ⊥ ,同理可证OA BC ⊥,从而点O 为三角形的垂心。 40=++,则点O 为三角形的内心。 分析:若点O 为三角形ABC 的内心。如图,延长AO ,过点C 作BO CE //,由于 CDE BDO ??与相似,有DB CD OB CE =,由AD 为角A 的平分线,有AB AC DB CD =,

三角形四心[向量形式]

若 O 是 ? ABC 的重心,则 S 3 ?ABC 故 OA + OB + OC = 0 若 O 是 ?ABC (非直角三角形)的垂心,则 S : : S :S : : | AB | - + AC ) , λ ∈ [0,+∞ ) 则 P 点的轨迹一 . .. . .. 三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角 形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一.知识点总结 1)O 是 ?ABC 的重心 ? OA + OB + OC = 0 ; = S = S S ?BOC ?AOC PG = 1 ( P A + PB + PC ) ? G 为 ?ABC 的重心. 3 ; 2)O 是 ?ABC 的垂心 ? OA ? OB = OB ? OC = OC ? OA :S :S ?BOC ?AO C ; ?AOB = tan A tan B tan C 故 tan AOA + tan BOB + tan COC = 0 3)O 是 ?ABC 的外心 ? | OA |=| OB |=| OC | (或 OA 2 = OB 2 = OC 2 ) 若 O 是 ?ABC 的外心 则 ?BOC :S ?AOC ?AOB = sin ∠BOC sin ∠AOC sin ∠AOB = sin2A : sin2B : sin2C 故 sin 2AOA + sin 2BOB + sin 2COC = 0 4)O 是内心 ?ABC 的充要条件是 OA ? ( AB AC AC ) = OB ? ( BA | BA | - BC | BC | ) = OC ? ( CA | CA | - CB | CB | ) = 0 引进单位向量,使条件变得更简洁。如果记 AB,BC,CA 的单位向量为 e 1 ,e 2 ,e 3 ,则刚才 O 是 ?ABC 内心的充要条件可以写成: OA ? (e 1 + e 3 ) = OB ? (e 1 + e 2 ) = OC ? (e 2 + e 3 ) = 0 O 是 ?ABC 内心的充要条件也可以是 aOA + bOB + cOC = 0 若 O 是 ?ABC 的内心,则 S :S ?BOC :S ?AOC ?AOB = a :b :c 故 aOA + bOB + cOC = 0或 sin AOA + sin BOB + sin COC = 0 ; | AB | PC + | BC | P A + | CA | PB = 0 ? P ?ABC 的内心; 向量 λ( AB + AC )(λ ≠ 0) 所在直线过 ?ABC 的内心(是 ∠BAC 的角平分线所在直线); | AB | | AC | 二.范例 (一).将平面向量与三角形内心结合考查 例 1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动 AB 点 P 满足 OP = OA + λ ( AB AC 定通过 ?ABC 的( ) B e 1 A e 2 C (A )外心(B )内心(C )重心(D )垂心 解析:因为 AB 是向量 AB 的单位向量设 AB 与 AC 方向上的单 P AB 位向量分别为 e 和 e , 又 OP - OA = AP ,则原式可化为 AP = λ (e + e ) ,由菱形的基本性质知 AP 1 2 1 2 平分 ∠BAC ,那么在 ?ABC 中,AP 平分 ∠BAC ,则知选 B. 学习参考

相关主题