搜档网
当前位置:搜档网 › 纸与纸板的物理性能检测项目

纸与纸板的物理性能检测项目

纸与纸板的物理性能检测项目
纸与纸板的物理性能检测项目

纸与纸板的物理性能检测项目

一、纸与纸板定量、厚度、紧度和松厚度的测定

二、水分的测定

三、抗张强度和伸长率的测定

四、纸和纸板耐破度的测定

五、纸和纸板耐折度的测定

六、纸板戳穿强度的测定

七、纸板挺度的测定

一、纸与纸板定量、厚度、紧度和松厚度的测定

(一)定量

定量是指纸或纸板每平方米的重量,以g/m2表示。定量是纸和纸板重要的指标之一,定量的大小会影响纸张的技术性能,但为了节约原料,增加单位使用由积,在保证使用性能的前提下,应尽量降低纸张的定量。

1.仪器

用感量为0.01g的天平进行称量。天平要每隔半年用标准砝码校对一次。

2.测定步骤

从每张试样上切取100×100mm的试样至少5张为一组,一并称量;宽度在106mm以下的盘纸应按卷盘全宽切取5条长300mm的纸条,一并称量。并测量纸条的长、短边 (准确至0.1mm),计算面积。

3. 结果计算

定量按下式计算:

n --试样张数。

以所有测定值的算术平均值表示结果,并报出最大值和最小值。计算结果取三位有效数字。

(二)厚度

厚度是指纸样在测量板间经受一定压力所测得的纸样两面之间的垂直距离,其结果以mm表示。

厚度能影响纸和纸板的很多技术性能,要求一批产品各张纸之间的厚度应趋一致,同一张纸不同部位之间的厚度亦应一致,以保证使用效果。

1.仪器及工作原理

厚度测定仪(厚度计)有电动和手动两种形式。

(1)仪器结构

包括四部分:

①测量机构:由重锤、测量头和量砧组成。规定测量面积为0.05cm2,测量压力为

100±10kPa(1±0.1kg/cm。)。

②指示机构:为一标准型百分表或干分表,用以记录厚度数值。其刻度的精确度在0.005mm 之内。

③提升机构:用以升降测量头,以取放纸样。座体:由底座与上述三部分机构连接构成仪器的整体。

(2)工作原理

置纸样于测量头与量砧间,并受重锤—定的压力,纸样所占居的厚度通过测量杆的位移传递给量表内的齿轮机构,使表针转动一个角度而得到厚度的读数。

2.仪器的校准

(1)测量面平行度的校准

将直径1.5mm左右的钢珠,夹持于金属薄片上,置于两测量面间,在测量面的5个不同位置测量其厚度,各点所测结果相差不得超过0.005mm。

(2)测量面单位压力的校准

用一根金属丝,一端系在厚度计压力杆的顶部,另一端连在事先校准的准确度不小于

100mN(10g)的天平上,测定拉力测量板所需的力,将其换算成测量板上的单位压力应为l

00±10kPa(1±0.1kg/cm2)。

(3)刻度值的校准:将指针调至零点,然后用精度0.001mm的标准厚度块规,或经校难的塞缝尺,在全部测量范围内校准若干点的刻度值。

3.测定步骤

(1)按标难规定采取试样,以每张纸样上切取100×100mm的试样至少5张。

(2)按下拨杆,抬起测量头至足以放入纸样的高度(若为电动的则由仪器自动控制高度)。置纸样于测量头与量砧之间。

(3)缓慢放松拔杆,使测量头与纸样接触(若为电动的,则自动下降接触纸样).待指针稳定后读数。在纸样的不同位置测量厚度,至少两处。

(4)宽度在100mm以下的盘纸,应按全宽切取5条长300mm的纸条,在每条不同位置测量其厚度,至少两处。

4.结果计算

以所有测定值的算术平均值表示结果,并报出最大值和最小值。厚度小于0.05mm的纸准确至0.001mm。厚度小于0.2mm的纸,准确至0.005mm。原度在0.2mm以上的纸,推确至0.01mm。

(三)紧度和松厚度

紧度又称表观密度,是指每立方厘米的纸或纸板的重量。它是由定量和厚度计算而得,单位为g/cm3。紧度与纸浆品种、打浆状况以及抄造条件有关。它是衡量纸或纸板组织结构紧密程度的指标,它决定着纸张的透气度、吸收性、刚性和强度性能等。因此,紧度是纸或纸板很重要的性能指标之一。紧度按下式计算:

二、水分的测定

1.定义

水分是指纸或纸板在规定的烘干温度下,烘至恒重时,所减少的质量与试样原质量之比,以百分数表示。

2.仪器

(1)天平 感量0.001g。

(2)试样容器

装试样及称重用,要求密封性好。

(3)干燥器。

(4)温度可以控制在105土2℃的烘箱。

3.试样的选取、制备和称量

(1)当单位是令或包时

a.纸或纸板的定量小于或等于225g/m2;

从每令或每包的中央至少连续取4张试样,将试样快速折叠或切开,装入容器中,容器内装的试样质量至少为50g,称量装有试样的容器,并计算试样的质量。

b.纸或纸板的定量大于225g/m2;

从每包或每令的中部取一张或多张试样。取宽度50-75mm,长度不小于150mm的样品条。其总质量至少为50g,立即装入容器中,称量装有试样的容器,并计算试样的质量。

从每令或每包的中部,连续取若干张样品,将这些样品按下图切成50-75mm试样条,并切取距离原样品页边150mm以内的纸或纸板,切好后去掉顶层和底层试样条,将中间的两组合并成一种试样,从边上切取的两组试样组成另外两种试样,每种要有两份试样,每份试样质量至少为50g,立即将各份试样放入容器中,分别称量装有试样条的各容器,计算出每个试样的质量。

(2)当单位是卷筒时

将卷筒外部的损坏层全部取下弃去,如果定量小于225g/m2,至少再去三层末损坏层。如果定量大于225g/m2,至少再去一层末损坏层。将卷筒按横向切取至少厚5mm的样品层,然后将样品层铺平,技纵向切取宽50一75mm的试样组条,从靠近卷筒两边上各切取一组试样条,在两边之间的中部处切取另一组试样条,或从卷筒上整幅切取。试样切样时注意不要使一叠样品中的纸页或一组样品中的纸条分开。弃去每组试样条的上层和底层纸页,将余下的试样条合并在一起组成试样,并将不少于50g的试样装入容器中。若50g试样体积过大,可用较少量试样,但应在试验报告中说明。??

4. 试验步骤

取样前,将足数洁净、干燥的容器编上号,并在大气中平衡,然后将每个容器称重,并盖好备用。

将试样放入已烘干至恒重的容器中,打开容器的盖子,连盖一起放入105±2℃的烘箱中烘干,

试样也可以从容器内取出来摊开烘,容器和盖也在同一烘箱中烘干。当烘干结束后,应在烘箱内将容器盖好。如摊开烘,应将纸条放回容器中盖好。移入干燥器中,冷却30min称重,重复上述操作,直至两次称量相差不大于原试样重的0.1%时,即可认为达到恒重。

5.结果计算

三、抗张强度和伸长率的测定

抗张强度是指纸或纸板在一定条件下所能承受的最大张力。通常以下面几种方式表示

(1)抗张强度

一定宽度的试样断裂时所承受的张力,以kN/m表示。

(2)裂断长

一定宽度的试样由本身重量将其拉断时的长度,以m表示。

纸和纸板的抗张强度受纤维的结合力和纤维本身的强度影响,而纤维的结合力是影响抗张强度的决定因素。抗张强度是很多纸种应予测定的性能指标,对于包装纸和纸板尤为重要,是纸袋纸、包装纸、纸绳纸.纱管纸、电缆纸等的重要指标。

伸长率为纸条受张力至断裂时所增加的长度对原试样长度的百分率,伸长率是衡量纸张韧性的一项指际,其值越大越能减轻外力冲击的破坏作用,对纸袋纸、包装纸等都是重要的性能指标。

(一)仪器及工作原理

测定纸与纸扳用的抗张强度测定仅有摆锤式、扭力棒式、电感应式等。近年在仪器的更新中出现了自动记录带数字显示测试结果的台式抗张力测定仪。目前用的较多的还是摆锤式,即肖伯尔式抗张强度测定仪,下面介绍这种仪器。

1.仪器结构

(1)传动变速机构

由电机通过皮带、摩擦轮.蜗轮蜗杆系统,驱动试样下夹头升降。当启动电机后,右手操纵手柄,控制离合器,使下夹头下降、停止或上升。下夹头的行程为229mm,待达上、下限位时均能自动停机。转动变速上的手柄,可进行无级变速,变速范围为40~500mm/min。

(2)抗张测量机构

作用在下央头上的牵引力,由试样传给上夹头,再通过链条使用沿扇形板缓慢均勾地问左摆动一定角度至达到平衡。当试样被拉断时,摆被刺动爪卡住,摆上的指针即在刻度盘上指示出

拉力数值。刻度盘上的刻度有的分A、B两档,有的分A、B、C三档,使用时可根据被测试样执张强度的大小选择适宜的砝码。

(3)伸长测量机构

实际上是指示上下夹头在测定过程中的位移之差。指示伸长的标尺通过执杆滑块及挂钩与下夹头连接在一起,随下夹头做相对运动,伸长指示牌与上头夹固定在一起,当试样断裂时,挂

钩脱开使标尺不再随下夹头下降,这时指示牌在标尺上即指示出试样的伸长值和伸长率。

2.工作原理

是根据摆动平衡原理进行测定的。仪器工作时,由下夹头的运动通过试样、上夹头,链条使摆沿刻度尺转动一定角度而指示出试样的抗张强度值。

(二)仪器的校准

1.抗张力标尺的校准

又起摆上的制动爪,在上夹头口悬挂一个已知重量的珐码,让摆慢慢达到平衡位置,读出指示值,同砧码比较,其误差不应超过土1%。

2.伸长标尺的校准

锁住摆,使下夹头升至开始测定时的位置,用内卡尺测量两夹头间的距离。调节指针至伸长标

尺的零点,开动电机使下夹头下降,测量下夹头在任何一点停时两夹头的距离的增加值,应与

伸长标尺的实际伸长值相符合,其误差不应超越0.5mm。

(三)测量步骡

(1)切取宽15mm、长约250mm纵、横方向的试样至少各5条,按标准规定的条件进行处理。

(2)调节仪器各部件,使指针指零,下夹头升至最高位置,夹距一般控制在180mm,若试样较短,可用150或100mm夹距。

(3)分别按纵、横向将纸条夹在上夹头上(可同时夹10条,纸板应逐条加入)。调节试样至平行,拧紧.上夹头,松开上夹头固定螺丝,取一条纸样于下夹生内,用手轻轻拉直,然后夹紧

下夹头。根据试样强度的情况,选择适当的重砣,调节下夹头下降速度,待下降速度能在20土5秒使试样断裂时,即可进行正式测定。读取试样断裂时的抗张强度至三位有效数字,伸长率准确至0.2%。纸条若在夹头内部或距夹口10mm以内断裂时,该数据应弃去不计。

根据特定的质量标准要求,测定厚纸板的抗张强度时,采用的宽度为50mm(若采用15mm宽度时,其结果应乘以3.3),夹距为100mm。

注:调节下夹头下降速度可采用秒表测试外,还可以用2—3条试样做试探性测定。为此,可将试样断裂时下夹头下降距离(mm)乘以3,即可求得调速盘上每分钟下夹头应该下降的速度.按此速度进行测定,便可保证试样断裂时间在20土5s。

(四)结果计算

1.抗张强度

当试样断裂时,由仪器上指示的数值计算,以kN/m表示。

---平均抗张力,N;

LW ---试验纸条的宽度,mm。

结果取三位有效数字。

2.裂断长

式中 LB---裂断长,km;

---平均抗张力,N;

S ---抗张强度,kN/m;

G ---定量,g/m2;

LW ---试样宽度,mm;

L1 ---夹子间初始长度,mm;

m---夹子间纸条的平均质量,mg。

若试样的定量波动较大和精确度要求较高时,可由测定抗张强度的纸条本身的重量换算裂断

3.抗张指数

式中 ξ---伸长率,%;

Δl ---伸长,mm;

l ---试样断裂时试样夹间距离,mm;

l0 ---试样夹之间的起始长度,mm。

试样的抗张强度和伸长率,按纵横向进行测定,分别以所有测定值的算术平均值表示结果,并报出最大值和最小值。

计算结果准确至三位有效数字。

5.抗张能量吸收的测定

破裂功是纸张强度和伸长率的综合性函数,是纸张强韧性能的一项指标。其数值等于纸张在拉力抗张作用下从开始到断裂时所吸收的总能量,即外力对纸张所做的功,以J表示。纸张单位面积所吸收的能量称为抗张能量吸收,以J/m2表示。

破裂功是包装纸和纸袋纸的一项重要性能指标。过去表示纸张抗破损性能好坏都用抗张强度、耐破度指标表示,但这些指标并不能确切地反映纸张在受外力冲击后而破裂的动态状况。实际上,往往抗张强度、耐破度大的纸张,在使用时其破损率不一定就低;而伸长率大的纸张即使其抗张强度、耐破度差一点,其破损率反倒小一些。以水泥装袋运搬为例,在此过程中,要受到一定冲击力;当纸袋纸的伸长率较高、柔韧性较好时,就能够较多地吸收这种冲击时的应力,而使之迅速向周围环境扩散,因而就不易破损:而伸长率较小,柔韧性较差的纸袋纸,在受到外界冲击力时,应力不易迅速扩散而集中在受力点,因而就容易破损。所以,对这类纸张仅要求抗张强度、耐破度几项指标是不行的,尚须引入反映纸张强韧性即破裂功这项性能指标,才能更确切地指示出纸张的抗冲击能力。

测定破裂功可采用专门设计的应力一应变仪,它可以通过自动积分器直接将破裂功计算出来。但为了简便起见,目前国内外多在拉力仪上进行测定,通常采用自动记录的电感式抗张仪或其他有自动记录的抗张仪。

破裂功之值,即应力—应变曲线下边的面积。求此面积,可用作图方法或通过积分器求得.但实际上,许多国家通常用纸张断裂时的拉力和伸长的乘积(拉伸积)乘以系数来近似表示。有的国家则不考虑系数,直接用拉伸积表示,在一定条件下,作为相对比较,仍能起到控制生产的目的。破裂功系数k之值,对通过实验而求得,其方法是,先在拉力仪上求得试样拉伸过程中的应力—应变曲线,并计算曲线下面的面积A(破裂功):再由试样断裂的抗张力F和伸长值ξ求出试样的拉伸积。在进行破裂功研究时,联邦德国测得的破裂功系数,横向kc=0.72,纵向km=0.62。

轻工业部造纸研究所于1972年到1973年曾对全国用木浆生产纸袋纸的17个机台进行361次测定,由破裂功和拉伸积导出的平均破裂功系数,kc=0.682,km=0.582,与联邦德国采用的系数接近。

(1)抗张能量吸收

---抗张力,N;

ξ—伸长,m;

LW—试样宽度,m;

L0—试样起始长度,m。

(2)抗张能量吸收指数

由抗张能量吸收除以定量可求得!其值按下式计算:

返回四、纸和纸板耐破度的测定

耐破度是指纸或纸板在单位面积上所能承受的均匀增加的最大压力,以kPa表示。

耐破度测定简单,广泛用于生产中的测定。它是纸袋纸、包装纸及纸板的一项重要性能指标。耐破度与纤维长度和纤维结合力有关,纤维长度和结合力高的纸张其耐破度亦高。浆料的机械处理方式及打浆程度直接影响浆料纤维的平均长度及纤维的结合力,提高打浆度,则耐破度增加,但打浆度过高,反使耐破度下降。耐破度是纸张许多强度性能的综合反映,它与抗张强度、伸长率、撕裂强度都互有影响。

目前常用的为缪伦(Mullen)式耐破度仪,分油压和气压两种。油压耐破度仪是以甘油为压力传递介质。气压耐破度仪是以压缩空气为压力源传递压力。

1.仪器结构

纸与纸板所用耐破度仪的结构基本相同。其组成包括压紧机构、传动加压机构和指示机构三部分。

试样的压紧采用凸轮杠杆机构。在上、下压环的接触面上刻有V形同心槽,以压紧试样。压紧杠杆一般仪器采用人工操作,新型仪器采用压缩空气或液压装置自动压紧试样。

由电机通过皮带或联轴器驱使蜗杆、蜗轮和齿轮系统运动,并通过离合器带动蜗杆轴作正反旋转,使带有皮碗的活塞在油缸内作往复达动,从而通道油介质对试样进行加压和泄压。

指示机构为一与油缸相通的双针压力表。加压时压力表指针随油缸的压力增加而转动。试样破裂后,油缸泄压,表的主针即退至零点.副针仍停留在破裂时所达到的压力值位置上。我室耐破仪的指示系统由压力传感器、A/D转换器和光电显示器等组成。

2.工作原理

仪器是根据压力传递的原理设计的。开动电机,驱使活塞运动,对介质施加压力,通过橡胶膜将压力传递到压环中间的试样,使之逐渐凸起,直至破裂,试样破裂时所能承受的最大压力即为试样的耐破度。

3.测定步骤

(1)切取70×70mm的试样(纸板试样为100×100mm)10张。

(2)置试样子压环间,并夹紧。

(3)启动;由于压力的逐渐增加,试样破裂。

(4)记录数值。

(5)提起上压环,取出破裂的试样,放入新的试样,进行下一个测定,正、反面各做五次。

4.结果计算

(1)耐破度

试样破裂时,压力表指示的数值耐破度,

(2)耐破指数

由耐破度除以定量而求得,以kPa.m2/g表示。以所有测定值的算术平均值表示结果,并报出最大值和最小值.计算结果取两位有效数字。

返回

五、纸和纸板耐折度的测定

耐折度是指试样在一定张力下,抗往复折叠的能力,以折叠次数表示。耐折度受纤维的长度、纤维本身的强度和纤维间的结合状况影响。凡纤维长度大纤维的强度高和纤维结合力大者,其耐折度就高。耐折度也受纸张水分含量的影响,水分含量低纸张发脆,耐折度低,适当增加含水量,纸张的柔性提高,耐折度随之增大,但水分含量超过一定限度耐折度开始下降。另外,耐折度受打浆程度的影响,在一定程度内,耐折度随打浆度的增加而增加,继续提高打浆度到一定程度,由于纤维的平均长度下降,纤维交织紧密,纸质变脆,则使耐折度下降。因此,在实际生产上控制好影响因素,对保证纸张有较好的耐折强度甚为重要。

许多纸和纸板如白纸板和箱纸板等在加工和使用过程中要经受多次折叠,而耐折度则能较好地反映出纸张抗反复折叠的能力,因此,耐折度的检测被广泛采用。

常用的耐折度仪有两种,一种为卧式的,称作肖伯尔(Schopper)式,在工作时将试样往复折叠近180度;另一种为直立式的,称作M1T式,在工作时试样往复折盈角度为135度。

肖伯尔式耐折度仪

1. 仪器及工作原理

(1)仪器结构

主要包括以下两部分:

①传动部分:电机通过皮带轮带动两个曲臂,使折叠刀往返运动,由曲臂控制计数器的运动。下部的保护开关能使电机停止运转。

②测试部分:包括弹簧筒、夹头、折叠刀、计数器各一对。弹簧筒中的弹簧一端固定在弹簧

座上,一端与夹头相连,弹簧筒能在底座上移动。拉仲弹簧能施于试样一定张力,提起弹簧销,弹簧解除张力,恢复原位。拆叠头的中心装有两对滚轴,其间有一对折叠刀。纸条在折叠刀间与其成垂直方向测试时在滚轴之间与折叠刀做垂直往复运动,计数显示折叠次数,为控制计数器在纸条断裂时能停止,在弹簧下安有一扳手,以操计纵数器运转和停止。

(2)工作原理

测定时,将试样置于夹头间,在两端施加规定的初张力。然后通过传动机构带动折叠刀做往复运动,使试样在辊轴间随之做近于180度的反复折叠,试样作周期性的变化,当折叠刀移至极限位置时试样受的张力最大。试样在折叠的反复作用下,纤维结构被松弛,强度逐渐下降,至不能承受张力时即断裂,断裂时试样所承受的折叠次数即为耐折度。

2.仪器的校准

(1)刀片与折叠辊间距的校准

用缝尺插入缝隙间,测量其间距应符合如下要求:纸测定仪两刀片间的缝隙宽为0.5mm:纸板仪为2.0mm、纸测定仪与试样垂直方向的拆叠辊间距为0.5mm;纸板仪为2.0mm。纸测定仪刀片与折叠辊的距离为0.38mm,纸板仪为2.0mm。若间距不符合要求或不平行,应予调整。

(2)弹簧张力的校准

拆下仪器之夹头组件,按垂直方向固定,在夹口中心悬挂砝码进行校准。对纸测定仪,砝码加7550mN (770 g)的张力(含夹头重量);对纸板测定仪,砝码加9810mN (1000g)的张力(含夹头重量),这时夹头被拉伸的距离应为5mm,即夹子的第一条刻线。纸测定仪,砝码加9810mN(1000g)的张力(含夹头重量),纸板测定仪,砝码加12750mN(1300g)的张力(含夹头重量加12750mN(1300g)的张力(含夹头重量)时,夹头被拉伸的距离应为13mm,即第二条刻线。

3.测定步骤及结果计算

(1)按纵、横向切取觅15mm、长100mm(纸板长为140mm)的试样各6-10条。

(2)松动夹头上的螺母,将试样平直地置于夹头中,拧紧螺母,并使试样平直。

(3)向左右同时拉弹簧筒,给试样施加7550mN(770 g)的初张力。若为纸板测定仪,须给试样施加9810mN(1000 g)的初张力。试样在测试过程中的最大张力,纸为9810mN(1000g), 纸板为l 2750m N(1300g)。

(4)启动仪器,进行测定,往复折叠至断裂,记录折叠次数。

(5)松开螺母,取出断裂试样,提起弹簧销,使弹簧退回原位,拔回计数器至零(数字显示的仪器自动回零),进行下次测定。

(6)纵、横向各测定6-10个试样,分别以纵、横向所有测定值的算术平均值表示结果,并报

出最大值和最小值。

计算结果取至整数。

4.注意事项

(1)正反面性质有显著区别的试样,应使一半试样的正面,一半试样的反面向着操作侧进行测定。(2)耐折度受湿度的影响大,测试时操作者要离开仪器远一些,更不要对折叠头呼吸。另外,不要用手模试样的折叠部分,严格操作应戴手套进行。仪器长时间工作,温升明显时,应停一段时间,再进行测定。

返回

六、纸板戳穿强度的测定

纸板戳穿强度是指用规定形状的戳穿头穿过试样所消耗的功,以J表示。纸板在制成纸箱或其它容器后,在使用或运搬过程中难免要遭到冲撞作用,为抵抗这种作用,使之免受破坏,要求纸板应具有足够的抗冲击强度。对纸扳抗冲击性能的测定,通常在一种所谓戳穿强度仪上进行。

(一)仪器及工作原理

1.仪器结构

包括座体、摆、夹持装置和指示装置等。

(1)座体 支持仪器整体.

(2)摆 由弧形摆臂、摆轴、手柄、戳穿头组成。戳穿头为正三角棱锥形,高25士0.7mm,棱边圆角的半径为1.5mm。戳穿头安装在90度的圆弧形探臂上,通过摆的运动由戳穿头冲击纸扳而进行戳穿。

(3)夹持装置 其上有两块水平的上、下夹板,有效面积不小于175×175mm。夹板,中间各有一个边长为100士2mm的等边三角形的孔,上、下夹板的孔应相重合。测试时,试样夹于两夹板间,施于上、下夹板间的力不小于250N(25kg),但最大不能大于l000N(100kg)。

(4)指示装置 包括指针和刻度盘。

2. 工作原理

置摆于一定位置而具有位能,释放摆,其位能转变成动能而摆动。用其戳穿头冲击试样而使之被戳穿。戳穿过程中的总能量消耗即代表试样的戳穿强度,其值等于摆在开始和运动结束时的位能差。

(二)仅器的调试及校对

1. 戳穿头位置的调节

在测定范围内,当摆的重心处于最低点时,戳穿头的尖端应在通过摆的旋转轴的水平的士5mm 范围内。否则,要升降平衡秤砣调节。

2. 零点的校对

除去摆上的重和试样夹板,将指针调至最大值处,把摆置于开始测试位置,按下释放钮,使摆体摆动,这时指针应指在零点,否则,必须用摆上的零点调节螺丝调节。在更换不同重量的重砣时,必须重新调节零点。

3. 指针摩擦力的调节

将指针放在零点,置摆于开始测试位置,按下释放钮,使摆体摆动,这时指针不得超过零点外3mm,否则,要在指针轴承上注油润滑或放松指针弹簧的压力予以调节。

4. 摆轴摩擦的调节

在不加任何重轮时,使摆自由地摆动到停止,摆动次数不应少于300次。

5. 防摩擦环阻力的校对

指针调好零点后,将一块中间开有边长61mm等边三角形孔的铝板与试样压板的孔对正,压在压板中间,然后释放固定好防摩擦环的戳穿头,观察防摩擦环的阻力不应大于

78mJ(0.8kg·cm),若不符合要求,可调节戳穿头的三个顶球螺钉,增减弹簧的压力来调节。

6. 摆体总力矩的校准

在摆体配重孔的后端加一小轴,小轴的末端装有一垂直向下的螺钉,把摆放在待释放位置,螺钉的下瑞顶在天平的一端或顶在磅秤盘上,释放摆,在天平的另一端加砝码,直至摆的上平面平行,即天平达到平衡为止。

(三)测定步骤与结果计算

(1)将175×175mm的试样置于夹板中间,调节手轮,使压力弹簧均匀加压,以压紧试样,压力可调整在250-600N(25-60kg)范围.

(2)拨指针至最高刻度值,将防摩擦环套在戳穿头上,把摆置于待测定位置。按下释放钮,摆被释放,戳穿头戳穿试样,指针在刻度盘上即指示出试样的戳穿强度,以J表示,准确至l 格。测定结果应保持在刻度值的20-80%范围内,否则,应调节重砣重量。

(3)提起手柄,使摆恢复原位,拨回指针,转动手轮,更换试样,进行下一个测定。取8张试样,一半(正、反各两张)以纵向平行于摆动平面的方向,一半(正、反各两张)以横向平行于摆动平面的方向进行测定,以所有测定值的算术平均值表示结果,并报出最大值和最小值。

(四)注意事项:

(1)测定完后,必须将保险手柄拨回,并固定好摆体。(2)在仪器空载时,不准随意释放摆体,以免损伤仪器。

返回

七、纸板挺度的测定

纸板挺度是指在一定条件下弯曲宽度为38mm的试样至l5度角时的弯距,以mN·m (g·cm)表示。

挺度代表试样的抗弯曲能力,是纸板的一项很重要的性能指标。纸板做成纸箱或其他器具后,须具有足够的挺度,才能承受外界的压力而不致弯曲变形或破坏,因此,挺度对于用作包装材料的黄纸板、箱纸板、白纸扳、瓦楞原纸等是十分重要的。

(一)仪器及工作原理

国内外目前用于测试挺度的仪器型式很多,计有克拉克(Clark)式、葛尔莱(Gurley)式、泰伯(Taber)式等测定仪。前两种仪器多用于纸的挺度的测定,泰伯式挺度仪用于纸板挺度的测定,该挺度仪测定挺度的方法已纳入ISO标准,我国也采用该仪器测定纸板的挺度,下面介绍其仪器结构、工作原理和操作方法。

1.仪器结构

(1)传动部分:由微型电机、齿轮系统组成。开动电机,通过齿轮系统带动角度盘转动。

(2)测试部分

由负荷盘、角度盘、负荷摆、推纸辊:试样夹等组成。负荷盘为固定盘,其左右刻有0-100分度,指示弯曲力矩。角度盘为动盘,由电机通过齿轮转动。其上标有7.5度和15度刻度线。在角度盘的下部装有推纸架,架上装有一对推纸辊,测定时,通过推纸轻使试样受力而弯曲。负荷摆支承在主轴上,可以绕轴摆动。在摆的上部有一个平衡锤,下部有一个安放重砣的小轴。在摆的旋转中心处安装一个试样夹,其下缘中心与旋转中心重合。

2.工作原理

仪器是根据力距对转轴中心平衡的原理设置的,仪器末启动前,摆和试样处于垂直位置,其中心线与试样和角度盘的中心线三者重合。仪器运转时,摆和角度盘顺时针转动,同时角度盘带动推纸架转动,从而使推纸辊对试样严生一个弯曲力距。当转到摆的中心线和角度盘的中心线的相对央角为15度,即试样被弯曲15度角时停止运转。

由挺度定义,当试样弯曲15度角时,其挺度等于所受的弯距。

(二)仪器的调节及校准

(1)调节仪器至水平,再调节角度盘,使摆的中心线与角度盘、负荷盘的零线重合

(2)摆的灵敏度的校准:移动摆至15度角,释放摆使之自由摆动,其摆动次数不得少于20次。

(三)测定步骤

(1)切取长70±1mm,宽38±0.1mm的试样纵横向至少各5条。

(2)试样的一端垂直夹入试样夹内,另一端插入推纸辊间,然后用小辊的调距装置把试样和两辊之间的距离之和调至0.33±0.03mm。注意,要使试样和摆的中心线重合。

(3)按试样的挺度大小选择适宜的重砣,使在负荷盘指示的数值在20-70刻度之间。

(4)开动仪器,使试样弯曲,当摆的中心线和角度盘的15度线重合时立即停止运转,读取摆的中心线在负荷盘上所指示的数值,准确至半个分度。以上操作分别向左右方向进行,测定试样向正、反面弯曲15度时的刻度平均值。若试样挺度过大或弯曲至15度时折裂,可改用弯曲7.5度时停止运转,读取刻度值,再乘以2即得弯曲15度时的近似值。遇此情况应在报告中注明。

(四)结果计算

试样的挺度按下式计算:

(1)天平 感量0.001g。

(2)试样容器

装试样及称重用,要求密封性好。

(3)干燥器。

(4)温度可以控制在105土2℃的烘箱。

3.试样的选取、制备和称量

(1)当单位是令或包时

a.纸或纸板的定量小于或等于225g/m2;

从每令或每包的中央至少连续取4张试样,将试样快速折叠或切开,装入容器中,容器内装的试样质量至少为50g,称量装有试样的容器,并计算试样的质量。

b.纸或纸板的定量大于225g/m2;

从每包或每令的中部取一张或多张试样。取宽度50-75mm,长度不小于150mm的样品条。其总质量至少为50g,立即装入容器中,称量装有试样的容器,并计算试样的质量。

从每令或每包的中部,连续取若干张样品,将这些样品按下图切成50-75mm试样条,并切取距离原样品页边150mm以内的纸或纸板,切好后去掉顶层和底层试样条,将中间的两组合并成一种试样,从边上切取的两组试样组成另外两种试样,每种要有两份试样,每份试样质量至少为50g,立即将各份试样放入容器中,分别称量装有试样条的各容器,计算出每个试样的质量。

(2)当单位是卷筒时

将卷筒外部的损坏层全部取下弃去,如果定量小于225g/m2,至少再去三层末损坏层。如果定量大于225g/m2,至少再去一层末损坏层。将卷筒按横向切取至少厚5mm的样品层,然后将样品层铺平,技纵向切取宽50一75mm的试样组条,从靠近卷筒两边上各切取一组试样条,在两边之间的中部处切取另一组试样条,或从卷筒上整幅切取。试样切样时注意不要使一叠样品中的纸页或一组样品中的纸条分开。弃去每组试样条的上层和底层纸页,将余下的试样条合并在一起组成试样,并将不少于50g的试样装入容器中。若50g试样体积过大,可用较少量试样,但应在试验报告中说明。

4. 试验步骤

取样前,将足数洁净、干燥的容器编上号,并在大气中平衡,然后将每个容器称重,并盖好备用。

将试样放入已烘干至恒重的容器中,打开容器的盖子,连盖一起放入105±2℃的烘箱中烘干,试样也可以从容器内取出来摊开烘,容器和盖也在同一烘箱中烘干。当烘干结束后,应在烘箱

内将容器盖好。如摊开烘,应将纸条放回容器中盖好。移入干燥器中,冷却30min称重,重复上述操作,直至两次称量相差不大于原试样重的0.1%时,即可认为达到恒重。

5.结果计算

能自动停机。转动变速上的手柄,可进行无级变速,变速范围为40~500mm/min。

(2)抗张测量机构

作用在下央头上的牵引力,由试样传给上夹头,再通过链条使用沿扇形板缓慢均勾地问左摆动一定角度至达到平衡。当试样被拉断时,摆被刺动爪卡住,摆上的指针即在刻度盘上指示出

拉力数值。刻度盘上的刻度有的分A、B两档,有的分A、B、C三档,使用时可根据被测试样执张强度的大小选择适宜的砝码。

(3)伸长测量机构

实际上是指示上下夹头在测定过程中的位移之差。指示伸长的标尺通过执杆滑块及挂钩与下夹头连接在一起,随下夹头做相对运动,伸长指示牌与上头夹固定在一起,当试样断裂时,挂

钩脱开使标尺不再随下夹头下降,这时指示牌在标尺上即指示出试样的伸长值和伸长率。

2.工作原理

是根据摆动平衡原理进行测定的。仪器工作时,由下夹头的运动通过试样、上夹头,链条使摆沿刻度尺转动一定角度而指示出试样的抗张强度值。

(二)仪器的校准

1.抗张力标尺的校准

又起摆上的制动爪,在上夹头口悬挂一个已知重量的珐码,让摆慢慢达到平衡位置,读出指示值,同砧码比较,其误差不应超过土1%。

2.伸长标尺的校准

锁住摆,使下夹头升至开始测定时的位置,用内卡尺测量两夹头间的距离。调节指针至伸长标

尺的零点,开动电机使下夹头下降,测量下夹头在任何一点停时两夹头的距离的增加值,应与

伸长标尺的实际伸长值相符合,其误差不应超越0.5mm。

(三)测量步骡

(1)切取宽15mm、长约250mm纵、横方向的试样至少各5条,按标准规定的条件进行处理。

(2)调节仪器各部件,使指针指零,下夹头升至最高位置,夹距一般控制在180mm,若试样较短,可用150或100mm夹距。

(3)分别按纵、横向将纸条夹在上夹头上(可同时夹10条,纸板应逐条加入)。调节试样至平行,拧紧.上夹头,松开上夹头固定螺丝,取一条纸样于下夹生内,用手轻轻拉直,然后夹紧

下夹头。根据试样强度的情况,选择适当的重砣,调节下夹头下降速度,待下降速度能在20土5秒使试样断裂时,即可进行正式测定。读取试样断裂时的抗张强度至三位有效数字,伸长率准确至0.2%。纸条若在夹头内部或距夹口10mm以内断裂时,该数据应弃去不计。

根据特定的质量标准要求,测定厚纸板的抗张强度时,采用的宽度为50mm(若采用15mm宽度时,其结果应乘以3.3),夹距为100mm。

注:调节下夹头下降速度可采用秒表测试外,还可以用2—3条试样做试探性测定。为此,可将试样断裂时下夹头下降距离(mm)乘以3,即可求得调速盘上每分钟下夹头应该下降的速度.按此速度进行测定,便可保证试样断裂时间在20土5s。

(四)结果计算

1.抗张强度

当试样断裂时,由仪器上指示的数值计算,以kN/m表示。

---平均抗张力,N;

LW ---试验纸条的宽度,mm。

结果取三位有效数字。

2.裂断长

式中 LB---裂断长,km;

---平均抗张力,N;

S ---抗张强度,kN/m;

G ---定量,g/m2;

LW ---试样宽度,mm;

L1 ---夹子间初始长度,mm;

m---夹子间纸条的平均质量,mg。

若试样的定量波动较大和精确度要求较高时,可由测定抗张强度的纸条本身的重量换算裂断长

《材料物理性能》试卷B.doc

一、是非题(I 分X1O=10分) 得分 评分人 1、 非等轴晶系的晶体,在膨胀系数低的方向热导率最大。 () 2、 粉末和纤维材料的导热系数比烧结材料的低得多。 () 3、 第一热应力因子/?是材料允许承受的最大温度差。 () 4、 同一种物质,多晶体的热导率总是比单晶的小。 () 5、 电化学老化的必要条件是介质中的离子至少有一种参加电导。() 6、 玻璃中的电导基本上是离子电导。 () 7、 薄玻璃杯较厚玻璃杯更易因冲开水而炸裂。 () 8、 压应力使单晶材料的弹性模量变小。 () 9、 多晶陶瓷材料断裂表面能比单晶大。 () 10、 材料的断裂强度取决于裂纹的数量。 () 二、名词解释(2分X 10=20分) 得分 评分人 题号 -------- - ? ---- * 四 五 六 七 八 九 总分 合分人 得分 材料物理性能课程结束B 试卷 考试形式 闭卷 考试用时120分钟

1、固体电解质: 2、表面传热系数: 3、P型半导体: 4、施主能级: 5、声频支: 6、稳定传热: 7、载流了的迁移率: 8、蠕变: 9、弛豫:

10、滑移系统:

三、简答题(5分X4=20分,任选4题) 得分 评分人 1、导温系数。的物理意义及其量纲? 2、显微结构对材料脆性断裂的影响? 3、写出两个抗热应力损伤因子的表达式并对其含义及作用加以说明。 4、不同材料在外力作用时有何不同的变形特征?

四、问答题(9分X4=36分) 得分 评分人 1、何为裂纹的亚临界生长?试用应力腐蚀理论解释裂纹的亚临界生长? 2、请对图1表示的氧化铝单晶的入-丁曲 线分析说明。o I JI O 0 200 400 600 800 1000 1200 1400 T/K图1氧化铝单晶的热导率随温度的变 化

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

物理性能名词解释

聚合物性能指标解释 1、拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /( b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。(4)在应力应变曲线中,即使负荷不增加,伸长率也会上升的那一点通常称为屈服点,此时的应力称为屈服强度,此时的变形率就叫屈服伸长率;同理,在断裂点的应力和变形率就分别称为断裂拉伸强度和断裂伸长率。 2、弯曲模量 又称挠曲模量。是弯曲应力比上弯曲产生的形变。材料在弹性极限内抵抗弯曲变形的能力。E为弯曲模量;L、b、d分别为试样的支撑跨度、宽度和厚度;m为载荷(P)-挠度(δ)曲线上直线段的斜率,单位为N/m2或Pa。 弯曲模量与拉伸模量的区别: 拉伸模量即拉伸的应力与拉伸所产生的形变之比。 弯曲模量即弯曲应力与弯曲所产生的形变之比。 弯曲模量用来表征材料的刚性,与分子量大小有关,同种材质分子量越大,模量越高,另外还与样条的冷却有关,冷却越快模量越低。即弯曲模量的测试结果与样品的均匀度及制样条件有关,测试结果相差太大,无意义,应找到原因再测试。 2GB/T9341—2000中弯曲模量的计算方法。新标准中规定了弹性模量的测量,先根据给定的弯曲应变εfi=0.0005和εfi=0.0025,得出相应的挠度S1和S2(Si=εfiL2/6h),而弯曲模量Ef=(σf2-σf1)/(εf2-εf1)。其中σf2和σf1分别为挠度S1和S2时的弯曲应力。新标准还规定此公式只在线性应力-应变区间才是精确的,即对大多数塑料来说仅在小挠度时才是精确的。由此公式可以看出,在应力-应变线性关系的前提下,是由应变为0.0005和0.0025这两点所对应的应力差值与应变差值的比值作为弯曲模量的。 附:弹性模量 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。 弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

材料物理性能课后习题问题详解_北航出版社_田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10 m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103 kg/m 3 ,计算其E 0 F 。(P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99,.0ρ?33 =11310kg/m ) (P16)

包装材料物理性能检测指标(正式版)

乳白玻璃酒瓶 1 目的与范围 1.1为了使包装材料感观检验及物理性能检测具有科学性和准确性,特制定本标准。 1.2 本标准规定了质量检验部包装材料检测室所需材料的抽样检测工作。 1.3 本标准适用于质量检验部包装材料检测室所需材料的抽样检测。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/MTJ08.01-2010 《包装材料检验标准》 Q/MTJ06.14-2009 《包装材料检验指导书》 Q/MTJ06.20-2009 《抽样方法总则》 Q/MTJXX.XX-2011 《包装材料检测仪器操作指导书》 3 乳白玻璃酒瓶 3.1容量系列及允差 3.1.1 容量及允差符合表1的规定。 表1 3.2 酒瓶几何尺寸及瓶底要求 参照《包装材料技术标准汇编》 3.3 技术要求 3.3.1乳白玻璃酒瓶的技术指标必须符合表2的规定。

表2

3.3.2 玻璃瓶的强度要求:拿着玻璃瓶颈离水泥地面1.5m高自由落下,连续二次以上,玻璃瓶无破损。 3.3.3 酒瓶光洁度、乳白度要好,瓶壁细腻、光滑、合逢线无明显凸出、无炸裂纹、皱纹、桔皮状、砂粒等,且瓶身垂直无座底、失圆现象. 3.3.4 酒瓶渗漏率不得超过万分之五,综合合格率达98%。

彩盒 1 目的与范围 1.1为了使包装材料感观检验及物理性能检测具有科学性和准确性,特制定本标准。 1.2 本标准规定了质量检验部包装材料检测室所需材料的抽样检测工作。 1.3 本标准适用于质量检验部包装材料检测室所需材料的抽样检测。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/MTJ08.01-2010 《包装材料检验标准》 Q/MTJ06.14-2009 《包装材料检验指导书》 Q/MTJ06.20-2009 《抽样方法总则》 Q/MTJXX.XX-2011 《包装材料检测仪器操作指导书》 3 规格尺寸 参照《包装材料技术标准汇编》 4 技术要求 4.1字体及颜色要求。 4.1.1各种规格(除珍品系列外)彩盒红色部分均为大红色,要求色彩鲜艳,金色部分采用青色金粉烫金;珍品系列彩盒颜色由茶色、淡红色和金黄色三中颜色组成,要求色彩过渡自然流畅。 4.1.2食品标签内容、位置及颜色。 ——所有系列的茅台酒食品标签内容相同,均印彩盒上,内容为“食品名称、原料与配料、酒精度、净含量、生产日期、执行标准、生产许可证号、厂址“等内容。 4.1.3本标准未注明的字体大小、图案设计尺寸、颜色均以抽取的样品彩盒为准。 4.1.4普通彩盒“贵州茅台酒”五个字,均采用凹凸工艺,增强字体、图案立体感。 4.2 质量要求。 4.2.1印制好的彩盒,色彩、图案、文字应与抽取样品相同,要求表面整洁,不褪色、不

材料物理性能部分课后习题8页

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀 第二章 1.镍铬丝电阻率300K为1×10-6Ω·m加热到4000K时电阻率增加5%假定在此温度区间内马西森定则成立。试计算由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k)

----(2) 又: p(镍400k) = p(镍300k) * [1+ α * 100] ----(3) 其中参数: α为镍的温度系数约 = 0.007 ; p(镍300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率 p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发到上面的空带中去,在外电场作用下,这些电子将参与导电。同时,满带中由于少了一些电子,在满带顶部附近出现了一些空的量子状态,满带变成了部分占满的能带,在外电场作用下,仍留在满带中的电子也能够起导电作用。 3.表征超导体性能的3个主要指标是什么?(P80) (表征超导体的两个基本特性完全的导电性和完全的抗磁性) 1),临界转变温度TC,即成为超导态的最高温度 2)。临界磁场HC,即能破坏超导态的最小磁场,HC的大小与超导材料的性质有关 3),临界电流密度JC,即材料保持超导状态的最大输入电流 第三章 1.什么是自发磁化?(P142) 在铁磁质内部存在着很强的“分子场”,在这种“分子场”的作用下,原

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。 影响力学性能的因素:温度、拉伸速度、环境介质、压力等。 弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高. 弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大 金属材料常见的塑性变形方式滑移和孪生 金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长 韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。 α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。硬度:布氏、洛氏、维氏 缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。 断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。 断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。 分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。(2) 能量分析方法:考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判 KI和KIC的区别:应力场强度因子KI增大到临界值KIC时,材料发生断裂,这个临界值KIC称为断裂韧度。KI是力学参量,与载荷、试样尺寸有关,而和材料本身无关。KIC是力学性能指标,只与材料组织结构、成分有关,与试样尺寸和载荷无关。根据KI和KIC的相对大小,可以建立裂纹失稳扩展脆断的断裂K判据,由于平面应变断裂最危险,通常以KIC为标准建立: 应力腐蚀现象:在应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象。 应力腐蚀产生的条件:(1)必须有应力,特别是拉应力的作用, 远低于材料的屈服强度,是脆性断裂;(2)对一定成分的合金,只有在特定介质中才发生应力腐蚀断裂;(3)应力腐蚀断裂速度约为10-8-10-6 m/s数量级的范围内,远大于没有应力时的腐蚀速度,又远小于单纯力学因素引起的断裂速度。 机理:当应力腐蚀敏感的材料置于腐蚀介质中,首先在金属的表面形成一层保护膜,它阻止了腐蚀进行,即所谓“钝化”。由于拉应力和保护膜增厚带来的附加应力使局部地区的保护膜破裂,破裂处金属直接暴露在介质中,成为微电池的阳极,产生阳极溶解。阳极小阴极大,所以溶解速度很快,腐蚀到一定程度又形成新的保护膜,但在拉应力的作用下又可能重新破坏,发生新的阳极溶解。这种保护膜反复形成反复破裂的过程,就会使某些局部地区腐蚀加

材料物理性能期末复习考点教学内容

材料物理性能期末复 习考点

一名词解释 1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。 2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。 3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。 4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。 5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。 6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。 7.热膨胀:物体的体积或长度随温度升高而增大的现象。 8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。 9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。 10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。 11.热应力:由于材料的热胀冷缩而引起的内应力。 12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流 13.载流子:材料中参与传导电流的带电粒子称为载流子 14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金 15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。 16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。 17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。 18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。

技术指标和性能指标

电位滴定仪技术要求 一、品牌型号: 1.品牌:瑞士梅特勒 2.型号:新超越系列T5 二、运行环境 1、电源电压:100~240VAC±10%;频率:50~60HZ;环境温度:5--40℃;相对空气湿度: 31℃时最大80%。 2、用途 用于各种电化学滴定分析,如酸碱滴定、络合滴定、沉淀滴定、氧化还原滴定、电导滴定、恒pH滴定、永停滴定、容量法卡氏水分测定、库仑法卡氏水分测定,两相滴定(如表面活性剂类样品)、光度滴定,并能直接测量pH值、离子浓度、氧化还原电位、温度、电导率值、极化电压、极化电流、透光率和吸光率等 三、技术指标 1、仪器的硬件连接 ①滴定仪控制方式:分体式七英寸中文彩色触摸屏和中文电脑软件双通道控制,自由切换。 ②搅拌方式:同时具有磁力搅拌器和螺旋桨搅拌器2种,搅拌速度随意可调。 ③电极接口类型:两个智能电势(mV/pH)测量电极接口、极化电极接口,温度电极接口, 电导率电极接口,库仑法电解电极接口,标配Lims接口。 2、电势(mV/pH)测量电极 2.1 mV测量电极接口 ①测量范围:-2000mV~2000mV ②分辨率:0.1mV ③最大的可能误差:0.2mV 2.2 pH测量电极接口 ①测量范围:-26.0~40.0pH ②辨率:0.001pH ③最大的可能误差:0.003pH 3、极化电极接口(Upol) ①极化电压:0-2000mV(交流电,增量0.1mV); ②测量范围:0-200μA;

③分辨率:0.1μA; ④误差范围:0.2μA; 4、极化电极接口(Ipol) ①极化电流:0-24μA(交流电,增量0.1μA); ②测量范围:0-2000mV; ③分辨率:0.1mV; ④误差范围:2mV; 5、PT1000温度电解接口 ①测量范围:-20-130; ②分辨率:0.1℃; ③误差范围:0.2℃; 6、滴定仪主机可直接扩展电导率电极接口,实现电导率直接测量和电导率滴定。 ①测量范围:±2000m V; ②分辨率:0.1mV; ③误差范围:0.2mV; 7、滴定仪主机可直接扩展电解电极接口,实现库仑法水分测定和溴指数测定(电量法) ①库仑法水分测定电流范围:可选100、200、300、400mA或Auto ②溴指数测定电流范围:可选1、5、100、200、300、400mA或Auto 8、滴定管 & 滴定管驱动器 ①滴定管驱动器的分辨率:滴定管体积的1/20000(10mL滴定管为例:0.5uL) ②具备各种体积的滴定管(包括1毫升、5毫升、10毫升、20毫升) ③滴定管可以方便安装、拆除,无需工具进行操作 ④滴定管具有滴定剂(名称、浓度)自动识别(RFID)的功能,并支持热插拔,更换滴定 管无需重启仪器,即插即用。 ⑤滴定管驱动器工作类型:上推式滴定管驱动器,保证气泡能够完全排空,从而保证结果 的准确性 四、性能指标: 1、*使用彩色TFT触摸屏为控制终端,且彩色触摸屏不低于7寸,同时具备StatusLight TM (状态指示灯),通过红、黄、绿三种颜色有效指示滴定的工作状态 2、主机内置状态指示灯,且具有声音信号的喇叭; 3、*主机内置SmartSample阅读器,无需手动输入,直接把重量等信息传入主机,实现从 天平到滴定仪的高效安全的无线数据传输,避免抄写错误; 4、*具备全面的多级用户权限管理功能,并可设置指纹或密码保护 5、具备RS232,USB,以太网和PDF等输出方式,并可输出PDF,csv,XML等格式的数据 6、*具备多次标准加入法,可实现自动化的钠,钾,钙,硝酸根等离子的含量测定,内置

材料物理性能试题及其答案

西 安 科 技 大 学 2011—2012学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

—2012 学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

材料物理性能 A卷答案 一、填空题(每空1分,共25分): 1、电子运动服从量子力学原理周期性势场 2、导电性能介电性能 3、电子极化原子(离子)极化取向极化 4、完全导电性(零电阻)完全抗磁性 5、电子轨道磁矩电子自旋磁矩原子核自旋磁矩 6、越大越小 7、电子导热声子导热声子导热 8、示差热分析仪(DTA)、示差扫描热分析(DSC)、热重分析(TG) 9、弹性后效降低(减小) 10、机械能频率静滞后型内耗 二、是非题(每题2分,共20分): 1、√ 2、× 3、× 4、√ 5、× 6、√ 7、× 8、× 9、× 10、√ 三、名词解释(每题3分,共15分): 1、费米能:按自由电子近似,电子的等能面在k空间是关于原点对称的球面。特别有意义的是E=E F的等能面,它被称为费米面,相应的能量成为费米能。 2、顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。 3、魏得曼-弗兰兹定律:在室温下许多金属的热导率与电导率之比几乎相同,而不随金属的不同而改变。 4、因瓦效应:材料在一定温度范围内所产生的膨胀系数值低于正常规律的膨胀系数值的现象。

5、弛豫模量:教材P200 四、简答题(每题6分,共30分): 1、阐述导体、半导体和绝缘体的能带结构特点。 答:①导体中含有未满带,在外场的作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成状态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了宏观电流;②绝缘体不含未满带,满带中的电子不会受外场的作用而产生偏离平衡态的分布,而一些含有空带的绝缘体,也因为禁带间隙过大,下层满带的电子无法跃迁到空带上来形成可以导电的未满带,所以绝缘体不能导电;③本征半导体的情况和绝缘体类似,区别是其禁带能隙比较小,当受到热激发或外场作用时,满带中的电子比较容易越过能隙,进入上方空的允带,从而使材料具有一定的导电能力;④掺杂半导体则是通过掺入异质元素,从而提供额外的自由电子或者额外的空穴以供下层电子向上跨越,使得跨越禁带的能量变低,电子更加容易进入上层的空带中,从而具有导电能力。 2、简述温度对金属电阻影响的一般规律及原因。 答:无缺陷理想晶体的电阻是温度的单值函数,如果在晶体中存在少量杂质和结构缺陷,那么电阻与温度的关系曲线将要变化。 在低温下,电子-电子散射对电阻的贡献显著,其他温度电阻取决于电子-声子散射。 3、何谓材料的热膨胀?其物理本质是什么? 答:①热膨胀:材料在加热和冷却过程中,其宏观尺寸随温度发生变化的现象。 ②物理本质:在非简谐近似下,随温度增加,原子热振动不仅振幅和频率增加,其平衡位置距平均尺寸也增加,即导致振动中心右移,原子间距增大,宏观上变现为热膨胀。 4、物质的铁磁性产生的充要条件是什么? 答:(1) 原子中必须有未填满电子的内层,因而存在未被抵消的自旋磁矩。 (2) 相邻原子间距a与未填满的内电子层半径r之比大于3,即a/r>3。 5、内耗法测定α-Fe中碳的扩散(迁移)激活能H的方法和原理。 答:参考教材P-211 五、论述题(每题10分,共10分):

材料物理性能试题(研究生ZHONG)

材料物理性能试题 1从物理本质上叙述晶体中电子能量结构的导带、价带和禁带产生的原因,并利用能带理论的初步知识说明材料的一些物理性质(举一例即可) 答:晶体的能带结构与该晶体结构和势能函数决定 具有空能级允带的电子是自由的,称为导带,可以在外电场作用下导电 导体(金属)能带中一定有未满带,称为价带、导带 半导体,绝缘体中能量最高的满带叫价带能量最低的空带叫导带 禁带:离子所造成的势场是不均匀的,能量存在周期性变化,有能隙。称作禁带。k=n π/a 和k=2π/λ(λ为电子波长),可以得到2a=n λ,即。响铃原子的背向散射波干涉相长,使入射波遭到全反射而不能进入晶体内部,应此在自由电子准连续能谱中形成禁带。 导电行,半导体、太阳能电视电池 2 表征超导体性能的三个主要指标是什么?目前氧化物超导体应用的主要弱点是什么? 答:临界转变温度、临界磁场强度、临界电流密度。 主要弱点是临界电流密度低。 3 铂线300 K 时电阻率为1×10-7Ω·m ,假设铂线成分为理想纯。试求1000 K 时的电阻率。 T 0772*******(1)1+T 1+T 5110 2.27101+1+ 2.2 T m T T ρραρααρρραα--=+=?==??=?Ω 解: 4 试说明压电体、热释电体、铁电体各自在晶体结构上的特点。 答:压电晶体的结构是不具有对称中心。铁电晶体也具有压电性,它的晶体结构也不具有对称中心;铁电体一定是离子性晶体,是具有自发极化的一种压电体,但并不是所有的压电体都是铁电体。热释电体也是一种压电体,晶体结构同样不具有对称中心;温度变化可以引起极化强度改变,但不一定所有的压电体都是热释电体,有的铁电体也是热释电体。总之,压电体、铁电体和热释电体都是不具有对称中心的晶体。 5 工厂中发生“混料”现象。假如某钢的淬火试样,又经不同回火后混在一起了。可用何法将每个不同温度回火、淬火试样区分开来(不能损伤试样)。 答:磁性能分析:淬火钢在回火过程中,马氏体和残余奥氏体都要发生分解而引起饱和磁化强度的变化。在回火过程中残余奥氏体分解的产物都是铁磁相,会引起饱和磁化强度的升高,而马氏体分解析出的碳化物是弱铁磁相,会引起饱和磁化强度的降低。回火第一阶段(20~

纸和纸板的基本性能及其测定教学提纲

纸和纸板的基本性能 及其测定

纸和纸板的基本性能及其测定 一、定量 定量俗称克重,是指单位面积纸张的重量,一般以每平方米多少克来表示。国外也有以每令纸多少磅或多少公斤来表示的,可以根据纸的长、宽规格和每令张数换算为每平方米多少克。 定量是纸最基本的一项物理指标,它的高低及其均一性,影响着纸张所有的物理、机械、光学和印刷性能。一般印刷纸的各种性能指标,如厚度、抗张强度、耐破度、不透明度等都与定量密切相关。如果纸张定量明显低于其标准规定,不但容易发生透印的印刷故障,而且会因机械强度不够而发生断线。反之,如果定量过于偏高,则生产中就要浪费纸浆,并且保证不了用户每吨卷简纸的实用面积。当一张纸与下一张纸的定量不同时,印刷调节工作不能在这种纸张间隔中进行,就会发生套印不准和印迹深浅不一的问题。同一张纸定量不均匀时,更易导致文字字迹不清和图片色泽不一致。 二、纸和纸板的定量 定量是纸及纸板最基本的一项质量指标。因为大多数纸张是按重量销售的。定量是指单位面积的重量,一般以每平方米纸张有多少克表示。而我们使用纸张一般是使用纸页的面积。比如新闻纸印报时,按定量5l克/米2。每吨纸印46000份报纸,定量增加1 克即52克/米2,则每吨纸少印900份报纸,给社会财富造成损失,故必须严格控制定量。目前国外为节约原材料,纸张在向低定量方面发展,新闻纸已降低到48.8克/米2,

航空版为3 0克/来2。为此生产及印刷部门都采用相应的措施,保证质量。定量影响纸张物理、光学和电气性能。一般的物理性能如抗张强度、耐破度,撕裂度等都于与定量有关。 三、厚度与紧度 厚度表示纸张的厚薄程度。测微计进行测定,以一定的面积一定的压力下测定纸张厚度大小,一般压力为980千帕,一般要求一批纸或纸板的厚度一致,否则制成物品的厚薄就不一致。紧度是指每立方厘米的纸和纸板的重量.其结果以克/厘米3表示。 厚度表示纸张的厚薄程度。用测微计进行测定,以一定的面积一定的压力下测定纸张厚度大小,一般压力为980千帕,一般要求一批纸或纸板的厚度一致,否则制成物品的厚薄就不一致。如印图书因纸张厚度不一致,则印成的书有厚有薄,一本书内厚度不均对读者及印刷部门皆不适宜,经济上也不合理,所以印刷纸的厚度是一项重要的物理指标,同时厚度也能影响印刷纸的不透明和压缩性。所以要控制厚度,以使纸张的其它物理性能得到适当控制。 紧度是指每立方厘米的纸和纸板的重量.其结果以克/厘米3表示。紧度是衡量纸或纸板结构的松紧程度的指标,是纸和纸板的基本性质。因为同体积的重量越大,纸的结构就越紧密反之纸页较松。紧度能在相当程度上表示纸张的结构。它于纸张的多孔性、吸收性,刚性和强度有密切的夫系.并且影响到纸和纸板的光学性能,印刷性能、物理性能。测定纸张的紧度,并联系其强度性能,可以提供关于纸张有价值的资料。例如:纸张的耐破度高、而紧度低,这种纸张很可能是用强韧的长纤维浆料制造的;

材料物理性能 参考试题

1、低碳钢拉伸和压缩时应力应变曲线的异同点? (1)塑性材料(低碳钢)在拉伸时应力-应变曲线一般包括四个阶段:弹性阶段、屈服阶段、强化阶段和局部颈缩阶段。 脆性材料(灰口铸铁)在拉伸时应力-应变曲线无直线部分,但是,应力较小时的一段曲线很接近于直线,故虎克定律还可以适用。铸铁拉伸时无明显的弹性阶段和屈服阶段,也无颈缩现象,试件在断裂时无明显的塑性变形。 低碳钢在压缩时与拉伸有相同的弹性阶段,屈服阶段和强化阶段,但是强化后期压缩曲线上偏,不会断裂。灰铸铁的在压缩时依然没有直线部分和屈服阶段,它是在很小的变形下出现断裂的,强度极限是拉伸时的3~4倍。 (2)材料在拉伸和压缩时的弹性极限和屈服强度几乎无太大差别,不同点为强度极限在压缩时会有大幅度提高。 (3)断裂方式不同:塑性材料在拉伸条件下的呈韧性断裂,宏观断口呈杯锥状,由纤维区、放射区和剪切唇三部分组成;脆性材料在拉伸时呈现脆性断裂,其端口平齐而光亮,常呈放射状或结晶状。拉伸时塑性很好的材料在压缩时只发生压缩变形而不断裂;脆性材料在压缩时相对拉伸时除能产生一定的塑性变形外,常沿与轴线呈45°方向产生断裂,其主要原因是由剪应力引起的,具有切断特征。 (超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形。继续不断加压,试样将愈压愈扁,横截面面积不断增大,试样抗压能力也不断增大,故总不被破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大)。) 2、屈服的本质及构成? (1)屈服:当应力达到一定值时,应力虽不增加(或者在小范围内波动),而变形却急剧增长的现象,称为屈服现象,标志着材料的力学影响由弹性变形阶段进入塑性变形阶段。 屈服现象在退火、正火的中、低碳钢和低合金钢中最为常见。 (2)本质:屈服现象的产生与下列三个因素有关: ①材料变形前可动位错密度很小(或虽有大量位错但被钉扎住,如钢中的位错为杂质 原子或者第二相质点所钉扎)

2009材料物理性能试卷A答案

湘潭大学2009年下学期2007级 《材料物理性能》课程考试试卷(A卷)答案 一、填空(38分) 1、固体无机材料的物理性能主要包括电、介电、光、热、力、声、辐照、磁等方面的性能(答 出其中任意六个即可,每个0.5分,共3分); 2、电阻产生的本质是晶体点阵的完整性遭到破坏的地方,电子波受到散射(2分); 3、压电体具有的最典型晶体结构特征是无中心对称结构(2分); 4、电容器的电流由理想电容器所造成的电流;电容器真实电介质极化建立的电流;电容器真实电介质漏电流三部分构成(3分,填对黑体字部分就可得分); 5、光子与固体之间的相互作用的二种结果:电子极化和能级跃迁(或者是电子能态转变)(2分); 6、彩色光的三个基本参量是亮度、色调、色饱和度(3分); 7、光磁记录时可以采用居里温度写入和补偿湿度写入两种不同温度下的写入方式(2分); 8、激光器是光波谐振器,由光波放大器(或激光工作物质)、谐振腔、泵浦系统三部分构成,激活离子的作用是提供亚稳态能级(4分); 9、物质的磁性可分为顺磁性、铁磁性、抗磁性三类(3分); 10、技术磁化可以通过磁畴的旋转和磁畴壁的迁移两种形式进行(2分); 11、电介质的击穿有电击穿、化学击穿、热击穿三种模式(3分); 12、减少退磁能是产生分畴的基本动力,但却增加了畴壁能(2分); 13、赛贝克效应和珀尔贴效应热电效应互为可逆热电效应(2分); 14、固体热容包括晶格热容、电子热容两部分(2分); 15、德拜温度是反映原子间结合力的重要物理量(1分); 16、固体中的导热主要是由晶格振动的格波(声子)和自由电子的运动来实现(2分)。 二、概念理解(15分) 移峰效应与展峰效应:移峰效应:在铁电体中引入某种添加物使生成固溶体,以改变原来的晶胞参数和离子间的相互联系,使其居里温度向低温或高温方向移动的效应。展宽效应:为了提高铁电体材料在常温范围的介电常数,通常是采用移峰效应,把铁电体的居里温度室常温附近,但铁电体在居里点附近的介电常数随温度的变化率太大,不能用来制造要求比较稳定的电容器。为减少居里点处介电常数随温度的变化率,常在铁电陶瓷中加入某种添加剂,使居里点展宽,从而使介电常数随温度的变化比较平缓(4分) 退磁场与退极化场:(4分) 退极化场,当电介质极化后,在其表面形成了束缚电荷,这些束缚电荷形成一个新的电场,由于与电场方向相反,故称为退极化场。退磁场:当铁磁体表面出现磁极后,除在铁磁体周围空间产生磁场外,在铁磁体的内部也产生磁场,这一磁场与铁磁体的磁化强度方向相反,它起到退磁的作用,故称退磁场。(退磁场与退极化场并无相互联系,各2分共4分) 磁织构:在材料中大批的晶粒因某种因素而取向一致,则称为织构(1分),如果该织构导致磁化特征一致(2分),我们称这种织构为磁织构。(共3分) 滞弹性和粘弹性:实际固体材料的应变产生与消除需要有限时间,无机材料的这种与时间有关的弹性称为滞弹性;有一些非晶体或多晶体在比较小的应力作用下可同时表现出弹性和粘

相关主题