搜档网
当前位置:搜档网 › 温度传感器的对比分析

温度传感器的对比分析

温度传感器的对比分析
温度传感器的对比分析

温度传感器的对比分析

大致的要点:

1.温度传感器概述:应用领域,重要性;

2.四种主要的温度传感器类型的横向比较

3.热电偶传感器

4.热电阻传感器

5.热敏电阻传感器

6.集成电路温度传感器以及典型产品举例

7.温度传感器的正确选择及应用

在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。

工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济

热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。

两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。

鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。

但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。

表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

热电偶是一种高度非线性器件,需作大力线性化算法处置。表3的西贝克系数是某种热电偶在规定温度下的平均飘移。

热电偶交货时,其性能由制造商按NIST175标准保证(此标准已被ASTM采纳),标准规定了热电偶的温度特性以及所用原材料的品质。与热电阻RTD,热敏电阻及集成电路硅传感器相比,热电偶的非线性极其严重,因此,在电路部分,必须进行复杂的算法处理,表4所示是复杂算法的一个实例,这是K型热电偶的温度系数,可将其在0度至1372度范围内予以线性化,这些系数应用于以下方程:

式中:V 是热电偶两端的电压;

T 是温度

另一种这些复杂计算方法的应用是在处理程序中制作一张对照表,这样一张表 4 所列的 K 型热电偶的系数计算对照表是一组 11X14 阵列的十进制数,范围为0.000 – 13.820;

除此之外,热电偶由于与参考温度之间有一定的函数关系,它能确定温度的数值,(参考温度定义为热电偶导线相对其焊接端的远端端头温度,通常用热电阻RTD,热敏电阻或硅集成电路传感器测定)。

与热电阻RTD,热敏电阻相比,热电偶的热质量较小,因此其响应速度较快。这种温度传感器由于其宽广的温度检测范围,在一些恶劣环境下几乎成为独一无二的选择。

热电偶误差分析

热电偶比较其他温度传感器的成本低,结构强度大,体积小;但材料所受的任何应力,如弯曲,拉伸,压缩均可改变热梯度特性;此外,腐蚀介质可穿透其绝缘外皮,引起其热力学特性的改变,给热电偶加一保护性管壳,如陶瓷管以作高温保护是可行的,金属热阱也可提供机械保护。热电偶电压沿两种不同金属的长度方向上存在电压降,但这并不意味着长度较短的热电偶与长度较大的热电偶相比,肯定会有不同的西贝克系数。

线材长度短,当然会使温度梯度陡峻,但从导电效应来看,线材长度较大的热电偶却有它自己的优点,这时温度梯度是会小些,但导电损失也减小;但从长导线的负面效应来看,长线材热电偶的输出电压小,增加了后续信号调理电路的负担。

除了输出信号小之外,器件的线性度差需要大额度的校准,通常是以硬件与软件实现,如以硬件实现,需要一绝对温度参考用作为冷端参考,如以软件实现,则以对照表或多项式计算以减小热电偶误差。最后,电磁干扰会耦合进这双线系统;小线规线材可用作高温检测,寿命也会长些,但如果灵敏度成为最重要因素,则大线规线材的测量性能好些。

总起来讲,热电偶由于可测温度范围大,机械强度高,及价格低,成为温度测量的常选。高精度系统要求的线性度及准确度,要实现并不容易。如果精度要求更高,则应选择其他的温度传感器。

热电阻RTD--热电偶的绝对替代器件

热电阻测温元件的技术在持续不断地改进,温度测量的质量在不断提高,但要真正实现高质量、高精度的温度测量系统,热电阻的器件选择仍然极为重要。热电阻系一电阻性的元件,由金属制成,如铂,镍,铜等,所选金属必须具有可以预测的电阻值随温度变化的特性,其物理性能要易于加工制造,电阻温度系数必须足够大,使其电阻随温度的改变易于准确测量。其他的温度检测器件,如热电偶,并不能让设计人员有一种相当线性的电阻随温度变化特性,而热电阻这种线性度极好的电阻温度特性,大大简化了信号处理电路的设计制作。图5所示系热电阻的温度电阻特性,其中又以铂电阻在三种金属中具有最为精确、可靠的温度电阻特性。

因此,铂电阻最适于需要最高的绝对精度及重复性使用场合,它对环境的敏感度极低,与此相比,铜电阻则易产生腐蚀,长期稳定性差,而镍电阻虽然环境宽容度好,但适用温度范围较窄。

铂电阻的对温度响应的线性度好,化学惰性,容易加工制作直径较细的线材或是厚度小的箔材,铂的电阻率高于其他的热电阻材料,在电阻值相同的情况要求用材少,适于对成本考虑较强,对热响应讲究的场合。

铂电阻的热响应速度影响测量时间,它还取决于电阻的壳体及本身的尺寸情况,元件本身的尺寸小,外壳尺寸也可做得小些,一般地说,铂热电阻的响应速度要比以半导体制作的温度传感器响应快。

热电阻在摄氏零度的绝对电阻数值范围很大,可以由用户规定,如铂电阻的标准电阻为100欧,但也有50, 100, 200, 500 1000 or 2000 等阻值。

前已经述及,热电阻是以绝对法测量温度的,而不是象热电偶测的是相对两端之差,因此,任何其他的传感器无助于改善热电阻的测量精度。

多数情况下,热电阻无需作线性化处理,表6所示是一套100欧姆热电阻的温度电阻特性,当温度从0度变化到100度时,其电阻的变化量为:

与此同时,表中还以为单位,列出了铂电阻在其工作温度范围内电阻值的变化精度。就本文论及的热电阻而言,铂电阻是线性精度最好的,其线性化方程中只能两个系数。

R t =R

(1+At+Bt2) 温度(0℃ to 859℃)之间;

R t =R

(1+At+Bt2) +C(t-100t3) 温度(-200℃ to 0℃)之间;

式中:

R

t

为热电阻在测定温度下的电阻值;

t为待测定的温度;

R

为0度时热电阻的电阻值;

A,B和C 是经实验测定的校正系数;

这些方程是经五次迭代后求解的,从而可以将求解精度达到±0.001℃的精度。

热电阻的误差分析

除表6所示的元件初始误差外,还有其他的误差源会影响热电阻温度传感器的总精度,器件应用时的机械缺陷,如线材的弯曲,使用中不慎产生的冲击,器件受热膨胀时由于外壳的收缩所引起的应力,以及震动等,均会对传感器的测量重复性产生长周期的影响。

以上所述的机械应力会影响热电阻的稳定性,信号调理,增益,对输出信号的数字化等电气设计也可影响热电阻的精度,其中的一项是激励电流对热电阻的加热效应,因为热电阻需要用激励电流才能将电阻的变化转换为电压,人们希望流过电阻的激励电流大些,以使输出信号大大高于系统的噪声电平,但这样做的负面效应传感器会自行发热,因为电流与电阻产生了热功率使器件温度升高,而这一温升又使电阻增加。

如已知器件的热阻,激励电流数值,以及热电阻的阻值,上述误差很容易计算。

例如,如器件的热阻为50℃/W,热电阻名义值为250Ω,激励电流为5毫安,则因生热而产生的温升△℃为

这一实例说明了将激励电流选择得尽可能小,如小于1毫安的重要性。

第二项误差源是与器件连接的往返引线,将器件连接至电路的其余部分系一极为重要的一环,有三种形式可考虑采用:图3所示二线方式是最为经济的,但激励电流同埋流经引线及热电阻二者,引线之一部分与热电阻一起暴露于同温度下,引线电阻随温度的变化成为一个重要问题,例如,设引线用的是5号铜丝,长度为50米(引线电阻为1.028Ω/km),则往返两股导线使热电阻增加0.1028Ω,对100欧姆名义电阻而言,所引起的测量误差在零度时为0.26度,对整个测量产生非线性,图3所示这一精度较差的二导线引线方式可有效地改在三线或四线方式,以完全消除导线引入的误差。

热敏电阻-温度测量精度最高

如高精度成为至高无上关注要点,则温度传感器应选热敏电阻类,它有两个品种,一是负温度系数NTC,二是正温度系数PTC, 前者是陶瓷制品,由过渡属元素(如锰,钴,铜,镍等)的金属氧化

物为其成份,它需激励电流,温度系数是负的,有相当好的线性,且重复度优异,其工作范围为 -100至450度之间,经封装后,其电阻随温度连续可变,且随温度的变化程度极大高于热电阻RTD,即灵敏度高得多。

图4系热敏电阻的典型温度特性及其与热电阻RTD的对照,可清楚看出二者温度系数的极大差异,其温度系数呈负值,在其工作温度范围内,电阻值可变化达10,000倍;相映成对比的是,热电阻RTD的温度系数是正的,且在其工作温度范围内变化幅度只达4倍,在测量领域,这一极高的灵敏度及其相当高的精度十分吸引设计人员。

热敏电阻线性度不如热电阻RTD,精密测量温度时的校正需要三次多项式,它在工作温度范围内的线性化方程为

式中:BX 为热敏材料常数

以上线性化方程可将测量的不可求解性限制在±0.005℃,不过在单片机上实现这一计算相当繁琐,以查表法也可达同一目的,只是精度稍低。

热敏电阻的误差分析

热敏电阻的精度可比热电阻高,但两种传感器也有不少相同之处。热敏电阻也有激励电流的加热问题,实际使用时对其热效应需更加精心处置,因为后者的电阻值要大得多,例如,以0.35毫米的10℃/W的热敏电阻,25度时的名义电阻为10千欧姆,如激励电流取为5毫安,则因加热效应引起的

温度测量增加量为:

可见,待测温度如此之变化,测量的精度显然不高,而且,热敏电阻的这一温度系数还将该问题延迟了数秒,因为它要使外封装材料达到热稳定,使问题进一步复杂化的是,热敏电阻热效应是使电阻减小的(不象热电阻RTD那样是使电阻增加的),因为它是负温系数,所以热敏电阻的阻值会小于电压被激励电流相除所得数值,这一效应相当不容易用软件校准的办法消除,应尽量避免。

正温系数热敏电阻的温度系数是正值,用钛酸

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

CJ 128-2000热量表

CJ 128--2000 前言 《热量表》标准在我国首次制定。标准制定过程结合了我国热量表研制、生产、使用情况,参照了欧洲热量表标准EN1434(Heat meters)和国际法制计量组织的R75号国际建议(OIML—R75)。本标准采用了EN1434中的EN1434.1、EN1434.2、EN1434.4、 EN1434.5四个标准中的主要内容。对EN1434.3和EN1434.6两个标准暂不采用。铂电阻的结构和应用基本上采用了欧洲标准EN1434.2。鉴于R75号国际建议也按照EN1434修改,因此,本标准的准确度等级参照EN1434制定。 标准虽然暂不编写EN1434.3的内容,但为了热量表在测试过程中有输出信号接口,也为了信号远传或其他用途,规定热量表应有标准通讯接口。 本标准有七个附录。附录A至附录F都是标准的附录。其中附录A、附录C至附录F就水的密度和焓值以及流量传感器、温度传感器、计算器和热量表的准确度测量和计算,规定得比欧洲标准详细,便于使用。附录G只是为了热量表信号远传和预付费技术的发展提供条件,是提示的附录。 本标准的第4章4.2.3条、4.2.4条、4.2.5条、4.3.3条、4.3.4条、第5章5.2节至5.7节、第6章6.2节,均为强制性条文,其余为推荐性条文。 本标准由建设部标准定额研究所提出。 本标准由建设部城镇建设标准技术归口单位建设部城市建设研究院归口。 本标准起草单位: 建设部城市建设研究院、中国科学院物理研究所、北京德宝泛华机电有限公司、清华大学、丹东思凯电子发展有限责任公司、天津市赛恩电子技术有限公司、江苏环能工程有限公司、中国航空工业沈阳发动机设计研究所沈阳航发热计量技术有限公司、唐山汇中仪表有限公司、大连天正热能自动化设备有限公司、西门子楼宇科技(香港)有限公司、丹佛斯公司。 本标准主要起草人:李国祥吕士健王树铎王作春狄洪发史健君左晔王建国申秀丽徐彦庆郑吉发邵康文李滨涛 本标准委托建设部城市建设研究院负责解释。

温度传感器主要形式和温度探头类型

温度传感器主要形式和温度探头类型 温度传感器三种主要形式 热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。因而在回路中形成一个大小的电流,此现象称之为热电现象。 铂电阻测量原理不同于热电偶测量方法。铂电阻传感器本质上来讲属于PTC热敏电阻的一种。金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。 NTC热敏电阻使用较为广泛且较经济的一款温度传感器。由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negative temperature coefficient缩写)。随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。

温度探头三种主要类型 刺入/浸入式探头 用于测量液体及固体的温度,探头的前端设计为针状刺入式。使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同理热能则从探头传导至被测物体。这就意味着被测物体被加热升温,所测得的温度是加温之后的物体温度,在此测量情况,探头与介质的比值必须考虑,因为探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。我们一定要注意仪器测量的不是介质的温度,而是传感器的温度,此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。 空气温度探头 用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的传感器裸露,因此示值很容易受气流所影响,最好的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。 表面探头 用来测量物体的表面温度。空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。必须注意的是探头与被测物的接触面必须平坦,否则在测量时则会影响测量结果。

集成温度传感器1

非接触式温度传感器 非接触式温度传感器即热探测器,热探测器(有时也放在红外光电式传感器中介绍)是在吸收红外辐射能后温度升高,引起某种物理性质的变化,这种变化与吸收的红外辐射能成一定关系。常用的物理现象有温差热电现象、金属或半导体电阻阻值变化现象、热释电现象、气体压强变化现象、金属热膨胀现象和液体薄膜蒸发现象等。 热释电型红外探测器是根据热释电效应制成的,即电石、水晶、酒石碳酸钠、钛酸钡等晶体受热产生温度变化时,其原子排列发生变化,晶体自然极化,在其两表面产生电荷的现象称为热释电效应。 热释电效应 当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,图1表

示了热释电效应形成的原理。 热释电材料是一种具有自发极化的电介质,它的自发极化强度随温度变化,可用热释电系数p来描述,p=dP/dT(P为极化强度,T为温度)。在恒定温度下,材料的自发极化被体内的电荷和表面吸附电荷所中和。如果把热释电材料做成表面垂直于极化方向的平行薄片,当红外辐射入射到薄片表面时,薄片因吸收辐射而发生温度变化,引起极化强度的变化。而中和电荷由于材料的电阻率高跟不上这一变化,其结果是薄片的两表面之间出现瞬态电压。若有外电阻跨接在两表面之间,电荷就通过外电路释放出来。电流的大小除与热释电系数成正比外,还与薄片的温度变化率成正比,可用来测量入射辐射的强弱。 1、热释电型红外传感器(PIR传感器)

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

热量表的安装

参考医学 超声波热量表、电动温控阀安装 超声波热量表的安装及注意事项 配置:超声波热量表、测温球阀、电动温控阀、热量表配套活接、过滤器、手动球阀(或锁闭阀)(1)热量表、测温球阀、电动温控阀安装示意图 (2)施工条件 A)系统及过滤器杂质排除干净,管道系统中无杂质; B)安装热量表的环境中无漏水情况,相对空气湿度不超过85%。 C)超声波热量表调试,必须要从过滤器排污,排污时将热量表用塑料袋套住, 防止排污泄水导致热量表进水损坏。 (3)热量表安装 1?安装位置:热量表按设计安装在进水管(供水管)。电动温控阀安装在回水管测温 球阀后。 A,热量表要安装在合适的位置,以便于操作、读取与维护维修 B,热量表上的铅封不能损坏。如损坏生产厂商将不再承担质量和准确度保证。 参考医学 C,安装时应严格要求,谨慎操作,防止人为损坏。

D,超声波热量表可水平或垂直安装,垂直安装时,应使进水方向由下进水; E ,热量表禁止安装在管道的最上端,防止局部管道集气造成计量不准; F,安装热量表前,应先确认区分供、回水管以及水流方向;热量表壳体上箭头所指方向为水流方向,不得装反; 2.安装环境: a.热量表要求使用环境相对干燥,湿度较低为宜. b.安装在管道井内,管道井地面应有防水处理; c.热量表安装时应避免在表的上方有各种供回水管道,防止漏水造成热量表损坏; d.同一个管井安装多块热量表时,应使热量表安装位置在垂直方向错开(相互平行或并排),避免上下叠加的安装方式造成上面漏水下面进水的结果; 3.热量表的搬运及拿放: 热量表属于比较贵重精密仪表,拿起放下时必须小心 a.轻拿轻放,避免碰撞; b.禁止提拽表头、传感器线;禁止挤压测温探头; c.严禁靠近较高温度热源如电气焊,防止电池爆炸伤人以及损坏仪表; 4.热量表温度传感器的安装方式: 热量表的温度传感器共有两只(进水和回水),安装时应将红色标签的温度传感器安装在进水管上(通常在表体测温孔内),另一只兰色标签的温度传感器安装在回水管上,安装温度传感器的步骤为: a)取下温度传感器上的防水胶圈塞进侧温座孔内; 参考医学 b)再将温度传感器装进测温座孔并上紧(以防止漏水或未经许可的人员打开);

热量表测量原理

、热量表测量原理 热量表一般由流量计、温度传感器和计算器组成。当水流经热交换系统时,流量计测量出热(冷)水流量,并将测量结果以脉冲形式传送给计算器,计算器通过与之相连的配对温度传感器测出进、出口的水温,以及水流经的时间,根据以下方程计算出系统释放(或吸收)的热量。 二、热量表简介 热量表依据国家城镇建设行业标准《热量表》(CJ128-2000)设计,主要用于计量以水为介质的热交换系统所释放(或吸收)的热量,并可进行数据传输(可选),便于远程抄表和计算机集中管理;配以IC卡智能控制阀等部件可实现用热的预付费管理。 热计量表产品已形成系列化、多样化,规格齐全,公称口径从DN15到DN400;有单流束/多流束、普通型/无磁型、热用型/冷热兼用型、远传型/IC卡型等型号,可满足用户的不同需求。 三、显示内容及操作说明 1. 液晶常显示项为累积热量。 2. 按键每按一下,顺次显示下一项内容。 3. 每项显示内容最长显示3分钟,无动作后自动返回累积热量显示。 四、使用和维护说明 1. 供热或制冷系统的水质应符合国家和行业规定的要求。 2. 热量表应安装在便于查看、维护和管理的位置。水流方向必须保证与热量表标示的方向一致。 3. 热量表在使用过程中应避免高温、强烈振动与冲击、冰冻以及大量灰尘等恶劣环境,最好将其安装在带有保温的热量表箱活管道井内。 4. 热量表的显示器不得被水浸泡并应避免阳光直射。切勿用力拉扯热量表的温度传感器导线和流量信号传感器导线。 5. 热量表使用了至少一个采暖季后,在每个采暖季正式开始之前,系统一定要在十分之一常用流量的温水环境中运行两个小时以上。 6. 每个采暖季结束后最好不要把系统管路里的水排泄掉。

集成温度传感器LM35测量水温

《传感器技术》课程设计 课题:集成温度传感器测量水温 班级______________________ 学生姓名__________ 学号 指导教师________________________ 淮阴工学院电子与电气工程学院

2013年6月21日 集成温度传感器LM35测量水温 1.系统方案设计 1.1概述 如今,随着科学技术的发展,传感器的种类也日益增多,如AD公司生产的模拟电压输出 型的温度传感器TMP35/36/37,它主要应用于环境控制系统、过热保护、工业过程控制、火灾报警系统、电源系统监控、仪器散热风扇控制等。还有NATIONAISEMICONDUCT生产的与微处理器相结合的测温及温度控制、管理的温度测量控制器LM8Q它主要应用于个人计算机 及服务器的硬件及系统的温度监控、办公室设备、电子测试设备等。以及MAXINE司生产的PW风扇控制器及遥控温度传感器MAX1669它主要应用于CPU冷却控制。因此,测量外界的 温度也有很多种方法,然而,由于热敏电阻及其放大电路受到环境的影响,在不同的条件下 会出现不同的测温偏差;TMP35/36/37,LM80 MAX166这些传感器的造价又太高,在相同条 件下,由于测温精度、处理精度等多方面的因素,不同的通道也会出现不同的偏差,因此必 须采用一种灵活的修正方式,这便用到了电压型温度传感器LM35D它的线性好(10mV/C), 宽量程(0--100 C)高精度(+0.4 C ),低成本,而且采集到的是电压型信号,易于处理,使得电路简单实用。 采集到的微弱电压信号经过放大器OP07放大十倍后送入ADC0804的输入端,A/D转换 器(ADC0804将模拟信号转换为数字信号后传给AT89C51,该系统以AT89C51单片机为核 心,通过单片机编程可以实现高温(50C)、低温(10C)报警的控制,以及预置温度的控 制,然后经过P1 口将数字信号传送给74LS138译码器以及驱动器CD4511使LED八段数码管动态显示室温。经实验调试,用该方法对0--100 C范围的温度测量时,测量误差+0.4 C, 可靠性好、抗干扰性能强。采用MC& 51系列单片机作为核心监控器对外界温度进行测量。 这样,既可以降低对温度传感器和放大电路的要求,从而降低成本,又可以针对不同外部环 境或不同通道对温度显示及报警设定进行灵活修改。 1.2系统方案框图 根据课题设计要求可知该系统需要利用电压型温度传感器采集室温并产生10mv/C的电压信号,将放大后的信号送给转换器进行转换,通过单片机设定上下限报警温度并显示转 换后的室温,具体流程图如图2:

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

实验五十五 温度传感器特性的研究

实验十九 温度传感器特性的研究 随着现代测量、控制和自动化技术的发展,传感器技术越来越受到人们的重视,传感器在各个领域中的作用也日益显著。传感器是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。传感器的种类很多,有温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。 在各种温度传感器中,把温度转换为电势和电阻的方法最为普遍,本实验首先讨论将温度转换为电势的传感器——热电偶的温度特性,然后讨论将温度转换为电阻的传感器——热电阻的温度特性。 实 验 目 的 (1)掌握补偿法测电动势的基本原理,学会用UJ-31型低电势电位差计测定热电偶的温差电动势。 (2)掌握热电偶温度计的定标以及用热电偶温度计测温的原理。 (3)研究热电阻的温度特性。 (4)掌握非平衡电桥的工作原理,学会用非平衡电桥测量热电阻的阻值。 练习一 热电偶传感器温度与温差电动势关系的测量 一 实 验 原 理 1. 热电偶测温原理 热电偶是利用热电效应制成的温度传感器。热电偶亦称温差电偶,如图1所示。它是由A 、B 两种不同材料的金属丝的端点彼此紧密接触而组成的。 当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势 称温差电动势或热电动势。当组成热电偶的材料一定时,温差电动势E X 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如 下近似关系式: ()0t t E X -=α (1) 式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值就等于两接点温度差为1°C 时所产生的电动势。 为了测量温差电动势,就需要在图1的回路中接入测量仪器,本实 验选用的是铜-康铜组成的热电偶(铜-康铜热电偶在低温下使用较为 普遍,测量范围为-200~+200℃)。由于其中有一根金属丝和引线材料一样,都 是铜,因此没有影响热电偶原来的性质,即没有影响它在一定的温差0t t -下应有的电动势X E 值。如图2所示,把铜与康铜的两个焊点一端置于待测温度处(热端),另一端作为冷端(本实验处于室温状态),将铜线截断后与测量仪器相连,这样就组成一个热电偶温度计。只要测得相应的温差电动势,再根据事先校正好的曲线或数据就可求出待测温度。热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,还能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。 2. 补偿法原理 补偿法是一种准确测量电动势(电压)的有效方法。如图3所示, 设0E 为一连续可调的标准电源电动势(电压),而E X 为待测电动势,调节0E 使检流计G 示零(即回路电流0=I ),则X E E =0。上述过程的实质是,不断地用已知标准电动势(电压)与待测的电动势(电压)进行比较,当检流计指示电路中的电流为零时,电路达到平衡补偿状 态,此时被测电动势与标准电动势相等,这种方法称为补偿法。这和用一把标准的米尺来与被测物体(长度)进行比较,测出其长度的基本思想一样。但其比较判别的手段有所不同,补偿法用示值为零来判定。 但电动势连续可调的标准电源很难找到,那么怎样才能简单地获 得连续可调的标准电动势(电压)呢?简单的设想是:让一阻值连续 可调的标准电阻上流过一恒定的工作电流,则该电阻两端的电压便可 作为连续可调的标准电动势。 P R X E N E 0

热量表技术标准和产品检验方法

热量表技术标准和产品检验方法 1.范围 本标准规定了热量表的热量计量原理与主要参数、技术要求、试验方法、检验规则和 包装与贮存条件。本标准适用于测量计算流动介质为水,温度为2~160℃,压力不大于2.5MPa的热量表。 2.引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。 BSEN1434 1997 国际法定计量组织的75号国际建议(OLMLR75) GB/T 778.3—1996冷水表第3部分:试验方法和试验设备 JB/T 8802—1998热水表行业规范 GB/T9329—1999仪器仪表运输、贮存基本环境条件及试验方法 3.术语 3.1热量表 用于测量显示水流过热交换系统所释放或吸收的热量的仪器。 3.2整体热量表 由流量传感器、计算仪、配对温度传感器等部件所组成不可分离的热量表。 3.3流量传感器 安装在热交换系统中,用于采集水的流量并发出流量信号的部件。 3.4温度传感器 安装在热交换系统中,用于采集热交换系统入口和出口水的温度并发出温度信号的部件。 3.5计算仪 接收来自流量传感器和温度传感器对的信号,进行热量计算存储和显示系统所交换的热量值的部件。 3.6配对温度传感器 在同一个热量表上,分别用来测量热交换系统的入口和出口温度的两支温度传感器。 3.7温差 在热交换系统内的热载体水的入口温度和出口温度的差值. 3.7.1最小温差

温差的下限值,在此温差时,热量表不得超过误差界限。 3.7.2最大温差 温差的上限值,在此温差时,热量表不得超过误差界限。 3.8流量 单位时间通过热量表的热载体水的体积。 3.8.1最小流量 热载体水在系统内的最小流量,在此流量时,热量表不得超过误差界限。 3.8.2额定流量 热载体水在系统正常连续运行的最大流量,在此流量时,热量表不得超过误差界限。 3.8.3最大流量 热载体水在系统内,有限时间(<1小时/天;<200小时/年)内,正常运行的最大流量,在此流量时,热量表不得超过误差界限。 3.8.4累积流量 热交换系统内流过的载体水的体积的总和。 3.9温度上限 热量表不超过误差界限时,热载体水的最高温度。 3.10温度下限 热量表不超过误差界限时,热载体水的最低温度。 3.11最大允许工作压力 在温度上限持久工作时,热量表所能承受内部的最大压力。 3.12压力损失 在给定的流量下,系统中热量表所造成的压力降低。 3.13最大允许压力损失 流量传感器在最大流量Lmax时,水流经热量表的压力损失不得超过的规定值。 3.14最大热功率 热功率的上限,在此功率下,热量表不得超过误差界限。 3.15最小热功率 在温差的下限,流量的下限,以及温度的下限所对应的功率。

热量表流量传感器

热量表功能特点: ◎热量、冷量计量一体:根据水温自动转换(30℃),可实现热量冷量一体计量; ◎参数循环显示,显示分辨率高:测量参数汉字显示,清晰直观;(液晶会循环显示剩余热量(剩余冷量)、累计热量(累计冷量)、累计流量、瞬时流量、温度、温差、累计工作时间、表号等参数,循环显示完毕,液晶恢复正常工作显示状态等); ◎具有远传接口:可配合远程抄表系统实现远程抄表; ◎韦根流量传感器:性能更好; ◎结构精巧,外型美观,积分仪可360度旋转,安装使用方便; ◎密封性强,适应供热恶劣环境; ◎无可操作、拆卸部件,安全可靠。 构成:热量表主要由流量传感器、配对温度传感器和计 算器等部分组成,热量表按结构类型一般可分为一体式热量表和组合式热量表。 热量表流量传感器 简述:在国内外众多户用热量表产品中,因价格和功耗等诸多因素,普遍采用小口径机械式热水表作为热量表的流量传感器,建设部热量表行业标准CJ128-2000中对流量计部分的要求也基本上采用了与现行热水表产品性能相同的要求。使用和研究实践表明:直接采用小口径机械式热水表作为热量表的流量传感器,存在一系列需要解决的问题。根据对热量表流量传感器的研究体会,我们发现小口径机械式热水表作为热量表流量传感器时存在的主要问题有:量程问题,冷热水流量系数差异问题,降低始动流量和提高小流量情况下精度问题,磁传方式存在的磁干扰问题,高温失步问题,以及对我国供暖系统水质的适应性问题。根据研究和分析结果我们对上述问题作了初步分析,提出一些解决方案与业内同行研讨,以期研制出了热量表相适应的流量传感器,共同提高我国热量表的研制水平。 1热量表流量传感器的量程问题 1.1热量表流量传感器的测量范围 建设部热量表行业标准CJ128-2000中第4.3.3条规定:“热量表的常用流量应符合GB /778.3冷水水表的要求,常用流量与最小流量之比应为10、25、50或100。公称直径≤40mm 的热量表,其常用流量与最小流量之比必须采用50或100。” 某厂(目前热量表厂家普遍采用该厂热水表)不同口径热水表的流量范围如表1所示:示值误差在分界流量(含)至最大流量之间为2%,在分界流量至最小流量之间为5%。同时规定:各级流量传感器误差限最大不应超过5%。 以目前使用广泛的DN20热量表为例,其测量误差曲线1.2建筑采暖系统的流量设计范围 根据有关资料,我国北方城市节能和非节能建筑采暖系统的流量设计范围如表2和表3所示。 根据实际使用情况的经验数据,当用户实现分室调节后,工作流量将降到设计流量的50%。 1.3分析结论及改进措施 根据以上数据,直接采用小口径机械式热水表作为热量表的流量传感器,可以得出以下几点结论: a. 热水表的常用流量太大,在建筑采暖系统设计流量的10倍以上; b. 大部分热量表将工作在分界流量以下,口径在DN 20以上的热量表甚至工作在最小流量附近; c. 热量表的流量传感器大部分时间将工作在高误差区,如果工作在最小流量以下,实际测量误差将超过

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

实验41 温度传感器特性研究---讲义

设计性实验 实验四十一温度传感器特性研究 【实验目的】 1、了解热敏电阻(NTC)的温度特性及其测温原理。 2、掌握用非平衡电桥测量电压信号的原理,了解其应用。 【实验仪器与器材】 九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。【提示与要求】 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。常用的热电阻有铂热电阻、热敏电阻和铜热电阻。 1、Pt100铂电阻的的测温原理 金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。 按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻。 TCR=(R100-R0)/(R0×100) (1)100℃时标准电阻值R100=138.51Ω。100℃时标准电阻值R1000=1385.1Ω。 Pt100铂电阻的阻值随温度变化而变化计算公式: -200

相关主题