搜档网
当前位置:搜档网 › MOSFET基本原理

MOSFET基本原理

MOSFET基本原理
MOSFET基本原理

Principle of MOSFET

功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。

一、电力场效应管的结构和工作原理

电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。

电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。

电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。

二、电力场效应管的静态特性和主要参数

Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}}

1、静态特性

(1)输出特性

输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。

(2)转移特性

转移特性表示漏极电流I D与栅源之间电压U GS的转移特性关系曲线,如图2(a)所示。转移特性可表示出器件的放大能力,并且是与GTR中的电流增益β相似。由于Power MOSFET是压控器件,因此用跨导这一参数来表示。跨导定义为

(1)

图中U T为开启电压,只有当U GS=U T时才会出现导电沟道,产生漏极电流I D。2、主要参数

(1)漏极击穿电压BU D

BU D是不使器件击穿的极限参数,它大于漏极电压额定值。BU D随结温的升高而升高,这点正好与GTR和GTO相反。

(2)漏极额定电压U D

U D是器件的标称额定值。

(3)漏极电流I D和I DM

I D是漏极直流电流的额定参数;I DM是漏极脉冲电流幅值。

(4)栅极开启电压U T

U T又称阀值电压,是开通Power MOSFET的栅-源电压,它为转移特性的特性曲线与横轴的交点。施加的栅源电压不能太大,否则将击穿器件。

(5)跨导g m

g m是表征Power MOSFET 栅极控制能力的参数。{{分页}}

三、电力场效应管的动态特性和主要参数

1、动态特性

动态特性主要描述输入量与输出量之间的时间关系,它影响器件的开关过程。由于该器件为单极型,靠多数载流子导电,因此开关速度快、时间短,一般在纳秒数量级。Power MOSFET的动态特性。如图3所示。

Power MOSFET 的动态特性用图3(a)电路测试。图中,u p为矩形脉冲电压信号源;R S为信号源内阻;R G为栅极电阻;R L为漏极负载电阻;R F用以检测漏极电流。

Power MOSFET 的开关过程波形,如图3(b)所示。

Power MOSFET 的开通过程:由于Power MOSFET 有输入电容,因此当脉冲电压u p的上升沿到来时,输入电容有一个充电过程,栅极电压u GS按指数曲线上升。当u GS上升到开启电压U T时,开始形成导电沟道并出现漏极电流i D。从u p前沿时刻到u GS=U T,且开始出现i D的时刻,这段时间称为开通延时时间t d(on)。此后,i D随u GS的上升而上升,u GS从开启电压U T上升到Power MOSFET临近饱和区的栅极电压u GSP 这段时间,称为上升时间t r。这样Power MOSFET的开通时间

t on=t d(on)+t r(2)

Power MOSFET的关断过程:当u p信号电压下降到0时,栅极输入电容上储存的电荷通过电阻R S和R G放电,使栅极电压按指数曲线下降,当下降到u GSP继续下降,

i D才开始减小,这段时间称为关断延时时间t d(off)。此后,输入电容继续放电,u GS继续下降,i D也继续下降,到u GS< SPAN>T时导电沟道消失,i D=0,这段时间称为下降时间t f。这样Power MOSFET 的关断时间

t off=t d(off)+t f (3)

从上述分析可知,要提高器件的开关速度,则必须减小开关时间。在输入电容一定的情况下,可以通过降低驱动电路的内阻R S来加快开关速度。

电力场效应管晶体管是压控器件,在静态时几乎不输入电流。但在开关过程中,需要对输入电容进行充放电,故仍需要一定的驱动功率。工作速度越快,需要的驱动功率越大。{{分页}}

2、动态参数

(1)极间电容

Power MOSFET的3个极之间分别存在极间电容C GS,C GD,C DS。通常生产厂家提供的是漏源极断路时的输入电容C iSS、共源极输出电容C oSS、反向转移电容C rSS。它们之间的关系为

C iSS=C GS+C G

D (4)

C oSS=C GD+C DS (5)

C rSS=C GD(6)

前面提到的输入电容可近似地用C iSS来代替。

(2)漏源电压上升率

器件的动态特性还受漏源电压上升率的限制,过高的du/dt可能导致电路性能变差,甚至引起器件损坏。

1、正向偏置安全工作区

正向偏置安全工作区,如图4所示。它是由最大漏源电压极限线I、最大漏极电流极限线Ⅱ、漏源通态电阻线Ⅲ和最大功耗限制线Ⅳ,4条边界极限所包围的区域。图中示出了4种情况:直流DC,脉宽10ms,1ms,10μs。它与GTR安全工作区比有2个明显的区别:①因无二次击穿问题,所以不存在二次击穿功率P SB限制线;②因为它通态电阻较大,导通功耗也较大,所以不仅受最大漏极电流的限制,而且还受通态电阻的限制。

2、开关安全工作区

开关安全工作区为器件工作的极限范围,如图5所示。它是由最大峰值电流I DM、最小漏极击穿电压BU DS和最大结温T JM决定的,超出该区域,器件将损坏。

3、转换安全工作区

因电力场效应管工作频率高,经常处于转换过程中,而器件中又存在寄生等效二极管,它影响到管子的转换问题。为限制寄生二极管的反向恢复电荷的数值,有时还需定义转换安全工作区。

器件在实际应用中,安全工作区应留有一定的富裕度。

1、电力场效应管的驱动电路

电力场效应管是单极型压控器件,开关速度快。但存在极间电容,器件功率越大,极间电容也越大。为提高其开关速度,要求驱动电路必须有足够高的输出电压、较高的电压上升率、较小的输出电阻。另外,还需要一定的栅极驱动电流。

开通时,栅极电流可由下式计算:

I Gon=C iSS u GS/tr=(G GS+C GD)u GS/ t r(7)

关断时,栅极电流由下式计算:

I Goff=C GD u DS/t f(8)

式(7)是选取开通驱动元件的主要依据,式(8)是选取关断驱动元件的主要依据。

为了满足对电力场效应管驱动信号的要求,一般采用双电源供电,其输出与器件之间可采用直接耦合或隔离器耦合。

电力场效应管的一种分立元件驱电路,如图6所示。电路由输入光电隔离和信号放大两部分组成。当输入信号u i为0时,光电耦合器截止,运算放大器A输出低电平,三极管V3导通,驱动电路约输出负20V驱动电压,使电力场效应管关断。当输入信号u i为正时,光耦导通,运放A输出高电平,三极管V2导通,驱动电路约输出正20V电压,使电力场效应管开通。{{分页}}

MOSFET的集成驱动电路种类很多,下面简单介绍其中几种:

IR2130是美国生产的28引脚集成驱动电路,可以驱动电压不高于600V电路中的MOSFET,内含过电流、过电压和欠电压等保护,输出可以直接驱动6个MOSFET 或IGBT。单电源供电,最大20V。广泛应用于三相MOSFET和IGBT的逆变器控制中。

IR2237/2137是美国生产的集成驱动电路,可以驱动600V及1200V线路的MOSFET。其保护性能和抑制电磁干扰能力更强,并具有软启动功能,采用三相栅极驱动器集成电路,能在线间短路及接地故障时,利用软停机功能抑制短路造成过高峰值电压。利用非饱和检测技术,可以感应出高端MOSFET和IGBT的短路状态。此外,内部的软停机功能,经过三相同步处理,即使发生因短路引起的快速电流断开现象,也不会出现过高的瞬变浪涌过电压,同时配有多种集成电路保护功能。当发生故障时,可以输出故障信号。

TLP250是日本生产的双列直插8引脚集成驱动电路,内含一个光发射二极管和一个集成光探测器,具有输入、输出隔离,开关时间短,输入电流小、输出电流大等特点。适用于驱动MOSFET或IGBT。

2、电力场效应管的保护措施

电力场效应管的绝缘层易被击穿是它的致命弱点,栅源电压一般不得超过±20V。因此,在应用时必须采用相应的保护措施。通常有以下几种:

(1)防静电击穿

电力场效应管最大的优点是有极高的输入阻抗,因此在静电较强的场合易被静电击穿。为此,应注意:

①储存时,应放在具有屏蔽性能的容器中,取用时工作人员要通过腕带良好接地;

②在器件接入电路时,工作台和烙铁必须良好接地,且烙铁断电焊接;

③测试器件时,仪器和工作台都必须良好接地。

(2)防偶然性震荡损坏

当输入电路某些参数不合适时,可能引志震荡而造成器件损坏。为此,可在栅极输入电路中串入电阻。

(3)防栅极过电压

可在栅源之间并联电阻或约20V的稳压二极管。

(4)防漏极过电流

由于过载或短路都会引起过大的电流冲击,超过I DM极限值,此时必须采用快速保护电路使用器件迅速断开主回路。

电动自行车控制器MOSFET驱动电路的设计

1、概述

电动自行车具有环保节能,价格合适,无噪声,便利等特点,因此,电动自行车成为当今社会人们主要的代步工具。与此同时,消费者和商家对整车的质量及可靠性要求也越来越高,作为整车四大件之一的电动车控制器的可靠性显得尤为重要。功率MOSFET以及相关的驱动电路的设计直接与控制器的可靠性紧密相关,尤其是在续流侧方面,MOSFET的驱动电路设计不当,续流侧MOSFET很容易

损坏,因此本文就如何测量、分析与调整控制器的MOSFET驱动线路来提高MOSFET的可靠性作一些研究,以便能够为设计人员在设计产品时作一些参考。 2、MOSFET开关过程及MOSFET参数模型

.1 MOSFET开通过程中的波形见图1所示,其开通的过程可分为四个阶段:阶段A、t0—t1:门极电压Vgs由0V逐渐上升至Vth,在此期间内MOSFET关闭,Vds不变,Id=0A。

阶段B、t1—t2:门极电压Vgs由Vth上升至平台电压Vp,门极电压为Cgs充电。在此期间内MOSFET开始导通并进入饱和状态,Vds基本保持不变,Id由0上升至Id(max)。

阶段C、t2—t3:门极电压Vgs保持不变,门极电压为Cgd充电。在此期间内MOSFET仍处于饱和状态,Vds迅速下降,Id保持不变。

阶段D、t3—t4:门极电压Vgs由Vp继续上升,在此期间内MOSFET退出饱和状态进入完全导通状态。MOSFET关断时波形与开时

再相反,在此不赘述。

2.2 MOSFET寄生参数模型如图2所示。

由于MOSFET的结构、引线和封装的影响,在MOSFET制作完成后,其各引脚间存在PN结寄生电容和寄生电感,引脚上存在引线电感。由于源极的引线较长,Ls一般要比Ld大。右图为简化的MOSFET参数模型。因此,我们在实际的开关应用中应特别注意寄生电容和引线电感对开关波形的影响,特别是在负载为电感性负载时更应注意。MOSFET的输入电容、反向传输电容和输出电容分别表示如下:

Ciss=Cgs+Cgd

Crss=Cgd

Coss=Cgd+Cds3、两种常见的MOSFET驱动电路

3.1 由分立器件组成的驱动电路(如图3所示),驱动电路A.当HS为高电平时,Q7、Q4导通,Q6关闭,电容C4上的电压(约14V)经过Q4、D3、R6加到Q5的栅极,使Q5导通。在导通期间,Q5的源极电压(Phase)接近电源电压Vdc,所以电容两端的电压随着Phase电压一起浮动,电容C4亦称为自举电容。Q5靠C4两端的电压来维持导通。

B.当HS为低电平时,Q7、Q4关闭,Q6导通,为Q5的栅极提供放电回路,从而使Q5很快关闭。当Q5关闭后,由于下管的开通或负载的作用,使得Phase 电压下降接近0V,从而使C4经过+15V→D2→C4→GND回路充电,为下一次导通做好准备。

C.当LS为低电平时,Q8、Q11导通,Q10关闭,驱动电路通过R11为下管Q9的栅极充电,使Q9导通。

D.当LS为高电平时,Q8、Q11关闭,Q10导通,为Q9的栅极提供放电回路,使Q9关断。

E.当HS和LS同时为高电平时,上管开通下管关闭。当HS和LS同时为低电平时,上管关闭下管开通。在实际应用中,为了避免上下管同时开通,HS和LS 的逻辑要靠MCU或逻辑电路来保证2 半桥驱动芯片组成的驱动电路如图4所示,工作原理如下:A.当HS和LS同时为高电平时,HO有驱动电压输出,使Q1开通。当HS和LS同时为低电平时,LO有驱动电压输出,使Q2开通。B.电容C2与分立器件驱动电路里的C4作用相同,同样为自举电容。

C.电容C1为去藕电容,为抑制功率MOSFET开关时对驱动电路浮动电源部分的干扰,一般应加上此电容。

3.3 两种驱动线路的区别:

A.两种驱动电路在开通时能提供基本相同的驱动电流驱动MOSFET开通,但在MOSFET关断时,分立器件驱动电路因为有三极管放电,所以能提供更大的放电电流关闭MOSFET,而半桥驱动电路由于要经过栅极电阻放电,所以放电电流相对较小,导致MOSFET关闭时间过长,开关损耗相应增加。解决的办法可以是在驱动电阻上反并联一只二极管并增加一个放电的PNP三极管。

B.分立器件驱动电路用的器件较多,可靠性相对没有半桥芯片的驱动电路高。但前提条件是半桥驱动芯片的驱动电路要设计合理。4、MOSFET驱动线路的要求及参数的调整

4.1 门极电压不能超过Vgs的最大值。在设计驱动线路时,应考虑驱动电源电压和线路的抗干扰性,确保MOSFET在带感性负载且工作在开关状态时栅极电压不超过Vgs的最大值。

4.2 为了能够减少MOSFET的开关损耗,驱动线路应能提供足够大的驱动电流,使开通和关断的时间尽可能短,同时,尽量减少门极电压的高频震荡。如果要获得同样的RC时间常数,使用较小的驱动电阻和较大的电容可以获得较好的驱动特性,但驱动线路的损耗同时也增加了。

图5和图6是实际应用中的测试波形,从图中我们可以看出:①电容的增加使得开启的时间变长,增加了开通损耗。②电容的增加,使得门极电压的高频震荡减少。同时,由于米勒平台的振荡减小,MOSFET在米勒平台期间的损耗也会相应

4.3 延长MOSFET的开通时间可以减小开通时的涌入电流。由于电机负载为感性负载,所以在PWM关断时存在续流现象(见图7中的I2),为了减小续流侧反向恢复电流(Irr)的大小,PWM侧开关管的开通速度不宜过快。由于MOSFET 处于饱和区时有公式:Id=K*(Vgs-Vth)2,(K为一常数,由MOSFET的特性决定)。所以在一定的温度和Vds条件下,从MOSFET的门极驱动电压Vgs可以判断MOSFET中的电流大小。图5中Vgs峰值为9.1V,图6中Vgs峰值为6.4V,所以增加电容使得峰值电流减小。Id也可从MOSFET的转移特性图中获得。4.4 由于MOSFET的封装电感和线路的杂散电感的存在,在MOSFET反向恢复电流Irr突然关断时,MOSFET(Q3)上

的电压Vds会出现振铃(如图8中CH2所示)。此振铃的出现会导致Vds超过MOSFET的击穿电压从而发生雪崩现象。如果线路中出现振铃,我们可以通过以下方法来减小振铃:A.设计线路时应考虑线路板布线:①尽量缩短驱动线路与MOSFET之间的线迹长度;②使大电流回路的铜箔走线尽量短且宽,必要时可以在铜箔表面加锡;③合理的走线,使大电流环路的面积最小。

B.如果线路杂散电感已经确定,可以通过减小PWM侧的MOSFET开通速度来减小在续流侧的MOSFET上的Vds振铃,从而能够使MOSFET上的Vds不超过最大耐压值。

C.如果以上两种方法都不能很好地解决问题,我们可以通过在相线上加snubber 的方法来抑制线路的振铃。

4.5 注意Cdv/dt产生的栅极感应电压。

如图7所示:在控制MOSFETQ1的导通开关期间,因为Q1的米勒效应和导通延迟的缘故,满输入电压并不会立刻出现在Q3的漏极上。施加在Q3上的漏极电压会感应出一个通过其栅——漏极间米勒电容Cgd(见图2)进行耦合的电流。该感应电流在Q3的内部栅极电阻Rg和外部栅极电阻的两端产生一个压降。该电压将对Q3栅极上的栅——源极间电容Cgs进行充电。Q3上的感应栅极电压的幅度是dv/dt、Cgd、Cgs和总栅极电阻的一个函数。感应栅极电压如图8中的CH1所示,其值已达到2.3V。另外,由于源极引线电感的存在,在Q3内的电流迅速减小时,会在Ls的两端感应出一个极性为上负下正的电压,如图9所示,此时加在DIE上的电压Vgs(die)要大于在外部引脚上测量的Vgs电压,所以由于Ls的影响,使得MOSFET有提前导通的可能。如果下管由于感应电压而导通,则会造成上下管穿通,如果MOSFET不能承受此穿通电流,MOSFET 就会损坏。

4.5.1 防止产生Cdv/dt感应导通的方法:

A.选择具有较高门限电压的MOSFET。

B.选择具有较小米勒电容Cgd和较小Cgd/Cgs的MOSFET。

C.使上桥(Q1)的开启速度变慢,从而减小关断时的dv/dt和di/dt,使感应电压Cdv/dt和Lsdi/dt减小。

D.增加Q3的栅极电容Cgs,从而减小感应电压。

4.5.2 保留Cdv/dt感应导通的好处Cdv/dt感应导通有一个好处:它能够减小续流侧MOSFET上的电压尖峰和Vds振铃(V=L×dIrr/dt;L:环路寄生电感),同时也减小了系统的EMI干扰。因此,在设计MOSFET驱动线路时,我们应根据实际情况来权衡驱动参数的调整,即究竟是阻止Cdv/dt感应导通以求最大限度地提升电路效率和可靠性还是采用Cdv/dt感应导通来抑制过多的寄生振铃。

5、结论

A.在开始设计之前,应该全面了解所选MOSFET的参数,判断MOSFET是否能满足产品要求,包括MOSFET的耐压(Vgs和Vds)、最大电流等参数,确保当工作条件最恶劣时这些参数不要超过MOSFET的最大额定值。

B.在线路设计阶段,必须进行热设计,以确保MOSFET工作在安全工作区。应特别注意线路板的布线,尽量减小线路杂散电感。

C.在不影响可靠性的情况下尽量缩短开关时间,将开关损耗降到最低。有时为了进一步提高效率,降低温升,还可采用同步整流。

、电动车控制器的实现方式与组成部分:目前电动自行车用控制器,不管有刷无刷,普遍采用PWM调速方式。电动车控制器内部必须要有PWM发生器电路,还要有电源电路,功率器件,功率器件驱动电路,控制器件驱动电路,控制部件(转把、闸把、电机霍耳等)信号采集单元与处理电路,过流与欠压等保护电路。

2、影响电动车控制器可靠性的因素:控制器的失效,从表现形式来看,一般有以下几种:

1)、功率器件损坏;

2)、电动自行车电机技术控制器内部供电电源损坏;

3)、电动车控制器工作时断时续;

4)、连接线磨损及接插件接触不良或脱落引起控制信号丢失。针对以上失效形式的起因分析如下: A、功率器件的损坏,一般有以下几种可能:电动自行车电机技术电机损坏引起的;功率器件本身的质量差或选用等级不够引起的;器件安装或振动松动引起的;电机过载引起的;功率器件驱动电路损坏或参数设计不合理引起的。B、控制器内部电源的损坏,一般有以下几种可能:控制器内部电路短路;外围控制部件短路;外部引线短路。C、电动自行车电机技术控制器工作起来时断时续,一般有以下几种可能:器件本身在高温或低温环境下参数漂移;控制器总体设计功耗大导致某些器件局部温度过高而使器件本身进入保护状态;接触不良。D、连接线磨损及接插件接触不良或脱落,一般有以下几种可能:线材选择不合理;对线材的保护不完备;接插件的选型不好;线束与接插件的压接不牢。3、提高控制器的可靠性的方案:了解电动车控制系统可能发生故障点以后,有针对性的可靠性设计就有了目标。A、首先是功率器件的型号,品牌,产地与供应商的选择,然后对功率器件的筛选,以上两点是提高功率器件可靠性前提。在此基础上,对功率器件安装工艺的设计和对功率器件驱动电路的设计才有意义。对无刷电机控制器而言,一般上三路功率管的驱动比较复杂,目前大多数厂家采用专用驱动芯片驱动。专用驱动芯片的不足之处是价格较高,内部的变电路采用了有源电路,转换效率偏低,其主要的应用场合是在周围电路完全没有交流电存在情况下,利用其内部电路完成变频、升压与整流。B、对于电动自行车电机技术控制器的内部电源,为了防止电动车控制器内部或外部短路对电源的损坏,同时也是出于对电动自行车电机技术电源自身的保护,可以把电源设计成独立供电方式,这样既可以防止局部电路(转把,闸把、电机传感器等)发生短路而烧坏控制器,又可以防止电源电压异常升高而击穿外部器件。基于以

上考虑,可以采用DC——DC模块的负载能力强,自身的功率损耗相当低(不到0.1W),这在提高控制器的整体效率,降低控制器的运行温度方面有着线形稳压器无可比拟的优点。C、要克服电动车控制器对温度的敏感,第一是选择温度系数好的元器件,第二是从设计上降低各模块电路的功率消耗,第三是尽量减少无用功消耗,第四是充分考虑到控制器的散热。如果采用无功率消耗的功率管驱动方案,加上高效率的DC—DC电源模块,可以将控制器工作电流降低到30mA以下。在这里需要解释一下的是,在电动车控制器里,用于采样电流信号的阻值大功率电阻器件属于控制的功率器件之一,电流采样电阻的功率消耗属于无用消耗,应该算控制器功率损耗的一部分,要减小控制器的功耗,降低控制器的运行温度,可以利用电机的转整与电机电流的绝对对应关系,通过检测电动自行车电机技术电机转动转速来检测电机电流,从而达到控制电流的目的。D、由于电动车电气系统信号的传输是用连接线束来完成的,出于提高电动车整车的可靠性和提高控制器本身的可靠性出发,对电动车连接线束与接插件的要求是:边接可靠,防水,防尘,抗震,防氧化,防磨损。基于以上要求,电动车边接线束与接插件要有完备的防护套,接插件一定要达到汽车级的接插要求,因为电动车的使用环境从某种意义上讲,比汽车的使用环境还要恶劣。4、对于无刷电机控制器,由于输入控制变量与控制器使用功率器件比较多,控制器可以利用各种输入信号对控制系统完成相当完善的与想当灵活的保护,这些保护功能可以有:过流保护、减流保护、低电流过载保护,电机换相信号错误保护以及在没有过流的情况下电机堵转直接保护等。电动车无刷控制器通过直接读取各种控制信号,进行实时处理或保护,这种方法就可以大大提高无刷控制器的设计可靠性。

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总 一:MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率M OS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。

mosfet工作原理

金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其"通道"(工作载流子)的极性不同,可分为"N型"与"P型" 的两种类型,通常又称为NMOSFET与PMOSFET,其他简称上包括NMOS、PMOS等。 结构: 典型平面N沟道增强型NMOSFET的剖面图。它用一块P型硅半导体材料作衬底,在其面上扩散了两个N型区,再在上面覆盖一层二氧化硅(SiO2)绝缘层,最后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连接在一起,这样,相当于D与S之间有一个PN结。 常见的N沟道增强型MOSFET的基本结构图。为了改善某些参数的特性,如提高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。虽然有不同的结构,但其工作原理是相同的,这里就不一一介绍了。 工作原理: 要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变

VGS的电压可控制工作电流ID。 若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为"反型层",这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图3所示。此曲线称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。 耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

MOS管工作原理动画示意图也有N沟道和P沟道两类

MOS管工作原理动画示意图也有N沟道和P沟道两类 绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。 与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。 根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S 间形成电流。 当栅极加有电压时,若0VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID

mos管的结构和工作原理

在P型衬底上,制作两个高掺杂浓度的N型区,形成源极(Source)和漏极(Drian),另外一个是栅极(Gate).当 Vi=VgsVgs并且在Vds较高的情况下,MOS管工作在 恒流区,随着Vi的升高Id增大,而Vo随这下降。 常用逻辑电平:TTL、CMOS、LVTTL、LVCMOS、ECL(Emitter Coupled Logic)、PECL(Pseudo/Positive Emitter Coupled Logic)、LVDS(Low Voltage Differential Signaling)、GTL(Gunning Transceiver Logic)、BTL(Backplane Transceiver Logic)、ETL(enhanced transceiver logic)、GTLP(Gunning Transceiver Logic Plus);RS232、RS422、RS485(12V,5V,3.3V);TTL和CMOS不可以直接互连,由于TTL是在0.3-3.6V之间,而CMOS则是有在12V的有在5V的。CMOS输出接到TTL是可以直接互连。TTL接到CMOS需要在输出端口加一上拉电阻接到5V或者12V。 cmos的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos可直接驱动ttl;加上拉电阻后,ttl可驱动cmos. 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的搞电平值。

N沟道和P沟道MOS管工作原理

MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。 我们常用的是NMOS,因为其导通电阻小,且容易制造。在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低

端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 2.MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 3.MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极

MOSFET工作原理

MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor--SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1.功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电 机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管

是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET, (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS器件为例进行讨论。 功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。 2.2.功率MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。P基区与N 漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。

MOSFET工作原理详解

MOSFET结构及其工作原理详解 时间:2012年03月22日 字体: 大中小关键词:MOSFET电阻UC3724 MOSFET的工作原理 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor 场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1.功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 功率MOSFET的结构图

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打 IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。点击进入万联芯城 点击进入万联芯城

MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 MOS管工作原理图电源开关电路详解 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。本文使用的为增强型MOS MOS管,其内部结构见mos管工作原理图。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

MOS管电路工作原理详解

MOS管电路工作原理详解,MOS管工作原理文章-KIA MOS管 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管型号和增强型的P沟道MOS管型号,所以通常提到NMOS,或者PMOS指的就是这两种。至于为什么不使用耗尽型的 MOS管,不建议刨根问底。对于这两种增强型MOS管,比较常用的是NMOS。原因是导通 电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由 于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但 没有办法避免,后边再详细介绍。在MOS管原理图上可以看到,漏极和源极之间有一个寄 生二极管。这个叫体二极管,在驱动感性负载,这个二极管很重要。顺便说一句,体二极管 只在单个的MOS管中存在,在集成内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。NMOS的特性,Vgs大于一定的值就会导通,适 合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。PMOS的 特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽 然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在 高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的会减小导通损耗。现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬 间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多, 而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。 缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

mosfet工作原理

从名字表面的角度来看MOSFET的命名,事实上会让人得到错误的印象。因为MOSFET里代表“metal”的第一个字母M在当下大部分同类的元件里是不存在的。早期MOSFET的栅极(gate electrode)使用金属作为其材料,但随著半导体技术的进步,随后MOSFET栅极使用多晶硅取代了金属。在处理器中,多晶硅栅已经不是主流技术,从英特尔采用45纳米线宽的P1266处理器开始,栅极开始重新使用金属。。 MOSFET在概念上属于“绝缘栅极场效晶体管”(Insulated-Gate Field Effect Transistor,IGFET),而IGFET的栅极绝缘层有可能是其他物质而非MOSFET使用的氧化层。有些人在提到拥有多晶硅栅极的场效晶体管元件时比较喜欢用IGFET,但是这些IGFET多半指的是MOSFET。 MOSFET里的氧化层位于其通道上方,依照其操作电压的不同,这层氧化物的厚度仅有数十至数百埃(?)不等,通常材料是二氧化硅(silicon dioxide,SiO2),不过有些新的进阶制程已经可以使用如氮氧化硅(silicon oxynitride,SiON)做为氧化层之用。 今日半导体元件的材料通常以硅(silicon)为首选,但是也有些半导体公司发展出使用其他半导体材料的制程,当中最著名的例如IBM使用硅与锗(germanium)的混合物所发展的硅锗制程(silicon-germanium process,SiGe process)。而可惜的是很多

拥有良好电性的半导体材料,如砷化镓(gallium arsenide,GaAs),因为无法在表面长出品质够好的氧化层,所以无法用来制造MOSFET元件。 当一个够大的电位差施于MOSFET的栅极与源极(source)之间时,电场会在氧化层下方的半导体表面形成感应电荷,而这时所谓的“反型层”(inversion channel)就会形成。通道的极性与其漏极(drain)与源极相同,假设漏极和源极是N型,那么通道也会是N型。通道形成后,MOSFET即可让电流通过,而依据施于栅极的电压值不同,可由MOSFET的通道流过的电流大小亦会受其控制而改变。 电路符号 常用于MOSFET的电路符号有很多种变化,最常见的设计是以一条直线代表通道,两条和通道垂直的线代表源极与漏极,左方和通道平行而且较短的线代表栅极,如下图所示。有时也会将代表通道的直线以破折线代替,以区分增强型MOSFET(enhancement mode MOSFET)或是耗尽型MOSFET(depletion mode MOSFET)另外又分为NMOSFET和PMOSFET两种类型,电路符号如图所示(箭头的方向不同)。 由于集成电路芯片上的MOSFET为四端元件,所以除了栅极、源极、漏极外,尚有一基极(Bulk或是Body)。MOSFET电路符

mosfet工作原理

mosfet工作原理 据我所指的MOSFET是一种可以广泛使用在模拟电路与数字电路的场效晶体管。它依照其“通道”(工作载流子)的极性不同,可分为“N型”与“P型”的两种类型 从名字表面的角度来看MOSFET的命名,事实上会让人得到错误的印象。因为MOSFET里代表“metal”的第一个字母M在当下大部分同类的元件里是不存在的。早期MOSFET的栅极(gate electrode)使用金属作为其材料,但随著半导体技术的进步,随后MOSFET栅极使用多晶硅取代了金属。在处理器中,多晶硅栅已经不是主流技术,从英特尔采用45纳米线宽的P1266处理器开始,栅极开始重新使用金属。。 MOSFET在概念上属于“绝缘栅极场效晶体管”(Insulated-Gate Field Effect Transistor,IGFET),而IGFET的栅极绝缘层有可能是其他物质而非MOSFET使用的氧化层。有些人在提到拥有多晶硅栅极的场效晶体管元件时比较喜欢用IGFET,但是这些IGFET多半指的是MOSFET。 MOSFET里的氧化层位于其通道上方,依照其操作电压的不同,这层氧化物的厚度仅有数十至数百埃(?)不等,通常材料是二氧化硅(silicon dioxide,SiO2),不过有些新的进阶制程已经可以使用如氮氧化硅(silicon oxynitride,SiON)做为氧化层之用。 今日半导体元件的材料通常以硅(silicon)为首选,但是也有些半导体公司发展出使用其他半导体材料的制程,当中最著名的例如

IBM使用硅与锗(germanium)的混合物所发展的硅锗制程(silicon-germanium process,SiGe process)。而可惜的是很多拥有良好电性的半导体材料,如砷化镓(gallium arsenide,GaAs),因为无法在表面长出品质够好的氧化层,所以无法用来制造MOSFET元件。 当一个够大的电位差施于MOSFET的栅极与源极(source)之间时,电场会在氧化层下方的半导体表面形成感应电荷,而这时所谓的“反型层”(inversion channel)就会形成。通道的极性与其漏极(drain)与源极相同,假设漏极和源极是N型,那么通道也会是N型。通道形成后,MOSFET即可让电流通过,而依据施于栅极的电压值不同,可由MOSFET的通道流过的电流大小亦会受其控制而改变。

MOSFET基本原理

Principle of MOSFET 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

N沟道MOS管的结构及工作原理

一、N沟道增强型场效应管结构 a)N沟道增强型MOS管结构示意图 b) (b) N沟道增强型MOS管代表符号 (c) P沟道增强型MOS管代表符号

在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图1(c)所示。 二、N沟道增强型场效应管工作原理 1.vGS对iD及沟道的控制作用 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s 之间有两个背靠背的PN结。当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流iD≈0。 若在栅-源极间加上正向电压,即vGS>0,则栅极和衬底之间的

SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P 型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当vGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P 衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。我们把开始形成沟道时的栅-源极电压称为开启电压,用VT表示。 由上述分析可知,N沟道增强型MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成,此时在漏-源极间加上正向电压vDS,才有漏极电流产生。而且vGS增大时,沟道变厚,沟道电阻减小,iD增大。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。 2.vDS对iD的影响

n沟道mos管的结构和工作原理

N沟道MOS管的结构及工作原理 2010-11-09 19:53:04| 分类:晶体管|字号订阅 N沟道金属-氧化物-半导体场效应管(MOS管)的结构及工作原理 结型场效应管的输入电阻虽然可达106~109W,但在要求输入电阻 更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的 反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015W。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。 MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽 型两种,二者的区别是增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型MOS管在vGS=0时,漏-源极间 就有导电沟道存在。 一、N沟道增强型场效应管结构 a) N沟道增强型MOS管结构示意图

(b) N沟道增强型MOS管代表符号 (c) P沟道增强型MOS管代表符号 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图 1(c)所示。 二、N沟道增强型场效应管工作原理 1.vGS对iD及沟道的控制作用 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流iD≈0。 若在栅-源极间加上正向电压,即vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个

MOSFET结构及工作原理简介

金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟 电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。 结构 图1是典型平面N沟道增强型MOSFET的剖面图。它用一块P型硅半导体材料 作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiO2)绝缘层(图1c),最后在N区上方用腐蚀的方法做成两个孔,用金属化的方 法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图 1d所示。 平面N沟道增强型MOSFET从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连接在一起。 图3是N沟道增强型MOSFET的基本结构图。为了改善某些参数的特性,如提 高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。图2是一种N沟道增强型功率MOSFET 的结构图。虽然有不同的结构,但其工作原理是相同的,这里就不一一介绍了。 工作原理 要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间 加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如 图3所示(上面↑)。

MOSFET的基本原理特点及应用

MOSFET的基本原理特点及应用 分类: 应用技术 | 标签: 电子 摘要:本文主要介绍mosfet 的基本原理,以及按照其运行原理来分类,最后介绍了其基本运用。mosfet 自1976 年开发出功率MOSFET 以来,由于半导体工艺技术的发展,它的性能不断提高:如高压功率MOSFET 其工作电压可达1200V ;一般也能做到低导通电阻MOSFET 其阻值仅lOmΩ ;工作频率范围从直流到达数兆赫;保护措施越来越完善;并开发出各种贴片式功率MOSFET( 如Siliconix 最近开发的厚度为 1.5mm “Li t tle Foot 系列) 。另外,价格也不断降低,使应用越来越广泛,不少地方取代双极型晶体管。 功率MOSFET 主要用于计算机外设 ( 软、硬驱动器、打印机、绘图机 ) 、电源 (AC /DC 变换器、DC /DC 变换器) 、汽车电子、音响电路及仪器、仪表等领域。 什么是MOSFET “MOSFET” 是英文MetalOxide Semicoductor Field Effect Transistor 的缩写,译成中文是“ 金属氧化物半导体场效应管” 。它是由金属、氧化物(SiO2 或SiN) 及半导体三种材料制成的器件。所谓功率MOSFET(Power MOSFET) 是指它能输出较大的工作电流 ( 几安到几十安) ,用于功率输出级的器件。 MOSFET 的结构 图1 是典型平面N 沟道增强型MOSFET 的剖面图。它用一块P 型硅半导体材料作衬底( 图la) ,在其面上扩散了两个N 型区( 图lb) ,再在上面覆盖一层二氧化硅(SiQ2) 绝缘层( 图lc) ,最后在N 区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极: G( 栅极) 、S( 源极 ) 及D( 漏极 ) ,如图1d 所示。

mosfet工作原理

MOSFET的基本结构与工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N 沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 MOS栅结构是MOSFET的重要组成部分,一个典型的N沟道增强型结构示意图如图1所示。其中栅极、源极和漏极位于同一个平面内,半导体的另一个平面可以称为体端,所以在一些书籍和资料中,也将MOSFET称为四端器件,实际上那个体端一般跟源极相连接,所以在此还是将MOSFET看成三端器件。N沟道增强型MOSFET的图形符号如图2a所示,跟结型场效应晶体管一样,存在3种类型的MOSFET,它们的图形符号如图2b、c和d所示。在实际应用中,一般不特指时的MOSFET都是增强型MOSFET,即在栅极不控制时,漏极-源极之间可以承受正偏置电压。 在图1中,点划线框内就是典型的MOS结构,或者称为MOS栅结构。在金属和P型半导体之间的黑色部分就是氧化物绝缘层。需要补充说明的是,在早期的MOS栅结构中,金属侧只能使用金属材料,而在现代的MOS栅结构中,金属几乎完全被重掺杂的多晶硅或者金属-多晶硅合金所代替,这些材料在生产方便性和可靠性上都更具有优势。不妨碍对MOSFET结构和基本工作原理的理解,在此仍认为其是金属材料。和结型场效应晶体管一样,在MOSFET中载流子也是从源极经过沟道流向漏极,所以与源极和漏极相连接的都是重掺杂的N+区,以便更好地提供载流子。仔细观察,在MOSFET中,由于源极和体端相连接,从源极到漏极,即从体端到漏极还存在PN+结,即一个双极型二极管,显然它对MOSFET的反向阻断和导通特性有明显的影 响。 为分析和表述方便,定义栅极到源极(就是栅极到体端)的电压为U GS , 漏极到源极的电压为U DS ,流经MOSFET的电流,即流入漏极的电流为I D 。 MOSFET的基本工作原理和特性主要体现在MOS结构的工作原理以及MOSFET中沟道的特性。此时要分两大类情况来分析MOSFET的基本工作原

MOSFET结构及其工作原理

MOSFET结构及其工作原理 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR, 但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但 结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET 大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。

相关主题