搜档网
当前位置:搜档网 › 2004年上海交通大学数学分析答案

2004年上海交通大学数学分析答案

2004年上海交通大学数学分析答案
2004年上海交通大学数学分析答案

2004年上海交通大学 数学分析

一(14)设lim n n a a →∞

=,证明22lim

2

21a

n na a a n n =+++∞

→ 证 因2

n x n =∞ ,故利用Stolz 公式,11lim

lim n n n n n n n n

y y y

x x x +→∞→∞+-=-,得

12112222(1)1lim lim lim lim (1)212

n n n n n n n a a na n a n a

a n n n n ++→∞→∞→∞→∞+++++===+-+ 二(14)证明2sin()x 在[)+∞,0上不一致连续.

因n x =

n y =22sin sin 1n n x y -=,

0n n x y -=-=→,

故2sin()x 在[)+∞,0上不一致连续.

三(14)设)(x f 在[]a 2,0上连续,且)0(f =)2(a f ,证明?0x ∈[]a ,0,使

)(0x f =)(0a x f +

证 作()()()g x f x a f x =+-([]0,x a ∈),则()g x 在[]0,a 上连续,因)0(f =)2(a f ,故(2)(0)g a g =-,

情形1 若(0)0g =,则取00x =,则)(0x f =)(0a x f +,

情形2 若(0)0g ≠,则因2(2)(0)(0)0g a g g =-<,故由介值定理知,存在[]00,x a ∈,使得0()0g x =,即)(0x f =)(0a x f +.

四(14)证明不等式x π

2<x sin <x ,??

?

?

?∈2,0πx

证 作sin ()x f x x =

,π0,2x ??

∈ ???

,则因 2

2cos sin cos ()(tan )0x x x x f x x x x x

-'==-<, 故sin ()x f x x =在π0,2??

???上严格单调减少,而0lim ()1x f x →=,π22lim ()πx f x →=, 因此,在π0,2?? ???上,有2sin ()1πx f x x <=<,即x π2<x sin <x .

五 (14) 设()d a

f x x +∞?

收敛,且)(x f 在[)+∞,a 上一致连续,证明)(lim

x f x +∞

→=

0.

证 因)(x f 在[)+∞,a 上一致连续,故0ε?>,0δ?>,使得当

[)12,,t t a ∈+∞且12t t δ-<时,有12()()2

f t f t ε

-<

令(1)()d a n n a n u f x x δ

δ

++-=

?

,则由积分第一中值定理得,

[](1),n x a n a n δδ?∈+-+,使得(1)()d ()a n n n a n u f x x f x δ

δ

δ++-=

=?

.

因()d a

f x x +∞?

收敛,故级数1

n n u ∞

=∑收敛,从而0n u →,即

()0n f x δ→,也即()0n f x →,故对上述的ε,存在N +∈ ,使得

当n N >时,()2

n f x ε

<

.

取X a N δ=+,则当x X >时,因

[)[)0,(1),k x a a k a k δδ∞

=∈∞=+-+

故存在惟一的k +∈ ,使得[)(1),x a k a k δδ∈+-+,易见k N >,且k x x δ-<,从而

()()()()2

2

k k f x f x f x f x ε

ε

ε≤+-<+

=

六(14)设211

n x n -=,121d n n n x x x +=?,1,2,n = ,证明级数()∑∞=--1

11n n n x 收

敛.

解. 11

211d ln |ln(1)n n n n n x x x x n ++===+?,因2121n n S S k +=+,故只要证 ()12111

11ln(1)n n

k n k k k S x k

k -==??=-=-+????∑∑22111()2n k k k =??=+????∑ 收敛即可.

七(14)设)(x f 在[]1,0上连续,)1(f = 0 ,n n x x f x g )()(= ,1,2,n = , 证明)}({x g n 在[]1,0上一致收敛.

八(12)设()f x 在[]1,0上连续,证明1

lim ()d n n n x f x x →∞

?=)1(f .

证 (1)(令n t x =,则10

()d n n x f x x ?1

11

()d n n

t f t t =?,

(2)因()f x 在[]1,0上连续,故0M ?>,使得()f x M ≤,[]0,1x ∈,(3)

0ε?>,记3a M

ε

=

,不妨设01a <<,则

11

110

()d ()d d 3

a

a a

n

n

n

n

t f t t t f t t M t Ma ε

≤≤==

?

??,

(4)11111111

1

()d (1)[()(1)]d ()(1)d n n

n

n

n

n

a

a a

t f t t f t

f t f t t f t f t -=-≤-???

11111()(1)(1)(1)d n

n

n

n

a

t f t t f t f f t =-+-?

111

1

()(1)d (1)1d n

n

a

a

f t f t f t t ≤-+-??

(5)因()f x 在[]1,0上连续,故()f x 在[]1,0上一致连续,故对上述的正数ε,0δ?>,当[]12,0,1x x ∈且12x x δ-<时,有

12()()3(1)

f x f x a ε

-<

-

(6)因1lim 1n

n a →∞

=,记min{,

}3(1)

M a ε

εδ*=-,则存在正整数N ,使得当

n N >时,有11n

a ε*-<,

(7)当(,1)t a ∈时,有111111n n

n

t t

a -=-≤-,从而当n N >时,有

111

1

()(1)d (1)1d 3

3

n

n

a

a

f t f t f t t ε

ε

-+-<

+

?

?

(8)由(3)和(7)知,当n N >时,有

1110()d (1)n

n

t f t t f -?1

1111

02()d ()d (1)33a

n n n n

a t f t t t f t t f ε

ε

ε≤+-<+=??

九(12)设1a >0,1+n a =n a +n a 1

,证明n =1

证 (1

)要证n =1 ,只要证2

lim 12n

n a n →∞=,

即只要证221lim 1(22)2n n

n a a n n +→∞-=+-,即证221lim()2n n n a a +→∞

-= (2)因1+n a =n a +n a 1

,故110n n n a a a +-=>,

1211n n n

a a a +=+ 22

111122

11()()112n n n n n n n n n n n

a a a a a a a a a a a +++++-=-+==++=+ 因此只要证21

lim 0n n

a →∞=,即只要证lim n n a →∞

=∞

(3)由11

0n n n

a a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必

有极限a ,由1+n a =n a +n a 1

知,a =a +1a ,因此10a

=,矛盾.

这表明{}n a 单调增加、没有上界,因此lim n n a →∞

=∞. (证完)

十(28)计算下述积分:

1

.d x y ??

,其中D 是矩形区域x 1≤,20≤≤y

解 记21{(,)|1,02,0}D x y x y y x =≤≤≤-≤

22{(,)|1,02,0}D x y x y y x =≤≤≤≤-,

2

d d d D

D D x y x y x y =+??

??

??

2

112

2

2

1

1

2

221

1

d ()d d ()d x x x x y y x y x y --=-+-????

3

3

22

1

1

2211

22()d (2)d 33x x x x --=+-?? 3

3

22

1

1

2200

44()d (2)d 33x x x x =+-?? π1

4

34

00

416d cos d 33x x t t =

+??

()x t =这里 π

2

4

01161cos2d 332t t +??=+ ???

?

π4

0141cos412cos2d 332t t t +??=+++ ???

? π

4

0143sin 4sin 23328t t t ??=+++???? 143ππ5133823

??=++=+ ??? 2.

22d d ()d d d d S

yz y z x z y z x xy x y +++??

,其中S 是曲面

224z x y +=-上0≥y 的那部分正侧.

解 记22{(,,)|4,0}x y z x z y ∑=+≤=(取下侧),

22{(,,)|04}V x y z y x z =≤≤--,则V S ?=+∑,由高斯公式知,

2222d d ()d d d d ()d d d 0

S

S V

yz y z x z y z x xy x y x z x y z +∑

+++=-=++??

??

??

???224

2222

()d d d d ()d d V

x z x z x y z y

x z x z +=+=+????4

2012π(4)d 4y y =-? 4

30

π32π(4)63

y ??=--=??

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

2016上海交通大学期末 高数试卷(A类)

2016级第一学期《高等数学》期末考试试卷 (A 类) 一、单项选择题(本题共15分,每小题3分) 1. 若3222lim 12 x ax bx x →∞++=+(其中,a b 为常数),则 ( ) (A )0a =,b ∈R ; (B )0a =,1b =; (C )a ∈R ,1b =; (D )a ∈R ,b ∈R 。 2. 若函数()f x 的一个原函数是(2)e x x -,则'(1)f x += ( ) (A )e x x ; (B )1e x x +; (C )1(1)e x x ++; (D )(1)e x x +。 3. 反常积分1 0ln[(1)]d x x x -? ( ) (A )2=-; (B )1=-; (C )0=; (D )发散。 4. 设OA a =和OB b =是两个不共线的非零向量,AOB ∠是向量a 与b 的夹角, 则AOB ∠的角平分线上的单位向量为 ( ) (A )||||||||||||a b a b a a b b a a b b ---; (B )||||||||||||a b a b a a b b a a b b +++; (C )||||||||||||b a a b b a a b b a a b ---; (D )||||||||||||b a a b b a a b b a a b +++。 5. 设函数()f x 为连续函数,对于两个命题: (I )若()00()(()())d d x u F x f t f t t u =--??,则()F x 为奇函数; (II )若()f x 为奇函数,则()3 0()()d d x y x G x f t t y =??为奇函数, 下列选项正确的是 ( ) (A )(I )和(II )均正确; (B )(I )和(II )均错误。 (C )仅(I )正确; (D )仅(II )正确; 二、填空题(每小题3分,共15分) 6. 已知函数()y f x =由参数方程3cos 2sin x t y t =??=? (0t <<π)所确定,则 ''()f x =___________________。 7. 一平面通过y 轴,且点)2,4,4(-到该平面的距离等于点)2,4,4(-到平面0z =的距离,则该平面方程是:_________________________。 8. 已知321e e x x y x =-,22e e x x y x =-,23e x y x =-是某二阶常系数非齐次线性微

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

(最新整理)上海交通大学年数学分析考研试题

(完整)上海交通大学2005年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2005年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2005年数学分析考研试题的全部内容。

上海交通大学2005年数学分析考研试题 一、 设函数)(x f 定义在R 上,满足R x ∈?,有2 )1()(2x x f x f -=-+,试求)(x f 的表达式; 二、 设}{n x 是收敛数列,}sup{},inf{n n x x ==βα,证明βα,中至少有一个属于}{n x 。 三、 设a>0,c 〉0,数列}{n a 定义如下: 2,1),(),(211211=+=+=+n a a a a n a c n n a c ,证明数列}{n a 收敛,并求其极限; 四、 设.0)0(,0,sin )(01=≠=?f x dt x f x t ,试求)0('f ; 五、 设)(x f 在),1[+∞上可导,1)1(=f ,且满足)(1)('22x f x x f += ,试证:A x f x =+∞→)(lim 存在,且41π +

上海交通大学2015-1末 高数试卷(医科类)

2015级第一学期《高等数学》期末考试试卷 (高数医科类) 一、选择题(本题共15分,每小题3分) 1. 设()f x 有二阶连续的导数,2sin ()()'+=x f x f x e ,且(0)1=f ,则 ( ) (A )(0)f 是极小值; (B )(0)f 是极大值; (C )(0)f 不是极值; (D )(0,(0))f 是曲线()=y f x 的拐点。 2. 积分1 111||I dx x x -=?,29 20sin I xdx π=?,13211x x xe I dx e -=+?和242 sin I x xdx π π- =?中,值为0的是 ( ) (A )2I 、3I 和4I ; (B )1I 、2I 和3I ; (C )1I 和2I ; (D )2I 和3I 。 3. 设0 ()x f x =? ,2345()g x ax bx cx dx =+++。若当0x →时()f x 与()g x 是同阶无 穷小,则 ( ) (A )0a ≠ ; (B )0a =,0b ≠; (C )0a b ==,0c ≠; (D )0a b c ===。 4. 设()f x 和()g x 在(,)-∞+∞上可导,且()()-f x g x ; (B )0 lim ()lim ()→→

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解:11 (,)f x y y x = +=,因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

上海交大高等代数+数学分析历届考研真题.

上海交通大学 1999年硕士研究生入学考试试题 试卷名称:高等代数 1.(10分)设P 为数域。()()[]x P x g x f ∈,令()()()() ()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。 2.(10分)设J 为元素全为1的阶方阵。 (1) 求J 的特征多项式与最小多项式; (2) 设()x f 为复数域上多项式。证明()J f 必相似于对角阵。 3.(10分) (1) 设n 阶实对称矩阵() ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求 A 的n 个特征值。 (2) 设A 为复数域上n 阶方阵。若A 的特征根全为零,证明:1=+E A 。此处 E 为n 阶单位阵。 4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。 5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换: 32312123222184422x x x x x x x x x ++--- 6(10分)对的不同取值,讨论下面方程组的可解性并求解: 7(10分)假设A 为n m ?实矩阵,B 为1?n 实矩阵,T A 表示A 的转置矩阵。证明: (1) AB=0的充要条件是0=A B A T ; (2) 矩阵A A T 与矩阵A 有相同的秩。 8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。 9(10分)证明任一可逆实矩阵可分解为一个正定阵和一个正交阵之积。 10(10分)设W 为欧氏空间V 的一个子空间。W a V b ∈∈,证明若对任意W a ∈,

上海交大数学系高等数学教学团队-上海交通大学人力资源处

上海交大数学系高等数学教学团队 《高等数学》,被很多学生称为“霸王课”,因为它“很高深”。然而上海交通大学乐经良教授和高等数学教学团队的其他老师们,却能让“霸王课”褪下“可怕的外衣”,变得妙趣横生。 要说有什么神奇之道,乐经良一定摇摇头,然后微笑着告诉你十二个字:认真负责、潜心思索、投入感情。“用心教学”就是乐经良和他的团队的“数学魔法”,看似简单,却别显一番博大精深。 传业有道唯纯厚,处世无奇却率真,这就是乐经良的座右铭。而“让学生受益”更是这个团队的座右铭。高校数学应该怎么教,乐经良和他的同事的心里,有一本清晰的帐。上海交通大学高等数学教学团队的故事,就这样慢慢清晰起来。 问渠那得清如许 怎样让学生爱上数学? 在思考这个“艰深命题”时,团队带头人乐经良的脑海里,老是浮现出数学大师陈省身的一句题词,那题词只有四个字—— “数学好玩”。 乐经良和他的团队始终坚信,教数学不是把那些公式定理、条条框框“搬”进学生的脑子里,而是要提高学生的数学素质、塑造合格的人才。因此,培养学生对数学的兴趣特别重要。兴趣从哪儿来?一方面,是学习过程中解决问题的喜悦,而另一方面,就是老师的引导。 答案就很明确了:数学老师的工作,就是让数学好玩起来。 于是乎,走进乐经良的课堂,你会看见一位年近花甲的“老先生”,正在滔滔不绝地描述电影《侏罗纪公园》的情节,故事讲完,数学中的混沌现象也就一清二楚;有时,他会跟你一起推敲福尔摩斯怎么探案,把数学理论、数学方法和密码知识巧妙结合,学生们听得津津有味。兴之所至,“老先生”便发给学生一段密文,让学生自己去破译。还真有不少学生,为了破译这密码,长假都不歇。“是很苦,但是苦得心甘情愿,苦得快乐。”学生乐呵呵地说。 延续好的教学传统不难,难的是改革,是创新。“基础厚、要求严、重实践、求创新”,在这样的要求下,乐经良团队注重基础,强调质量,进行了多层次、多模式的数学课程教学改革研究和实践。为了适应不同层次学生的水平,符合不同类型专业的需求,让学生可以寻找最适合自己的途径,真正感受数学的魅力,乐经良团队把分流教学深化和细化,除了高等数学、线性代数和概率统计课程的建设,还开设了“工科数学分析”和“数学实验”课程。针对近年来理工、经管、医农和人文等不同专业对高等数学课程的认识和要求上的明显变化,团队在调研和教学实践的基础上依据专业的特点和需求进一步实行分类教学。文科数学怎么教,向来众说纷纭。把理工科数学“简化”了来教是通行的办法,乐经良团队却“另辟蹊径”,采取全新角度,深入浅出,自成体系。 种种改革、俱有成效,随之而来的,是一轮又一轮崭新的探索。在这方面,乐经良和他的团队,从来都是走在前面。 早在二十世纪九十年代初,乐经良团队就开始在数学基础课程中采用原版教材、试点英语教学,在那时可谓“独树一帜”,效果好,也就一直延续至今。用英语教授的微积分和线

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

上海交通大学2010级数学分析第1学期第2次测验解答

上海交通大学 数学分析测验解答2010.12.19 一、填空题(每题4分,共16分) 1. 函数3()24f x x x =+-的零点个数为1. 2. 写出e x y x =在1x =处的四阶带Peano 型余项的Taylor 展开式 2344345 e e(12(1)(1)(1)(1)(1))2!3!4! x x x x x x o x =+-+ -+-+-+-. 3. 函数2()e x f x x -=([1,3]x ∈) 的最大值为 2 4 e ,最小值为1e . 4. 曲线2y = 的渐近线为1,x y x =±=±. 二、选择题(每题4分,共16分) 1. 设()f x 和()g x 均为R 上的凸函数, 则下列函数中必为凸函数的是 ( C ) (A )|()()|f x g x +. (B )()()f x g x ?. (C )max{(),()}f x g x . (D )[()]f g x . 2. 设函数()()f x C ∈R , 其导函数'()f x 的图形如右图所示, 则()f x 在R 上有 ( A ) (A) 两个极小值点, 两个极大值点. (B) 两个极小值点, 一个极大值点. (C) 三个极小值点, 一个极大值点. (D) 一个极小值点, 两个极大值点 3. 设函数()x f 在0=x 连续, 0>α为常数, 且() lim 0|| x f x A x α →=>, 则以下四条叙述中正确的是 ( A ) (A ) ()x f 在0=x 取极值. (B ) 存在0δ>使得对()δ,0U x ∈?有()0>x f . (C ) ()x f 在0=x 可导. (D ) ()x f 在0=x 不可导 .

数学分析公式定理111章

第一章 变量与函数 §1 函数的概念 一 变量 变量、常量、实数性质、区间表示 二 函数 1.定义1 设,X Y R ?,如果存在对应法则f ,使对x X ?∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。习惯上称x 自变量, y 为因变量。函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X . {}()|(),f X y y f x x X ==∈。 2.注 (1) 函数有三个要素,即定义域、对应法则和值域。 例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ= ∈(相同,对应法则的表达形式不同) 。 (2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函 数()y f x =”或“函数f ”。 (3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的 象。a 称为()f a 的原象。 3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。 2 可用“特殊方法”来表示的函数。 分段函数:在定义域的不同部分用不同的公式来表示。 例: 1,0sgn 0,01,0x x x x >?? ==??-,则称f 为X 上的严格减函数。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

(最新整理)上海交通大学2003年数学分析考研试题

(完整)上海交通大学2003年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2003年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2003年数学分析考研试题的全部内容。

上海交通大学2003年数学分析考研试题 一 判断以下各题,正确的给出证明,错误的举反例并说明理由。(每小题6分,共24分) 1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。 2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =?连续。 3. 任意两个周期函数之和仍为周期函数。 4. 若函数()y x f ,在区域D 内关于x ,y 的偏导数均存在,则()y x f ,在D 内必连续。 二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的 δ邻域上无界。 三(12分)设()x f 对任意R x ∈有()()2x f x f =且()x f 在0=x 和1=x 处连续。试证明()x f 在R 上为常数。 四(12分)已知0,...,,21 n a a a ,()2≥n 且()x x n x x n a a a x f 12 1 ...??? ? ? ?+++=,试求()n n x a a a x f ...lim 210=→ 五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。试证明导函数()x P n '也仅有实根。 六(12分)设{}n na 收敛,级数()∑∞ =--2 1n n n a a n 收敛。试证级数∑∞ =1 n n a 收敛。 七(12分)设()x y ?=,0≥x 是严格单调增加的连续函数,()00=?是它的反函数.试证明对 0,0 b a 有()()ab dy y dx x b a ≥+??0 ψ? 八 计算题(每小题12分,共24分) 1. 求函数()4 4 4 ,,z y x z y x f ++=在条件1=xyz 下的极值。 2. 计算积分()dz arctgzdxdy z y I V ??? -= ,其中V 为由曲面()222 2 1R z y x =-+,0=z 和h z =所围成的区域。 九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞ →lim ,是试证()A x g x =+∞ →lim

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

上海交通大学高等数学复习提纲

上海交通大学高等数学复习提纲 第一章函数 1.会证明一般难度的不等式,并运用一些证明不等式的方法 2.函数的界与数列的界的联系和区别(联系第二章) 3.复合函数的函数值计算、单调性等 4.单射和满射的定义与性质 5.奇函数、偶函数的图像与性质,周期函数的定义与性质 6.反三角函数的图像与性质 7.双纽线、心脏线等的画法,图像性质,为积分应用求面积体积打好基础 第二章极限与连续(这一章最为琐碎,多耐心) 1.数列的有界无界的定义,怎么证数列的单调性,怎么证明数列的有界无界 2.数列极限的定义(这同样也是证明一个数是数列的极限的根据;注意数列极限的几何意义) 3.证明一个数是数列的极限的方法 4.无穷大与无穷小的含义 5.会求以下类型数列的极限 1)分子、分母为多项式 2)分子、分母含根式(很重要) 3)分子、分母含指数式 4)能够转化为(1+1/n)n的极限 5)会用夹逼定理求极限(很重要) 6)单调有界数列求极限的方法甚至是综合题,可参考习题集(较重要,有难度) 7)用定积分的定义来求极限的方法(考得比较多,方法比较死,但不容易想到) 6.为了达到会求极限的目标,要注意以下求和公式 并且掌握常见的求数列前n项和的方法 7.函数在一点和无穷远处极限的定义和相应的证明方法 8.了解一下Heine定理,如果有问题请回看子数列与数列的关系与性质 9.函数极限的几个常见性质,尤其是定性性质要有个感觉 10.重要函数极限及其转化应用 lim(sinx/x)=1; lim(1+1/x)x=e;

x→0x→? 11.无穷小、三类无穷小、正反求阶数、标准无穷小等概念和方法(重要) 12.等价无穷小,会用它求函数极限(很重要,包括简单变形、平移和本质相同的式子的等价无穷小),等价无穷小的替换原则和规律要认真体会,要耐心 13.函数极限的运算法则,会求函数极限(这一句话意味着要做大量的题和总结,类型要全) 14.函数连续性的定义,函数连续与函数极限的关系,几类间断点及特征,罕见的类型记住典型案例 15.连续函数求某点极限与该函数在该点函数值的关系,极限号可穿函数号等性质 16.从定义和几何特征上体会一下有界性定理、最值定理、介值定理,看一下典型应用方法,适当操练操练,注意构造辅助函数的方法的出现 第二章的内容一定要耐心,细节比较多,理解比较多 第三章导数与微分 1.导数的定义,可导的条件,可导与连续的关系 2.微分、线性主部的定义(不妨从几何上看看,以直代曲P108),可导与可微的关系 3.理解增量公式,会用增量公式求近似值,会用它估计误差(二者考得少,但是要会) 4.背住导数表和微分表 5.会求导数、会求微分(这两者比较简单),会准确地求复合函数的导数与微分; 理解复合函数求导法则的来源;掌握一些求导类型与方法;反函数求导方法的推导与理解,会求反函数的导数。(重要) 6.会求隐函数和参数方程的导数。(重要) 备注5&6:一定要理解为什么要那样求,然后就是大量地做题总结,类型要全 7.导数应用理论上可以忽略 8.掌握Leibniz高阶导数求导公式 9.隐函数与参数方程的高阶导数(二阶很重要),隐二者必须至少掌握到二阶,更高阶需要看一看 第四章微分中值定理与导数应用 1.把Fermat定理、Darboux定理、Rolle定理、Lagrange定理Cauchy定理挨着个儿看一遍;重点关注Rolle定理和Lagrange定理; 2.会用L'hospital法则与等价无穷小替换等方法结合来求极限(重要,练习) 3.理解Taylor展开的原理,背住Taylor公式带Peano余项的展开公式,Lagrange余项根据自己的情况 4.背住e x、sinx、ln(1+x)的Maclaurin公式,其它常见的至少要能够推导; 能够用Taylor展开求极限和解决无穷小的问题(重要) 5.会研究函数性态(重要) 1)明确函数性态包含的方面 2)掌握凸性与拐点与二阶导数值的关系 3)会求水平、垂直渐近线,背住斜渐近线的求法公式,而且会求 4)会全面的画性态示意图 6.从定义和几何上理解曲率和曲率半径,尽量记住公式,记不住要会推导(考得少,不过考得简单,所以记住公式,志在必得) 7.求近似解理论上可以忽略

相关主题