搜档网
当前位置:搜档网 › 离心式压缩机的防喘振控制详细版

离心式压缩机的防喘振控制详细版

离心式压缩机的防喘振控制详细版
离心式压缩机的防喘振控制详细版

文件编号:GD/FS-4241

(安全管理范本系列)

离心式压缩机的防喘振控

制详细版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.

编辑:_________________

单位:_________________

日期:_________________

离心式压缩机的防喘振控制详细版

提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。

一、离心式压缩机的特性曲线与喘振

离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。

离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。

喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。

因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。

对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中阴影部分。喘振情况与管网特性有关。管网容量越

大,喘振的振幅越大,而频率越低;管网容量越小,则相反。

二、引起喘振的因素

如上所述,当离心式压缩机的负荷减小到一定程度时,会造成压缩机的喘振,这是引起喘振的最常见因素。除此之外,被压缩气体的吸入状态,如分子量、温度、压力等的变化,也是造成压缩机喘振的因素。

吸入压力的变化,会影响压缩机的实际压缩比。当吸人压力》l降低,所需压缩比增大,压缩机易进入喘振区。

对于吸人气体的分子量变化,压缩机特性曲线的改变情况如图6—21所示。图中清楚地表明,在同样的吸入气体流量QA下,分子量大,压缩机易进入喘振区。

当吸人气体温度变化时,它的特性曲线将如图6—22所示。显然,当温度降低,压缩机易出现喘振。

在实际生产过程中,被压缩的气体往往来自上一工序,该工序的操作情况会影响分子量和温度的变化,从而可能引起压缩机的喘振。鉴于目前的防喘振控制系统一般只是为了防止负荷的减小,且分子量的变化也无法进行在线测量,所以,在上述情况下,防喘振控制系统会“失灵”。对此需要特别加以重视。

三、喘振的极限方程及安全操作线

(1)经验公式将在不同转速下的压缩机特性曲线最高点连接起来所得的一条曲线,称为压缩机喘振的极限线,如图6—23所示。

对于喘振极限线,可以通过理论推导获得数学表达式。在工程上,为了安全上的原因,在喘振极限线右边,建立一条“安全操作线”,作为压缩机允许工作的界限。这条安全操作线可与一个抛物线方向近似,其经验公式为

式中,Q1为吸人口气体的体积流量;丁l为吸人口气体的绝对温度;p1、p2分别为吸入口、排出口的绝对压力;K,a均为常数,一般由压缩机制造厂家给出,a有等于0、大于0和小于0三种情况。

由于式(6—7)中的吸入口气体的体积流量Ql、绝对压力》p1和绝对温度T1有一定关系,而且还可以依照不同的测量方法和仪表,将经验公式表达成更加实用的公式。

(2)用差压计测量流量时的安全操作线表达式假

如在压缩机人口处用差压计测量流量Ql,测得的差压为p1d,由标准节流装置流量测量公式

式中,o为常数;c为气体压缩系数;ρ1为人口处气体的密度。根据气体方程

式中,z为气体压缩修正系数;及为气体常数;M为气体分子量。将式(6—9)代入式(6—8)并简化后,得

式(6—13)和式(6—14)就是用差压计测量入口处气体流量时喘振安全操作线的表达式。

四、防喘振控制系统

由前述可知,在通常情况下,压缩机的喘振主要

是负荷减少所致,而负荷的升降则是由工艺所决定的。为使压缩机不出现喘振,需要确保任何转速下,通过压缩机的实际流量都不小于喘振极限线所对应的最小流量QB。根据这一思路,可采取如图6—24所示的循环流量法,来设计固定极限流量法和可变极限流量法等两种防喘振控制系统。(1)固定极限流量法采用部分循环法,始终使压缩机流量保持大于某一定值流量,从而避免进入喘振区运行,这种方法叫做固定极限流量防喘振控制。图6—25中Qn即为固定极限流量值。显然,压缩机不论运行在哪一档转速下,只要满足Q≥QB的条件,压缩机就不会出现喘振。用固定极限法所设计的控制方案结构简单,如图6—26所示。图中的流量控制器,即以Qu值作为其固定设定值的防喘振控制器。QB的取值应以现场压缩机能达到的最高转速所对应的喘振极限流量

为好。压缩机正常运行时,控制器的测量值恒大于设定值,而旁路控制阀是气关阀,此时控制器具有正向作用和PI特性,输出达最大值时使阀关闭。当压缩机吸气量小于设定值时,旁路阀打开,压缩机出口气体经旁路返回至压缩机人口,气量又增大到大于Qu 值。这时虽然压缩机向外供气量减少了,但防止了喘振的发生。

这种固定极限流量法不足之处在于当压缩机低速运行时(如图6—25中的n?,n?转速情况下),压缩机的能耗过大,这对压缩机负荷需经常改变的生产装置就不够经济;但从另一方面讲,则有控制方案简单、系统可靠性高、投资少等优点。

(2)可变极限流量法为了减少压缩机的能量消耗,在压缩机负荷有可能经常波动的场合,可以采用

调节转速的办法来保证压缩机的负荷满足工艺上的要求。因为在不同转速下,其喘振极限流量是一个变数,它随转速的下降而变小。所以最合理的防喘振控制方案应是在整个压缩机负荷变化范围内,使它的工作点沿着如图6—23所示的喘振安全操作线而变化,根据这一思路设计的防喘振控制系统,就称为可变极限流量法防喘振控制系统,它的原理如图6—27所示。

在设计防喘振控制系统时,尚需注意如下几点。

①旁路控制阀在压缩机正常运行的整个过程中,测量值始终大于设定值,因此必须考虑防喘振控制器的防积分饱和问题。否则就会造成防喘振控制系统的动作不及时而引起事故。

②在实际的工业设备上,有时不能在压缩机入口

处测量流量,而必须改为在出口处,但压缩机制造厂所给的特性曲线往往是规定测量人口流量的,这时就需要将喘振安全操作线方程进行改写。可以从人口、出口质量流量相等这一等式出发,写出pld与出口流量的差压值p2d之间的关系式,然后把安全操作线方程式中p1d替换掉,再以此方程进行防喘振控制系统的设计。

③喘振安全操作线方程式中的压缩机出、人口处的压力p?、p?均指绝对压九因此,若所用的压力变送器不是绝压变送器,则必须考虑相对压力和绝对压力的转换问题。

可在这里输入个人/品牌名/地点

Personal / Brand Name / Location Can Be Entered Here

离心式压缩机喘振现象

离心式压缩机喘振现象 1、引言 空气压缩机主要分为三类:往复式、螺杆式、离心式,不管何种类型压缩机都普遍存在喘振现象。离心式压缩机的喘振现象尤为明显。 现就离心式空气压缩机的喘振现象作一简要介绍。 离心式压缩机运行中一个特殊现象就是喘振。防止喘振是离心式压缩机运行中极其重要的问题。许多事实证明,离心式压缩机大量事故都与喘振现象有关。 2、喘振发生的条件 根据喘振原理可知,喘振现象在下述条件下发生: 2.1在流量小时,流量降到该转速下的喘振流量时发生 离心式压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量--喘振流量。当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。上述流量,出口压力,转速和喘振流量综合关系构成离心式压缩机的特性曲线,也叫性能曲线。在一定转速下使流量大于喘振流量就不会发生喘振现象。 2.2管网系统内气体的压力,大于一定转速下对应的最高压力时发生喘振现象 如果离心式压缩机与管网系统联合运行,当系统压力超出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机出现喘振现象。 3、在运行中造成喘振的原因 在运行中可能造成喘振现象的各种原因有: 3.1系统压力超高 造成这种情况的原因有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀门距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节;防喘系统未投自动等等。

3.2吸入流量不足 由于外界原因使吸入量减少到喘振流量以下,而转速未及时调节,使压缩机进入喘振区引起喘振。如下图1。造成这种情况的原因有:压缩机入口滤器阻塞,阻力太大,而压缩机转速未能调节造成喘振;滤芯太脏,或冬天结冰都可能发生这种情况;入口气源减少或切断,如压缩机供气不足,压缩机没有补充气源等等。所有这些情况如不及时发现及时调节,压缩机都可能发生喘振现象。 4、防止与消除喘振现象的方法 4.1防止与消除喘振现象的根本措施是设法增加压缩机的入口气体流量 对一般无毒,不危险气体如空气,CO2等可采用放空;对合成气,天然气,氨等气体可采取回流循环。采用上述方法后,可使流经压缩机的气体流量增加,消除喘振;但压力随之降低,浪费功率,经济性下降。如果系统需要维持等压的话,放空或回流之后应提升转速,使排出压力达到原有水平。 在升压前和降速、停机之前,应当将放空阀门或回流阀门预先打开,以降低背压,增加流量,防止喘振。 4.2根据压缩机性能曲线,控制防喘裕度 防喘系统在正常运行时应投入自动。 升速、升压之前一定要事先查好性能曲线,选好下一步的运行工况点,根据防喘振安全裕度来控制升压、升速。防喘振安全裕度就是在一定工作转速下,正常工作流量与该转速下喘振流量之比值,一般正常工作流量应比喘振流量大1.05~1,3倍,即: 裕度太大,虽不易引发喘振,但压力下降很多,浪费很大,经济性下降。

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

离心式压缩机的喘振

离心式压缩机的喘振 离心式压缩机的特性曲线可用一条抛物线来描述。该特性曲线描述了在低流量范围内,可压缩流体的绝热压头H与吸气侧体积流量Q之间的关系(见式12—44)。 绝热压头是一包含分子量W、热容比值、温度Ts和超压缩性的复杂函数。在低压缩比下,它与压缩比(P2/P1)大致成线性关系。 假设线性关系成立,则有 H=(P2/P1—1)(Ts/W)=KsQ2(12—44) 式中P2——出口压力; P1——入口压力; Ts——温度; Q——入口体积流量; W——分子量; Ks——比例系数。 P2/P1—Q近似呈抛物线关系(见图12—43)。不同转速下可形成一簇抛物线n1、n2、n3……。连接这些抛物线最高点

的虚线,是一条表征压缩机是否工作在喘振区的临界状态曲线。图中阴影部分是压缩机工作的不稳定区,称喘振区或飞动区。虚线的右侧则为正常运行区。 压缩机工作在喘振区时,当负荷Q减小时,则压缩比P2/P1下降,出口压力应当减小,而与压缩机相连接的管路压力在这一瞬间将来不及变,于是就出现瞬间气体从管路向压缩机倒流的现象,压缩机的工作点由月点下降到C点。由于压缩机还在继续运转,此时还在向系统输送流量,于是工作点的流量由C点突变到D点。D点对应的流量QD>QA,超过了要求的负荷量,管路系统压力被逼高。若能迅速将负荷控制在相应值QA,系统可以稳定下来,否则将经过A点到B点。不断地重复上述循环,就会发生压缩机喘振。 压缩机喘振时机身剧烈震动,严重时会造成机毁事故。 图12—43 离心式压缩机的特性曲线 百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网https://www.sodocs.net/doc/9f4548342.html,,您的在线图书馆

离心式压缩机防喘振控制设计讲解

1 概述 1.1压缩机喘振及其危害 压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。 1.2喘振的工作原理及防治 压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施 离心式压缩机因其运行平稳、效率高、在正常运行条件下无脉动等特点,在企业中得到了广泛的应用。与往复压缩机相比,具有流量大、重量轻、运转率高、零部件薄弱、维修方便、风量控制范围广、压缩机排油量大等优点,对压力、流量、温度变化比较敏感。喘振是影响压缩机安全运行的重大隐患,持续的喘振会对压缩机造成内部损坏,造成严重的设备损坏。本文介绍了离心式压缩机防喘振措施及日常运行维护注意事项。 标签:压缩机;防喘振;问题;防范措施 当前,离心式压缩机被广泛地应用于化工、石油等行业内部,但它在流量、温度和气体压力的影响下很容易发生喘振现象。因此,接下来我们将具体分析离心式压缩机的喘振原因,并提出一些预防的策略,以保证压缩机机组的安全、稳定运行。 1 喘振现象的特征 (1)當机械零件、机身或轴承发生剧烈震动时,这表明压缩机具有更严重的喘振现象。(2)压缩机的流量和吐出压力周期性地变动,由于流量计和压力计的强振动而产生了喘振。(3)当人的耳朵能够听到周期性的空气的轰鸣时,这也是一种喘振现象。但是,人的耳朵,可能无法区分噪音多的环境和喘振现象。若有预测,可通过设备状态和操作参数的性能曲线检查喘振现象。 2 离心式压缩机喘振故障原因分析 (1)压缩机进气口温度变化。标准大气压-25℃中的压缩量,即离心压缩机的设计中的压缩量,由于过程气体的温度不受人的行为控制,所以经常变化。在定压下,当温度上升时,过程气体的密度就会下降,压缩机的实际压缩过程气体流量下降,压缩机的输出压不足,就会形成冲浪现象。实际上,夏季比起冬季,喘振发生的可能性更高。(2)压缩机扩散器的腐蚀。由于高速转弯因子的作用,过程气体会变得高速且高压。在静态扩散器中,由于在扩散器中特别设计的曲线腔壁,过程气体的流量减少,压力再次上升。在扩散器,压力通常增加1 / 3左右。当腐蚀和磨损严重时,扩散器内的特殊弯曲的腔壁容易形成滚动,降低吸气,降低空气压,降低压缩机的输出压力,容易产生冲击现象。(3)叶轮和扩压器间隙发生变化。离心压缩机非常严格,因此其间隙应保持合理的距离。如果叶轮和扩散器的间隙太小,处理气体的流量也会下降。此时,认真地磨练后端推力轴承的话,产生空气泄漏,空气流量下降。如上所述,如果叶轮和扩展器之间的间隙太大或太小,空气流变小,压缩机的输出压下降,就会造成冲击故障。(4)压缩机内叶轮磨损。为了增加工艺气体的速度和压力,需要通过曲线槽结构和高速旋转来实现压缩机高压。如果内螺旋桨的能力增加工艺气体的压力和速度,则内螺旋桨本身的曲线槽结构发生变化,从而导致内螺旋桨或过多的粘合剂的磨损。因此磨损性是压缩机的服务器破坏的原因。

离心式压缩机喘振分析及解决措施

离心式压缩机喘振分析及解决措施 摘要:论述了离心式压缩机喘振机理、影响因素、危害及判断,以及本车间气压机组发生喘振时的处理措施。 关键词:离心式压缩机喘振机理影响因素危害判断措施 0 引言 离心压缩机是速度式压缩机中的一种,由于具有排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,目前已广泛应用于石油、化工、冶金、动力、制冷等行业。离心压缩机的安全可靠运行对工业生产有着非常重要的意义。然而,离心压缩机对气体的压力、流量、温度变化较敏感,易发生喘振。喘振是离心压缩机固有的一种现象,具有较大的危害性,是压缩机损坏的主要诱因之一。早在1945年于英国首先发现了离心压缩机的喘振现象并引起了人们的注意。 1 离心式压缩机的喘振机理及影响因素 1.1 离心式压缩机的喘振机理离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面

(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,气流的分离区域就越大。由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。发生旋转脱离时叶道中气流通不过去,级的压力突然下降,排气管内较高压力的气体便倒流回级里来。瞬间,倒流回级中的气体补充了级流量的不足,叶轮又恢复正常工作,重 新把倒流回来的气体压出去。这样又使级中流量减小,于是压力又突然下降,级后的压力气体又倒流回级中来,如此周而复始,在系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。 2 喘振的危害及判断 2.1 喘振的危害喘振现象对压缩机十分有害,主要表现在以下几个方面:①喘振时由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。②会使叶片强烈振动,叶轮应力大大增加,噪声加剧。③引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时会产生轴向窜动,碰坏叶轮。④加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金

压缩机防喘振方案

压缩机防喘振方案 费希尔压缩机防喘振方案 压缩机大概是工艺系统中最关 键和昂贵的设备。保护压缩机免 受喘振损坏的任务由防喘振系 统完成,防喘振系统的关键部件 就是防喘振阀。 喘振可以定义为压缩机不能输 出足够压力克服下游阻力时发 生的流量不稳定现象。简而言 之,就是压缩机出口压力小于下游系统压 力。这会导致气量从压缩机出口反向涌入 压缩机。喘振也会由于进口流量不足引 发。 图1 所示为一组典型的压缩机曲线(也称 作压缩机图、性能曲线或叶轮图)。X 轴 表示流量,Y 轴表示出口压力。平行的一 组曲线表示压缩机在不同转速下的性能 曲线,连接这些曲线的最小流量点,就得到喘振极限曲线。压缩机操作点落在喘振 极限曲线左边会发生不稳定(喘振),操 作点落在曲线右边可稳定操作。 假设压缩机在稳定区域的A 点操作,当 阻力增加而压缩机转速不变时,操作点就 会向左方移动。当操作点移动到喘振极限 曲线,压缩机就会发生喘振。 喘振特征 ■ 快速逆流(毫秒级)。 ■ 压缩机振动剧增。 ■ 介质温度升高。 ■ 噪声。 ■ 可能导致压缩机“失效”。 喘振影响 ■ 压缩机寿命缩短。 ■ 效率降低。 ■ 压缩机出气量减少。 ■ 密封、轴承、叶轮等受到机械损坏。 通过防喘振阀将部分或全部压缩机出口气量再循环至进口通常可控制喘振。部分压缩机系统设计将

部分出口气量持续循环回进口。这是一种控制压缩机喘振的有效方法,但增加了能耗。 防喘振阀选用要求 ■流量——防喘振阀必须能够输送压缩机全部出口气量。不过通常给压缩机流量乘上一个系数。■噪声控制——在喘振过程中阀门承受的压降和流量会很高,将会引发过度噪声。这点必须在阀门选型时充分考虑,虽然在阀门整个行程范围内可能不需要噪声控制。极端喘振现象要求阀门在短时间(通常小于10秒)内全行程打开,如果阀门开启时间过长,压缩机将会由于其它原因停机(通常是高温或振动超标)。因此可能需要采用特性化阀笼。 ■速度——防喘振阀必须动作迅速(一般仅为开启方向)。例如阀门必须在0.75 秒内完成20 英寸的行程。这就必须采用大规格执行机构连接和流量增压器和快开排气阀。 ■失效方式——绝大部分压缩机循环阀要求失效时为开启状态。这可以通过采用合适的弹簧隔膜执行机构或活塞执行机构与气锁阀系统实现。 ■阀门特性——一般首选线性,也有选择等百分比。 艾默生提供针对苛刻的压缩机喘振场合设计的工程控制阀系统—费希尔优化防喘振阀。在这个控制阀系统中,每个部件都按照性能规范经过优化选择以具有要求的最佳性能,保证压缩机系统的可靠实用性。 压缩机防喘振——控制阀解决方案 费希尔专用定制 位于沙特阿拉伯的一套乙烯装置采用费希尔优化防喘振阀替换了原有系统。费希尔防喘振阀设计满足原有阀门的接口尺寸,与原有设备相比大大改善了流量、噪音衰减和可调节性方面的性能。详情访问https://www.sodocs.net/doc/9f4548342.html, 中的D351140 × 12 。 费希尔优化 ■阀门内件具有高可调比特性(100:1 或更高)(如需要)。 ■利用多级、噪音衰减Whisper? 内件消除阀门噪音和振动。 ■平衡区域宽阔的阀芯和加衬垫的执行机构在长行程装置中减少了潜在的管道振动。 ■同传统系统比较,执行机构附件数量减半。 ■采用根据特殊防喘振控制和调节算法设计的FIELDVUE-ODV 配置。 ■安装和调节可在数分钟内远程完成,无需数小时。 ■提供在线的、不影响设备运转的诊断功能。包括性能诊断、触发诊断、定位诊断和部分行程测试。 基本技术 ■标准控制阀。 ■启动和操作点围绕标准阀门流量特性设计。 ■选用的执行机构和仪表适用于快开操作,一般小于两秒。 ■通过流道加工措施控制了噪音量。

离心式压缩机的防喘振控制

编订:__________________ 审核:__________________ 单位:__________________ 离心式压缩机的防喘振控 制 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5913-30 离心式压缩机的防喘振控制 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心式压缩机的防喘振 控制(正式版)

离心式压缩机的防喘振控制(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的

“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中

2021年压缩机防喘振的两种方法

压缩机防喘振的两种方法 欧阳光明(2021.03.07) 压缩机防喘振的两种方法1 一、离心式压缩机喘振的原因1 二、防喘振自控系统的可行性分析1 三、防喘振自控系统的几种实现方法2 1.固定极限流量法2精品文档,超值下载 2.可变极限流量法2 四、防喘振控制系统的实现方法3 五、结束语5 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。

二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。 三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法 1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。 2.可变极限流量法 在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。

离心式压缩机喘振的分析和处理方法

离心式压缩机喘振的分析和处理方法 摘要:本文就离心式压缩机为主要描述对象,分析了喘振的原因和主要问题,并针对这些原因提出了消除喘振的方法。就喘振现象的发生机理以及影响因素,本文做出了详细论述,旨在为减轻喘振来提高离心式压缩机的性能。 关键词:离心式压缩机喘振分析 前言 离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。在工业生产上,离心压缩机的安全性能起重要作用。但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。 1.离心式压缩机的喘振机理 由实际物体的高速转动带来气体的转动,从而形成离心力,这一过程实现了能量的传递,气体获得动能和压力能。叶轮中高速转动的气体在扩压器内实现动能向压力能的转化。所以说主要的压缩过程在叶轮和扩压器内。这也是离心式压缩机的基本工作原理。当时机情况偏离设计工况时,会出现气流量减小的情况,以致进入叶轮和扩压器的气体反向流动,冲向工作面,增加了非工作面边缘的扩压度,导致气流边界分层,最终形成了漩涡区。在越靠近叶轮出口的地方,这种漩涡现象越严重,波及的范围也更大。这是与偏离设计工况的程度成正相关关系的,因为偏离程度越大,气流量也就越小,工作面和非工作面之间出现的气流边界分层现象也就原来越严重。而在离心式压缩机的实际构造中,由于叶轮中叶片的不完全对称性,导致气流流动的不均匀,气流边界分层可能会出现在不确定的某个叶道中。当气流量减小到某一临界值时,叶轮的旋转会将整个分层现象扩张到更广的区域,此时气流向叶轮旋转的反向流动,气流旋涡开始形成,并出现在叶轮的外圆和内圆中,发生旋转失速的情况。旋转失速的情况下,叶道中的气流无法通过,排气管中的高压气体会向压力下降的级里流动,及时填补了级流量不足的空缺,促使压缩机恢复运转,将倒流的气体重新排放出去。此时又出现了级中气流量不足的情况,然后高压气体又流向低压区域的级里,促使叶轮正常工作。这样周而复始的循环工作兴城路周期性的气流振荡,即“喘振”现象。 2.喘振的危害及判断 2.1.喘振的危害 喘振对于离心式压缩机的危害很大,可以总结为以下几点:①离心机的工艺过程和工作系统都是在特定的参数下进行的优化设计,尤其是对于气体参数的要求更高,但是喘振时气流的强烈振荡会带来一定的不稳定性。②叶片的强烈震动会带来极大噪声。③各部件之间的摩擦加大,压缩机的主轴也会受到影响,甚至

压缩机防喘振控制方案

压缩机防喘振的两种方法 [分享]压缩机防喘振的两种方法 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。 二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。 三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法 1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。 2.可变极限流量法

在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极 限流量法。 常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如图3所示。近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。 其中a、b由压缩机制造厂决定,C是一个常数。 式中M—分子量 z—压缩系数 R—气体常数 k—综合流量系数 四、防喘振控制系统的实现方法 水气厂一英格索兰空气压缩机,型号为C90M × 3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。防喘振控制

离心压缩机喘振

喘振的概念 1)喘振的概念 喘振是离心式压缩机本身固有的特性,而造成喘振的唯一直接原因是进气量减小到一定值。 从前面我们已经知道,当气量减小到一定程度时,会出现旋转脱离,如这时进一步减小流量,在叶片背面将形成很大的涡流区域,气流分离层扩及整个通道,以至充满整个叶道,而把流道阻塞,气流不能顺利的流过,这时流动严重恶化,压缩机的出口压力会突然大大下降,由于压缩机总是和管网系统联合工作,这时管网中的压力不会马上减低,于是管网中的气体压力就会大于压缩机的出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降到低于压缩机的出口压力为止,这时倒流停止,压缩机又开始向管网供气,经过压缩机的流量又增大,压缩机又恢复到正常工作。但当管网中的压力恢复到原来压力时,压缩机的流量又减少,系统中的气流又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象就称作“喘振”。喘振现象不但和压缩机中严重的旋转脱离有关,还和管网系统有关。管网的容量越大,则喘振的振幅越大,频率越低。喘振的频率大致和管网容量的平方跟成反比。 2)喘振的现象及判断 机组喘振时,压缩机和其后的管道系统之间产生了一种低频高振幅的压力波动,整个机组发生强力的振动,发出严重的噪音,调节系统也大幅度的波动。一般根据下列方法判断是否进入喘振工况。 (1)监测压缩机出口管道气流噪音。正常工况时出口的声音是连续且较低的。而接近喘振时,整个系统的气流产生周期性的振荡,因而在出口管道处声音是周期性的变化,喘振时,噪音加剧,甚至有爆音出现。(2)观测压缩机流量及出口压力的变化。离心式压缩机稳定运行时其出口压力和进口流量变化是不大的,是脉动的,当接近或进入喘振工况时,二者的变化很大,发生周期性大幅度的脉动。 (3)观测机体和轴振动情况。当接近或进入喘振工况时,机体和轴振动都发生强烈的振动变化,其振幅要比平常运行时大大增加。 3)喘振的危害 喘振是离心式压缩机性能反常的一种不稳定运行状态。发生喘振时,表现为整个机组管网系统气流周期性的振荡。不但会使压缩机的性能显

压缩机防喘振的两种方法

压缩机防喘振的两种方法 压缩机防喘振的两种方法 (1) 一、离心式压缩机喘振的原因 (1) 二、防喘振自控系统的可行性分析 (1) 三、防喘振自控系统的几种实现方法 (2) 1.固定极限流量法 (2) 2.可变极限流量法 (2) 四、防喘振控制系统的实现方法 (3) 五、结束语 (5) 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。 二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。

三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。2.可变极限流量法 在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。 常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如 图3所示。近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。

离心式压缩机的防喘振控制与阀门选型

晋升任职资格送审论文评审表

论文编号:_______ 专业:生产过程自动化 论文题目: 离心式压缩机的防喘振控制与阀门选型 内容摘要: 离心式压缩机在工业生产中的应用越来越广泛。 本文对离心式压缩机的固有特性喘振进行了详细的 分析。重点分析了乙烯装置裂解气压缩机防喘振系 统的独特设计、工作原理及在TPS控制平台上的逻 辑实现,并对防喘振控制阀的合理选型进行了有益 的探讨。这为离心式压缩机防喘振控制系统的设计 提供了值得借鉴的经验。

目录 前言........................................... 错误!未定义书签。第一章喘振的产生及预防.......................... 错误!未定义书签。 一、喘振的产生过程..................................................... 错误!未定义书签。 二、喘振的预防......................................................... 错误!未定义书签。 三、常用的防喘振控制系统............................................... 错误!未定义书签。第二章乙烯装置裂解气压缩机的防喘振控制.......... 错误!未定义书签。 一、概述............................................................... 错误!未定义书签。 二、防喘振控制系统的实现............................................... 错误!未定义书签。第三章防喘振控制阀的合理选型.................... 错误!未定义书签。 一、合理选型防喘振阀,至关重要......................................... 错误!未定义书签。 二、防喘振控制阀计算的步骤............................................. 错误!未定义书签。 三、以防喘振控制阀FV205为例说明阀门选型的计算......................... 错误!未定义书签。第四章结束语................................... 错误!未定义书签。

离心压缩机喘振发生的机理

喘振发生的机理: 当离心式制冷压缩机流量降低至某一值时,叶片进口气流正冲角很大,致使叶片非工作面的气流边界层严重分离,并沿流道扩张开来造成叶片流道有效流通面积大为减少,此时叶轮虽然仍在旋转对气体做功,但是无法太高其他压力,于是压缩机流量显著下降。 由于冷凝器具有相对较大的容积,故冷凝器中的气体不可能很快下降,于是冷凝器中的气体会在压差的作用下反向倒流回压缩机,同时冷凝器气体压力迅速下降,直到冷凝器压力等于压缩机出口压力,倒流现象停止; 此后,气流又在旋转叶轮的作用下提高气体流量和排气压力并重新向冷凝器输送气体,但是,随着排气流量的不断增加,冷凝器中的压力又迅速回升,而压缩机的气体流量仍然不足,叶片非工作面边界层再次出现严重分离。 【离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得压力能和速度能。在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。扩压器流道内的边界层分离现象:扩压器流道内气流的流动,来自叶轮对气流所做功转变成的动能,边界层内气流流动,主要靠主流中传递来的动能,边界层内气流流动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。当主流传递给边界层的动能不足以使之克服压力差继续前进时,最终边界层的气流停滞下来,进而发生旋涡和倒流,使气流边界层分离。气体在叶轮中的流动也是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。 当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B 流道发生气流分离的现象,这样B 流道的有效通流面积减小,使原来要流过B 流道的气流有一部分要流向相邻的A流道和C 流道,这样就改变了A 流道,C 流道原来气流的方向,它使C 流道的冲角有所减小,A 流道的冲角更加增大,从而使A 流道中的气流分离,反过来使B 流道冲角减小而消除了分离现象,于是分离现象由B 流道转移到A 流道。这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。 扩压器同样存在旋转脱离。在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,流动严重恶化,使压缩机出口压力突然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。而实际上压缩机的总负荷很小,限制了压缩机的排量,压缩机的排量又慢慢减小,气体又产生倒流,如此反复,在系统中产生了周期性的气流振荡现象,这种现象称为喘振。 压缩机达到最小排量点而产生严重的气流旋转脱离是内因,而压缩机的性能曲线状况和工况点的位置是条件,内因只有在条件的促成下,才能发生特有的现象———喘振。 离心冷水机组运行在部分负荷时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小。而冷却水温由于冷却塔未改变而维持不变,则此时就可能发生旋转失速或喘振。 喘振是速度型离心式压缩机的固有特性。因此对于任何一台压缩机,当排量小到某一极限点时就会发生该现象。冷水机组是否在喘振点附近运行,主要取决于机组的运行工况。在什么状态发生喘振只有通过对机器的试验,即不断减少其流量,才可以测出具体的喘振点。

CCC 压缩机防喘振控制技术

CCC 压缩机防喘振控制技术 作者:https://www.sodocs.net/doc/9f4548342.html, 来源:本站发表时间:2010-6-5 17:27:55 点击:68 CCC 压缩机防喘振控制技术 1. 喘振现象 喘振是涡轮压缩机特有的现象,我们可以从下图的简单模型来解释这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运行点由D 沿性能曲线上升,到喘振点A ,流量减小压力升高,这一过程中流量减小压力升高,由A 点开始到B 点压缩机出现负流量即出现倒流,倒流到一定程度压缩机出口压力下降(B-C),又恢复到正向流动(C-D ),这样,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般来讲在1-2 秒内就以发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制。 2. 喘振控制

通常压缩机都会有一系列的性能曲线图(如下图所示),其坐标是多变压头-入口流量,由于压缩机入口条件的不同(如温度、压力、分子量等)其喘振曲线是分散的多条曲线,给喘振的控制带来困难,CCC 根据压缩机的设计理论、喘振理论和自己的经验,开发出了一套计算方法和软件,可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线(如下图),这样就可以方便地确定喘振点,而一般来讲压缩机制造厂商提供的性能曲线,是计算值,会有一定偏差,特别是旧机组的性能会发生变化,或者没有性能曲线,为了精确控制,需要对喘振曲线做现场测试,传统的测试方法需要由经验丰富的测试工程师来进行测试,人为地判断压缩机是否到达喘振点,这样做带来了巨大的风险,因为人的判断无法保证100%的准确。而且由于到喘振点时,需要人来手动控制打开防喘振阀,往往会动作滞后或过早打开,难以避免给机组造成损伤或无法实现准确测量,CCC 的喘振算法和控制算法能够在自动状态下测量喘振曲线,从而避免了人为测量的风险,并能准确测量记录线,这一功能是CCC 的专利技术而且是世界独一无二的。

相关主题