搜档网
当前位置:搜档网 › 路由表的相关参数解释

路由表的相关参数解释

路由表的相关参数解释
路由表的相关参数解释

路由表的相关参数解释

以下给出了一个查看路由表实例,并通过该实例来说明路由表中各参数的涵义。

如图所示路由表中,每一行代表一条静态路由,各参数项涵义如下:

IpAddr/Mask:目的地址/掩码长度;

该值为“0.0.0.0/0”对应的路由为缺省路由。

GwIpAddr:网关地址(下一跳地址)

如果是直接路由,即目的地址为与对应端口直接相连的网络,则显示为“-”。

特别地,对于PPPoE拨号上网线路来说,拨号成功后,对应的缺省路由以及绑定在该PPPoE 连接上的静态路由的网关地址均将显示为PPPoE拨号获得的IP地址。

IfId:转发接口

部分转发接口的涵义如下:

ie0:物理接口LAN;

ie1:物理接口W AN;

ie2:物理接口DMZ/WAN2;

ptpdial0:待拨的虚端口;

ptpx:虚端口x,x为对应的虚端口号,取值为0、1、2、…;

bhole0:内部接口,转发到该端口的所有包都被HiPER丢弃;

local:内部软路由接口,转发到HiPER本身;

reject:内部接口,转发到该端口的所有数据包都被HiPER拒绝,并回应一个ICMP不可达;

loopback:回环地址,代表127.0.0.0/8网段,不被转发;

mcast:多播;

Flag:标志

该参数用来显示路由的状态。该参数显示字的母对应的全称如下。

*-Hidden,o-OSPF,i-ICMP,l-Local,r-RIP,n-SNMP,c-Connected,s-Static,R-Remote,g-Gateway,h-Host,p-Private,u-Up,t-Temp,M -Multiple,F-Float,a-Append,N-NA T,x-rtNAT,y-NATrt,B-BIND,E-IPSec,?-Unknown。

部分标志项的涵义如下:

*-Hidden:此条路由目前不生效,一般是此条路由处于备份状态或是线路失效导致路由中断;g–Gateway:此条路由为间接路由;

h–Host:此条路由为主机路由;

N-NA T:此条路由上启用了NAT,局域网用户正通过此条路由共享上网;

F-Float:此条路由配置了路由优先级等信息,目前处于浮动状态,会因为线路的生效或者失效而决定该条路由是否启用;

M-Multiple:到同一个目的地,当前至少有两条可使用的路由;

a-Append:到同一目的地,允许存在多条路由;

E-IPSec:当前路由的转发端口上启用了IPSec策略。

Cost:优先级。系统自动生成的静态路由的优先级均为20。

Met:跳数。系统自动生成的静态路由的跳数均为0,即全部都是直接路由。

Use:使用次数。系统使用该静态路由转发数据包的次数。

Age:使用时间。该静态路由生成的年龄。单位:秒。

变压器主要技术参数及含义

变压器主要技术参数的含义 说明:读书时,很多人对变压器、电机很难理解,当你有工作经验后,再来看下这些知识,你会有更深的理解。 (1)额定容量SN:指变压器在铭牌规定条件下,以额定电压、额定电流连续运行时所输送的单相或三相总视在功率。 (2)容量比:指变压器各侧额定容量之间的比值。 (3)额定电压UN.指变压器长时间运行,设计条件所规定的电压值(线电压)。 (4)电压比(变比):指变压器各侧额定电压之间的比值。 (5)额定电流IN:指变压器在额定容量、额定电压下运行时通过的线电流。 (6)相数:单相或三相。 (7)连接组别:表明变压器两侧线电压的相位关系。 (8)空载损耗(铁损)Po:指变压器一个绕组加上额定电压,其余绕组开路时,变压器所消耗的功率。变压器的空载电流很小,它所产生的铜损可忽略不计,所以空载损耗可认为是变压器的铁损。铁损包括励磁损耗和涡流损耗。空载损耗一般与温度无关,而与运行电压的高低有关,当变压器接有负荷后,变压器的实际铁芯损耗小于此值。 (9)空载电流Io%:指变压器在额定电压下空载运行时,一次侧通过的电流。不是指刚合闸瞬间的励磁涌流峰值,而是指合闸后

的稳态电流。空载电流常用其与额定电流比值的百分数表示,即 Io%=Io/I

N×100% (10)负荷损耗Pk(短路损耗或铜损):指变压器当一侧加电压而另一侧短接,使电流为额电流时(对三绕组变压器,第三个绕组应开路),变压器从电源吸取的有功功率。按规定,负荷损耗是折算到参考温庋(75℃)下的数值。因测量时实为短路状态,所以又称为短路损耗。短路状态下,使短路电流达额定值的电压很低,表明铁芯中的磁通量很少,铁损很小,可忽略不计,故可认为短路损耗就是变压组(绕组)中的损耗。 对三绕组变压器,有三个负荷损耗,其中最大一个值作为该变压器的额定负荷损耗。负荷损耗是考核变压器性能的主要参数之一。实际运行时的变压器负荷损耗并不是上述规定的负荷损耗值,因为负荷损耗不仅取决于负荷电流的大小,而且还与周围环境温度有关。 负荷损耗与一、二次电流的平方成正比。 (11)百分比阻抗(短路电压):指变压器二次绕组短路,使一次侧电压逐渐升高,当二次绕组的短路电流达到额定值时,此时一次侧电压与额定电压的比值(百分数)。 变压器的容量与短路电压的关系是:变压器容量越大,其短路电压越大。 (12)额定频率:变压器设计所依据的运行频率,单位为赫兹(Hz),我国规定为50H。 (13)额定温升TN:指变压器的绕组或上层油面的温度与变

qaac 2.15命令行参数

qaac 2.15 Usage: qaac [options] infiles.... "-" as infile means stdin. On ADTS/WAV output mode, "-" as outfile means stdout. Main options: --formats Show available AAC formats and exit -a, --abr AAC ABR mode / bitrate -V, --tvbr AAC True VBR mode / quality [0-127] -v, --cvbr AAC Constrained VBR mode / bitrate -c, --cbr AAC CBR mode / bitrate For -a, -v, -c, "0" as bitrate means "highest". Highest bitrate available is automatically chosen. For LC, default is -V90 For HE, default is -v0 --he HE AAC mode (TVBR is not available) -q, --quality AAC encoding Quality [0-2] --adts ADTS output (AAC only) -A, --alac ALAC encoding mode -d Output directory. Default is current working dir. --check Show library versions and exit. -D, --decode Wave output mode. -r, --rate keep: output sampling rate will be same as input if possible. auto: output sampling rate will be automatically chosen by encoder. n: desired output sampling rate in Hz. --lowpass Specify lowpass filter cut-off frequency in Hz. Use this when you want lower cut-off than Apple default. -b, --bits-per-sample Bits per sample of output (for WAV/ALAC only) --no-dither Turn off dither when quantizing to lower bit depth. --gain Adjust gain by f dB. Use negative value to decrese gain, when you want to avoid clipping introduced by DSP. -N, --normalize Normalize (works in two pass. generates HUGE tempfile for large input) --delay <[[hh:]mm:]ss[.ss..]|ns> Specify delay either by time or number of samples. When positive value is given, prepend silence at the begining to achieve delay of specified amount.

Locust命令行参数详解

Locust命令行参数详解 -h, --help 查看帮助 -H HOST, --host=HOST 被测试的主机地址,格式:http://10.21.32.33 --web-host=WEB_HOST Locust Web 页面的主机地址,默认为本机 -P PORT, --port=PORT, --web-port=PORT 被测试主机端口,默认8089 -f LOCUSTFILE, --locustfile=LOCUSTFILE 指定运行Locust 性能测试文件,默认为: locustfile.py --csv=CSVFILEBASE, --csv-base-name=CSVFILEBASE 以CSV格式存储当前请求测试数据 --master 分布式模式使用,指定当前节点为master 节点 --slave 分布式模式使用,指定当前节点为slave节点 --master-host=MASTER_HOST 分布式模式运行,设置master节点的主机或IP地址,只在与slave节点一起运行时使用,默认为:127.0.0.1 --master-port=MASTER_PORT 分布式模式运行,设置master节点的端口号,只在与slave节点一起运行时使用,默认为:5557。注意,slave节点也将连接到这个端口上的master节点 --master-bind-host=MASTER_BIND_HOST 绑定Locust的主机名,只有使用master参数时可用,默认为* --master-bind-port=MASTER_BIND_PORT 绑定Locust的端口,只有使用master参数时可用,默认为5557。注意Locust将使用这个端口,所以默认情况master节点将绑定到5557和5558

网络优化参数介绍

RSRP: Reference signal receive power. 衡量某扇区的参考信号的强度,在一定频域和时域上进行测量并滤波。可以用来估计UE离扇区的大概路损,LTE系统中测量的关键对象。在小区选择中起决定作用。 SINR:信号与干扰加噪声比(Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 信号与干扰加噪声比最初出现在多用户检测。假设有两个用户1,2,发射天线两路信号(cdma里采用码正交,ofdm里采用频谱正交,这样用来区分发给两个用户的不同数据);接收端,用户1接收到发射天线发给1的数据,这是有用的信号signal,也接收到发射天线发给用户2的数据,这是干扰interference,当然还有噪声。 RSSI(Received Signal Strength Indicator)是接收信号的强度指示 过接收到的信号强弱测定信号点与接收点的距离,进而根据相应数据进行定位计算的一种定位技术 如无线传感的ZigBee网络CC2431芯片的定位引擎就采用的这种技术、算法。 接收机测量电路所得到的接收机输入的平均信号强度指示。这一测量值一般不包括天线增益或传输系统的损耗。 RSRQ(ReferenceSignalReceivingQuality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。 RSRQ被定义为N*RSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源快(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。 [1] PL为传播路径损耗(Pathloss),单位为dB采用0kumura_Hata模型来分析WCDMA系统的无线传播:PL=69.55+26.16lgF-13.82lgH+(44.9-6.55lgH)×lgD-C(F)其中,PL为传播路径损耗,单位为dB;F为系统工作频点,单位为Hz;D为小区半径,单位为m;H为基站天线高度,单位为m;C(F)为地物校正因子,一般取值:代入模型后,得到以CS64k业务为例,基站侧接收灵敏度为115.3dBm,假定90%地区覆盖,慢衰落储备为5.6dB,网络负荷为50%,干扰储备为3dB,软切换增益为5dB,汽车穿透损耗为8dB,直放站天线增益为18dBi,馈线损耗为3dB,直放站总输出功率为20W,控制信道为 5.2W,话务信道可用功率为14.8W,则每信道平均发射功率为14.8W/6=2.47W=33.9dBm,则PL=33.9-5.6-3+5-8+18-3+115.3=152.6dBm 通过计算得到:城市D=3km;郊区D=6.8km;农村D=25.6km。 power headroom 功率上升空间

carsim软件介绍

carsim软件介绍 CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性檔。CarSim软件的主要功能如下: n 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; n 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; n 可以通过软件如MATLAB,Excel等进行绘图和分析; n 可以图形曲线及三维动画形式观察仿真的结果; n 包括图形化数据管理接口,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块; n 程序稳定可靠; n 软件可以实时的速度运行,支持硬件在环,C arSim软件可以扩展为CarSim RT, CarSim R T 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真; n 先进的事件处理技术,实现复杂工况的仿真; n 友好的图形用户接口,可快速方便实现建模仿真; n 提供多种车型的建模数据库; n 可实现用户自定义变量的仿真结果输出; n 可实现与simulink的相互调用; n 多种仿真工况的批运行功能; CarSim特点 1、使用方便 软件的所有组成部分都由一个图形用户接口来控制。用户通过点击“Run Math Model”来进行仿真。通过点击“Animate”按钮可以

以三维动画形式观察仿真的结果。点击“Plot”按钮可以察看仿真结果曲线。很短的时间内,你就可以掌握C arSim的基本使用方法,完成一次简单仿真并观察仿真结果。 所要设置或调整的特性参数都可以在图形接口上完成。150多个图形窗口使用户能够访问车辆的所有属性,控制输入,路面的几何形状,绘图及仿真设置。利用CarSim的数据库建立一个车辆模型并设置仿真工况,在很短的时间内即可完成。在数据库里有一系列的样例并允许用户建立各种组件、车辆及测试结果的库檔。这一功能使得用户能够迅速地在所做的不同仿真之间切换,对比仿真结果并作相应的修改。 车辆及其参数是利用各种测试手段所得到的数据和表格,包括实验测试及悬架设计软件的仿真测试等。CarSim为快速建立车辆模型提供了新的标准。 2、报告与演示 CarSim输出的资料可以导出并添加到报告、excel工作表格及Pow erPoint演示中。仿真的结果也可以很方便地导入到各种演示软件中。 3、快速 CarSim将整车数学模型与计算速度很好地结合在一起,车辆模型在主频为3GHz的PC机上能以十倍于实时的速度运行。速度使得CarSim很容易支持硬件在环(HIL)或软件在环(SIL)所进行的实时仿真。CarSim支持Applied Dynamics Internatinal(A DI), A&D, dSPACE,ETAS,Opal-R T及其它实时仿真系统。CarSim这一快速特性也使得它可以应用于优化及试验设计等。 4、精度及验证 CarSim建立在对车辆特性几十年的研究基础之上,通过数学模型来表现车辆的特性。每当加入新的内容时,都有相应的实验来验证。使用CarSim的汽车制造商及供货商提供了很多关于实验结果与CarSim仿真结果一致性的报告。 5、标准化及可扩展性 CarSim可以在一般的Windows系统及便携式计算机上运行。CarSim也可以在用于实时系统的计算机上运行。数学模型的运动关系式已经标准化并能和用户扩展的控制器,测试设备,及子系统协调工作。这些模型有以下三种形式: n Carsim函数自带的内嵌模块。 n 嵌入模型的MATLAB/Simulink S-函数 n 具有为生成单独EXE檔的可扩展C代码的库檔 6、有效、稳定、可靠 CarSim包括了车辆动力学仿真及观察结果所需的所有工具。MSC利用先进的代码自动生成器来生成稳定可靠的仿真程序,这比传统的手工编码方式进行软件开发要快很多。 需要进一步了解的朋友们可以加我QQ哦12603839

网优面试题目

中兴网优服务合同面世题目 一.前台优化人员 1.手机在空闲状态下一般可以接受到哪几种SIB,从这些SIB中可以提取哪些系统参数?SIB1包含非接入层信息,及UE在空闲和连接状态下的定时器信息。 SIB2主要包含URA标识。 SIB3包含小区选择和重选参数 SIB4 SIB4里也是包含小区选择和重选参数,在连接模式下使用。包含参数基本上和SIB3一样 SIB5包含公共物理信道的配置信息。 SIB6 SIB6的内容和SIB5基本一样,用于连接模式 SIB7主要包含上行干扰信息 SIB8和SIB9包含CPCH信息,不用; SIB10包含使用DRAC(动态资源分配控制)的UE所需的信息,不用 SIB12的内容和SIB11基本一样,用于连接模式。 SIB13及其系列均用于ANSI41系统,不用 SIB14用于TDD系统,不用 SIB15及其系列用于基于UE或UE辅助的定位方法,目前不用 SIB16包含一些预定义的无线承载,物理信道和传输信道参数,这些参数存储在UE中,用于系统间切换。 SIB17只用于TDD模式,不用 SIB18中包含了邻区的PLMN标识 2.请描述一下手机做主叫的信令流程?

下行异常干扰:主要表现为UE背景噪声抬升,SIR降低,BLER变大,功控不断提高功率,通信质量恶化,如果下行达到最大允许功率,就会掉话。 4.怎么判断邻区漏配现象?

5.测量报告中有哪些内容,在空闲状态下会有测量报告吗? 6.请说明一下什么是导频污染,怎么判断导频污染,导频污染会导致哪些问题,解决措施 有哪些? 导频污染定义为:当某个导频信号与最好小区信号质量差在一定范围内(一般取5dB)并且该信号不在激活集中,就形成导频污染 某测试点接收的小区导频信号差别不大(都很强或都很弱),而没有主导频。 其表现形式通常是接收的导频功率足够好,但各小区Ec/Io都较弱。 目前大部分WCDMA设备支持的最大激活集数目是3,如果不同小区相近的Ec/Io数目超过了3个,就可以看成是对激活集里面3个无线链路的干扰。 原因有以下几种:高站的越区覆盖、环形布站、街道效应、强反射体等原因导致的信号畸变。 解决导频污染的核心思想就是在有导频污染的地方形成主导频。常用的优化方法有以下几种: 调整天线工程参数,比如方位角、下倾角、天线挂高或安装位置。 调整小区的导频发射功率,包括增加某个小区的功率,降低其它小区的功率。 调整基站布局,在导频污染区域增加信源,引入一个强的主信号。 7.请说明一下远近效应,W网络中采取哪些技术来避免? 一个UE就能阻塞整个小区,信号被离基站近的UE的信号“淹没”,无法通信。 采用功控技术减少了用户间的相互干扰,提高了系统整体容量。 8.在空载覆盖拉远测试中,发现在掉话点无法重新接入,要回退一段距离才能接入,请问 发生这种现象的原因有哪些,可如何改善? 9.天线的选择是决定网络质量的一个很重要部分,应根据基站服务区内的覆盖,服务质量 要求,话务分布,地形地貌等条件,并综合考虑整网的覆盖,干扰情况来选择天线,请简要叙述市区,公路,隧道,室内四种场景天线选型原则? 天线的选择是决定网络质量的一个很重要部分,应根据基站服务区内的覆盖,服务质量要求,话务分布,地形地貌等条件,并综合考虑整网的覆盖,干扰情况来选择天线,请简要叙述市区,公路,隧道,室内四种场景天线选型原则? 城区 ●城区S111基站一般选用水平波瓣宽度为65?,垂直波瓣宽度为7?~10?的天线,天线的 增益在15~18dBi之间。对于S110或定向单扇区站点,可以选用水平波瓣宽度为65?、 90?甚至更宽的天线,根据实际情况选用;垂直波瓣及增益选择同S111站型。对全向站 点,选用增益较小、带电子下倾的天线。 公路、铁路等狭长地带 ●公路和铁路的天线选取应根据所要覆盖的公路和铁路的路线距离和形状来决定。 ●如果路线较直,可以选用水平波瓣宽度为20?~30?,垂直波瓣宽度为5?~7?的高增益天 线。

ADC参数解释和关键指标

第五章ADC 静态电参数测试(一) 翻译整理:李雷 本文要点: ADC 的电参数定义 ADC 电参数测试特有的难点以及解决这些难题的技术 ADC 线性度测试的各类方法 ADC 数据规范(Data Sheet)样例 快速测试ADC 的条件和技巧 用于ADC 静态电参数测试的典型系统硬件配置 关键词解释 失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。 增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。(在有些资料上增益误差又称为满刻度误差) 线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。 信噪比(SNR): 基频能量和噪声频谱能量的比值。 一、ADC 静态电参数定义及测试简介 模拟/数字转换器(ADC)是最为常见的混合信号架构器件。ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。 测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。 本章主要介绍ADC 静态电参数的定义以及如何测试它们。 Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale. 1.ADC 的静态电参数规范

fastcopy命令行参数解释

fastcopy命令行参数解释 2011-06-17 16:05 fastcopy是一款复制删除文件的工具,为什么要用它,因为他比系统的复制删除要快,特别是文件超多,超大的情况下. FASTCOPY可以在WINDOWS下使用,也可以在DOS下运行命令 下面是FASTCOPY命令行方式: fastcopy.exe [/参数] file1 file2 ... [/to=dest_dir] 基本参数: /cmd=(noexist_only|diff|update|sync|force_copy|move|delete) noexist_only 复制-如重名,则不复制 diff 复制-如重名,则公复制大小与时间不同的文件 update 复制-如重名,则复制较新的源文件 sync 同步-如重名,则复制大小与时间不同的文件 force_copy 复制-覆盖重名文件 move 移动-覆盖重名文件并强行删除源文件 delete 删除-强行删除指定的文件与目录 /auto_close 拷贝结束后,自动关闭 /force_close 如果拷贝结束后,发生错误,也强行关闭 /open_window 显示Fastcopy窗口界面 /estimate 预测拷贝完成时间 /no_exec 对Fastcopy窗口界面设置参数,但是不执行 /no_confirm_del 当用/delete参数时,不显示确认界面 /error_stop 发生错误时中止动作(在/error_stop=FALSE抑制)

/bufsize=N(MB) 用MB单位来指定缓冲器大小 /speed=(full|autoslow|9-1(90%-10%)|suspend) 速度限制 /log 输出记录文件(fastcopy.log) (在/log=FALSE抑制) /skip_empty_dir 启用过滤,不拷贝空文件夹(在/skip_empty_dir=FALSE抑制) /job=任务名称执行指定的任务 /force_start 在其他的FastCopy拷贝,并且正执行的时候,执行立即也(在/force_start=FALSE抑制) /disk_mode=(auto|same|diff) 指定自动/恒等性/其他HDD方式。(债务不履行声明:) auto) /include="..." 指定Include过滤器 /exclude="..." 指定Exclude过滤器 /overwrite_del 在删除文件之前,删掉方式时,重新取名给重复&,使复原无效(在/overwrite_del=FALSE抑制) /acl 拷贝存取支配清单(ACL)(只NTFS有效)(在/acl=FALSE抑制) /stream 拷贝副其次线流(只NTFS有效)(在/stream=FALSE抑制) /junction 复制junction·mount point(不是属下)junction·mount point自己(/junction=FALSE 拷贝属下) /symlink 用象征性连接(而不是本质)拷贝象征性连接其本身(在/symlink=FALSE 拷贝本质) [/to=dest_dir] 目标磁盘 fastcopy.exe [/options] file1 file2 ... [/to=dest_dir] Please use space character(' ') as separator(not semicolon). If filename contains space character, please enclose with dobule quotation marks. Ex) fastopy.exe C:\Windows "C:\Program Files" /to="D:\Backup Folder\" 使用"做为分隔符 c:\Progra~1\FastCopy\FastCopy.exe /cmd=sync /auto_close /open_window "\\ztsv-xs\e\网络游戏\永恒之塔" /to="e:\games\online\"

网优参考信号功率设置说明

参考信号功率设置 实际优化过程中,根据覆盖调整需要经常要修改 RS POWER ,华为MML 对应修改命令 为MOD PDSCHCFG (修改PDSCH 配置信息),如下 W3D FDSCHCFG: LOCALCELL :D-1, REFERENCES! GHALFWR-5 2: Refere nceSig nalPwr 参考信号功率,含义:该参数表示每物理天线的小区参考信号的 功率值。注意是每物理天线的小区参考信号,默认配置为 9.2dBm ,具体公式如下: DL _RS_Power = 单天线发射功率-10log(Nsubcarriers)+ 10log(1+Pb) =(46-10log(8))-30.8+ 3=9.2dBm 10log(1+Pb)为RS 增强技术引入的增益 46dBm 为单小区发射功率,单天线发射功率 =46- 10log(8)=37dBm=5W Nsubcarriers 表示20M 带宽内子载波的数量,20M 带宽内总共100个RB ,每 个RB 包含12个子载波,100个RB 总共有1200个子载波 这样按照默认配置,现网单小区配置,小区功率为单天线功率 *8=5W*8=40W=46dBm 后台DSP CELL 查询小区状态时,能够查询到该小区 单天线发射功率。 号关断状态主基帯处理板信息小区拓扑结枸最犬发射功率心1毫瓦分贝) 启动 0-0-2 启动 0-0-2 NVLL MODPDSCHCFG 本堆小区标亡 1 ±1 基述:模式 65535 4ZiBm-15.05W

查询FESCWS信息本地小1K标识薑考信号功CO 1毫瓦分贝〕FE J":~I 2 ] 142 ] 3 92 黠果个敎=引 通过以上截图可以看出 设置为9.2dBm时,小区最大发射功率为5W*8=40W , 设置为14.2dBm时,小区最大发射功率为15.85W*8=126.8W , 所以提升RS POWER需考虑RRU功率,不能超过RRU发射总功率,特别是双模改造站点,还需要考虑TDS载波功率。 根据RS POWER设置值来计算小区发射功率 单天线发射功率=RS POWER - 10log(1+Pb) + 10log(Nsubcarriers) 发射功率计算附件:直接输入RS POWER,可直接计算出小区最大发射功率。 小区功率计算.xlsx

Carsim整车建模的参数

车体空载情况下的车体信息 (1 )簧上质量的质心距前轴的距离mm (2 )簧上质量质心距地面的高度mm (3 ) 轴距mm (4 ) 质心的横向偏移量mm (5 )簧载质量kg (6 )对x 轴的极惯性矩( lxx ) kg-m2 (7)对y 轴的极惯性矩( lyy ) kg-m2 (8 )对z 轴的极惯性矩( lzz ) kg-m2 (9) 对x、y 轴的惯性积( lxy )kg-m2 (10) 对x、z 轴的惯性积( lxz )kg-m2 (11) 对y、z 轴的惯性积( lyz )kg-m2 二空气动力学 (1) 空气动力学参考点X mm (2) 空气动力学参考点Y mm (3) 空气动力学参考点Z mm (4 ) 迎风面积m2 (5 )空气动力学参考长度mm (6 )空气密度kg/m3

(7 )CFx(空气动力学系数)与slip angle ( 行车速度方向与空气流动 方向的夹角) 的关系 (8) CFy 与slip angle的关系 (9) CFz 与slip angle的关系 (10) CMx与slip angle 的关系 (11) CMy与slip angle 的关系 (12) CMz与slip angle 的关系 三传动系 1 最简单的一种 (1) 后轮驱动所占的比值,为1时,后轮驱动;为0 时,前轮驱动 (2 )发动机的功率KW 2 前轮驱动或后轮驱动 1)发动机特性 (1 )各个节气门位置下,发动机扭矩(N-m)与发动机转速 (rpm) 的 关系 (2 )打开节气门的时间迟滞sec

(3 ) 关闭节气门的时间迟滞sec (4 ) 曲轴的旋转惯量kg-m2 (5 ) 怠速时发动机的转速rpm 2)离合器特性 a 液力变矩器 (1) 扭矩比(输出比输入)与速度比(输出比输入)的关系 (2) 液力变矩器的参 数1/K 与速度比(输出比输入)的关系 (3) 输入轴的转动惯 量kg-m2 (4) 输出轴的转动惯 量kg-m2 b 机械式离合器 (1 )输出的最大扭矩(N-m)与离合器接合程度 (0代表完全结合, 1 代表完全分离)的关系 (2 )接合时间迟滞sec (3 )分离时间迟滞sec (4 )输入轴的转动惯量kg-m2 (5 )输出轴的转动惯量kg-m2 3)变速器(1 )正向挡位和倒挡的传动比,转动惯量(kg-m2),正向传动与反向

s参数的解释

S参数例子 Ur1 = S11 Ui1 + S12 Ui2 Ur2 = S21 Ui1 + S22 Ui2 Ui1,Ui2,Ur1,Ur2:分别是端口1和端口2的归一化入射电压和反射电压 S11:端口2匹配时,端口1的反射系数; S22:端口1匹配时,端口2的反射系数; S12:端口1匹配时,端口2到端口1的反向传输系数; S21:端口2匹配时,端口1到端口2的正向传输系数; S 参数(散射参数)用于评估DUT 反射信号和传送信号的性能。S 参数由两个复数之比定义,它包含有关信号的幅度和相位的信息。S 参数通常表示为: S输出输入 输出:输出信号的DUT 端口号 输入:输入信号的DUT 端口号 例如,S 参数S21 是DUT 上端口2 的输出信号与DUT 上端口1 的输入信号之比,输出信号和输入信号都用复数表示。 当启动平衡- 不平衡转换功能时,可以选择混合模S 参数。 S参数分析 微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。微波网络法被广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。微波网络理论是在低频网络理论的基础上发展起来的,低频电路分析是微波电路分析的一个特殊情况。一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称为导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。阻抗和导纳矩阵

c语言中命令行参数argc,argv

main( int argc, char ** argv ) argv:指针的指针 argc:整数 char **argv or char *argv[] or char argv[][] 为了能形象的说明这两个参数的含义,我们先用一个实例来进行讲解: 假设程序的名称为test,当只输入test,则由操作系统传来的参数为: argc = 1,表示只有一程序名称; argc只有一个元素,argv[0]指向输入的程序路径及名称:./ test 当输入test para_1,有一个参数,则由操作系统传来的参数为: argc = 2,表示除了程序名外还有一个参数; argv[0]指向输入的程序路径及名称; argv[1]指向参数para_1字符串 当输入test para_1 para_2 有2个参数,则由操作系统传来的参数为: argc = 3,表示除了程序名外还有两个参数; argv[0]指向输入的程序路径及名称; argv[1]指向参数para_1字符串; argv[2]指向参数para_2字符串; 以此类推……………… void main( int argc, char *argv[] ) char *argv[]: argv是一个指针数组,元素个数是argc,存放的是指向每一个参数

的指针,第一个元素即argv[0]为程序运行的全路径名,从二个元素(argv[1])开始,是每一个参数的名称,最后一个元素为NULL。总的来说,即: * argv: 字符串数组 argv[0] 为程序运行的全路径名 argv[1] 为执行程序名后的第一个字符串; argv[2] 为执行程序名后的第二个字符串; ... argv[argc]为NULL。 int argc:表示argv的大小,是实际参数个数+1,其中+1是因为argv[0]是编译后的可执行文件名 main() 参数: Turbo C2.0启动时总是把argc、argv、env(存放环境变量)这三个参数传递给main()函数, 可以在用户程序中说明(或不说明)它们, 如果说明了部分(或全部)参数, 它们就成为main()子程序的局部变量。 请注意: 一旦想说明这些参数, 则必须按argc, argv, env 的顺序, 如以下的例子: main() main(int argc) main(int argc, char *argv[]) main(int argc, char *argv[], char *env[]) 其中第二种情况是合法的, 但不常见, 因为在程序中很少有只用argc, 而不 用argv[]的情况。 以下提供一样例程序EXAMPLE.EXE, 演示如何在main()函数中使用三个参数: /*program name EXAMPLE.EXE*/ #i nclude

网优常用参数

网优常用参数 !LAYER :小区分层,微蜂窝为1,普通小区为2 !LAYERTHR :小区层次的信号强度门限值 !LAYERHYST :小区层次的信号强度滞后值 !PSSTEMP :从高层次小区向低层次小区切换时的信号强度惩罚值 !PTIMTEMP:从高层次小区向低层次小区切换时的时间惩罚值 !ACCMIN :手机允许接入系统的最低信号电平 !CCHPWR :手机接入控制信道的最大收发功率 !CRH :小区重选滞后值,用于LA改变时,防止因频繁LOCATION UPDATING, 而增加SDCCH负荷。 !DTXU :表示上行是否启用不连续发射,DTXU=1,启用,DTXU=2不启用。 !NCCPERM:允许MS对另一网络的信号进行测量。 !RLINKT :下行链路中断计数器,当手机分配到一个SDCCH后,计数器值为RLINKT, 手机成功接收SACCH信号后,此计数器减1,不成功接收SACCH信号 后,此计数器加2,计数器为0后,手机拆线。 !CB :表示小区是否被禁止接入,不影响切换。 !ACC :表示被禁止接入此小区的MS级别,CLEAR表示所有手机都允许接入。 !MAXRET:表示手机上重复接入系统的最大次数。 !TX :表示MS进入RACH的间隔。 !ATT :表示是否允许手机将开机或关机信息通知系统。 !T3212 :表示手机周期登记时间,时间单位为0.1小时。 !CBQ :小区禁止资格,与CB配合,定义小区选择或小区重选时的优先级。

!PMARG : 功率附加值 !SDCCHREG:表示SDCCH功率是否允许动态控制。 !SSDESDL :理想的下行信号强度,单位:dBm,取负值。 !SSLENDL :下行信号强度滤波器长度,单位:SACCH周期(480ms)。 !QLENDL :下行质量滤波器长度,单位:SACCH周期(480ms)。 !REGINTDL:下行动态功率控制的时间间隔,单位:SACCH周期(480ms)。 !BSPWRMIN:表示非BCCH频率的最小的BTS发射功率。 !LCOMPDL:下行路径损耗补偿因子 !QCOMPDL:下行质量补偿因子 !动态功率控制表达式: !PU=(1-a)BTSTXPWR+a(SSDESDL+L)-b(Q_AVE_dB-QDESDL_dB) !PU为动态功率 !a=LCOMPDL/100 !b=QCOMPDL/100 !Q_AVE_dB=32-10*Q_AVE/25 !Q_DESDL_dB=32-10*QDESDL/25 !逻辑信道监视! RLSLC:CELL=dgCBCE1, LVA=29, ACL=A1, CHTYPE=TCH, CHRATE=FR; !LVA为告警门限值:当实际TCH数目小于LVA时,则告警产生。LVA取值为定 义的TCH数目减6,由于载波为5个,所以LVA为29(35个TCH 再减去6个TCH算出门限值)! RLSLC:CELL=dgCBCE1, LVA=15, ACL=A2, CHTYPE=SDCCH; !LVA为告警门限值:当实际SDCCH数目小于LVA时,则告警产生。LVA取值为 定义的SDCCH数目减6,由于SDCCH为24个,所以LVA为18(24个SDCCH,再减 去6个SDCCH算出门限值)! RLSLC:CELL=dgCBCE1, LVA=1, ACL=A1, CHTYPE=BCCH; RLSLC:CELL=dgCBCE1, LVA=0, ACL=A2, CHTYPE=CBCH;!若CBCH=YES,则LVA=1! RLSLC:CELL=dgCBCE2, LVA=38, ACL=A1, CHTYPE=TCH, CHRATE=FR; RLSLC:CELL=dgCBCE2, LVA=15, ACL=A2, CHTYPE=SDCCH; RLSLC:CELL=dgCBCE2, LVA=1, ACL=A1, CHTYPE=BCCH; RLSLC:CELL=dgCBCE2, LVA=0, ACL=A2, CHTYPE=CBCH; RLSLC:CELL=dgCBCE3, LVA=38, ACL=A1, CHTYPE=TCH, CHRATE=FR; RLSLC:CELL=dgCBCE3, LVA=15, ACL=A2, CHTYPE=SDCCH; RLSLC:CELL=dgCBCE3, LVA=1, ACL=A1, CHTYPE=BCCH; RLSLC:CELL=dgCBCE3, LVA=0, ACL=A2, CHTYPE=CBCH; !LVA表示定义出告警的门限值。 !ACL表示告警的级别。 !CHTYPE信道类型。 !CHRATE信道的速度。 区内部切换参数! RLIHC:CELL=dgCBCE1, IH !小O=OFF, MAXIHO=3, TMAXIHO=6, TIHO=10, SSOFFSETULP=0,SSOFFSETDLP=0, QOFFSETULP=0, QOFFSETDLP=0; RLIHC:CELL=dgCBCE2, IHO=OFF, MAXIHO=3, TMAXIHO=6, TIHO=10, SSOFFSETULP=0,SSOFFSETDLP=0, QOFFSETULP=0, QOFFSETDLP=0;

Carsim整车建模参数

Carsim整车建模参数 一车体 空载情况下的车体信息 (1) 簧上质量的质心距前轴的距离mm (2) 簧上质量质心距地面的高度mm (3) 轴距mm (4) 质心的横向偏移量mm (5) 簧载质量kg (6) 对x轴的极惯性矩(lxx)kg-m2 (7) 对y轴的极惯性矩(lyy)kg-m2 (8) 对z轴的极惯性矩(lzz)kg-m2 (9) 对x、y轴的惯性积(lxy)kg-m2 (10) 对x、z轴的惯性积(lxz)kg-m2 (11) 对y、z轴的惯性积(lyz)kg-m2 二空气动力学 (1) 空气动力学参考点X mm (2) 空气动力学参考点Y mm (3) 空气动力学参考点Z mm (4) 迎风面积 m2 1 (5) 空气动力学参考长度 mm (6) 空气密度 kg/m3 (7) CFx(空气动力学系数)与slip angle (行车速度方向与空气流 动方向的夹角)的关系 (8) CFy与slip angle的关系 (9) CFz与slip angle的关系 (10) CMx与slip angle的关系

(11) CMy与slip angle的关系 (12) CMz与slip angle的关系 三传动系 1 最简单的一种 (1) 后轮驱动所占的比值,为1时,后轮驱动;为0时,前轮驱动 (2) 发动机的功率KW 2 前轮驱动或后轮驱动 1)发动机特性 (1) 各个节气门位置下,发动机扭矩(N-m)与发动机转速(rpm) 的 2 关系 (2) 打开节气门的时间迟滞sec (3) 关闭节气门的时间迟滞sec (4) 曲轴的旋转惯量kg-m2 (5) 怠速时发动机的转速rpm 2)离合器特性 a 液力变矩器 (1) 扭矩比(输出比输入)与速度比(输出比输入)的关系 (2) 液力变矩器的参数1/K与速度比(输出比输入)的关系 (3) 输入轴的转动惯量kg-m2 (4) 输出轴的转动惯量kg-m2 b 机械式离合器 (1) 输出的最大扭矩(N-m)与离合器接合程度(0代表完全结合, 1代表完全分离)的关系 (2) 接合时间迟滞sec

相关主题