搜档网
当前位置:搜档网 › (整理)小波变换与傅里叶变换.

(整理)小波变换与傅里叶变换.

(整理)小波变换与傅里叶变换.
(整理)小波变换与傅里叶变换.

百度空间 | 百度首页 | 登录

在狂风中摇曳

我的学习BLOG

主页博客相册个人档案好友

查看文章

[转]小波变换与傅里叶变换

2009-09-22 09:59

如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。

一、一、基的概念

我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。

二、二、离散化的处理

傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。

下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。

也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。

一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。

第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以

b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不集中,所以只是近似二分的)。这时的小波变换,称为离散二进小波变换。第三步,引入稳定性条件。也就是经过变换后信号能量和原信号能量有什么不等式关系。满足稳定性条件后,也就是一个小波框架产生成了可能。他是数值稳定性的保证。一个稍弱的稳定条件,就是0

三、三、快速算法

如果说现代数字信号处理革命的算法,甚至是很多快速算法的老始祖,或者是满矩阵向量乘法一个几乎不可抗拒的最小计算量NlogN,那就是令我不得不佩服的快速傅里叶变换(FFT)。这里我不想解释过多的基2算法,和所谓的三重循环,还有那经典的蝶形单元,或是分裂基之类,我想说的就是一种时频对应关系。也就是算法的来源。我们

首先明确,时域的卷积对应频域的相乘,因此我们为了实现卷积,可以先做傅里叶变换,接着在频域相乘,最后再做反傅里叶变换。这里要注意,实际我们在玩DSP。因此,大家要记住,圆周卷积和离散傅里叶变换,是一家子。快速傅里叶是离散傅里叶的快速算法。因此,我们实现离散线性卷积,先要补零。然后使得它和圆周卷积相等。然后就是快速傅里叶变换,频域相乘,最后反快速傅里叶变换。当然,如果我们就需要的是圆周卷积,那我们也就不需要多此一举的补零。这里,我们可以把圆周卷积,写成矩阵形式。这点很重要。Y=AX。这里的A是循环矩阵。但不幸的是A仍然是满阵。

小波的快速算法。MALLET算法,是一个令人振奋的东西。它实质给了多分辨率分析(多尺度分析)一个变得一发而不可收的理由。它实质上,讲了这样一个意思。也就是。我在一个较高的尺度(细节)上作离散二进稳定的小波变换,得到了一个结果(小波系数),我若是想得到比它尺度低的小波系数(概貌),我不用再计算内积,只是把较高尺度的小波系数和低通或高通滤波器卷积再抽取即可。但是,所有这些证明的推导是在整个实轴上进行的。即把信号看成无限长的。但这仍不是我们想要的。还有,我们还必须在较高尺度上作一次内积,才可以使用此算法。因此,我们开始简化,并扩展此理论。第一,我们把信号的采样,作为一个较高层的小波系数近似初始值。(这是可以的,因为小波很瘦时,和取样函数无异)。第二,我们把原来的卷积,换为圆周卷积。这和DSP何尝不一样呢?他的物理意义,就是把信号作周期延拖(边界处理的一种),使之在整个实轴上扩展。这种算法令

我为之一贯坚持的是,它是完全正交的,也就是说是正交变换。正变换Y=AX;反变换X=A’Y;一般对于标准正交基,A’是A的共轭转置,对于双正交A’是A的对偶矩阵。但不管如何,我们可以大胆的写,AA’=A’A=I。这里I是单位矩阵。

那怎样操作才是最快的呢?我们来分析A的特点,首先A是正交阵,其次A是有循环矩阵特点,但此时A上半部分是由低通滤波器构成的循环子矩阵,下半部分是由高通滤波器构成的子矩阵,但却是以因子2为循环的。为什么,因为你做了2抽取。所以我们可以,实现小波变换用快速傅里叶变换。这时如果A是满阵的,则复杂度由O(N.^2)下降到O(NlogN)。(这个程序我已经传在了研学上,在原创区)。但还有一点,我们忘了A是稀疏的,因为信号是很长的,而滤波器确实很短的,也就是这个矩阵是个近似对角阵。所以,快速傅里叶是不快的,除非你傻到含有零的元素,也作了乘法。因此,小波变换是O(N)复杂度的。

这是它的优势。但要实现,却不是那么容易,第一个方法,稀疏矩阵存储和稀疏矩阵乘法。第二个方法,因子化。因子化,是一个杰出的贡献。它在原有的O(N)的复杂度基础上,对于长滤波器,又把复杂度降低一半。但量级仍然是O(N)。

四、四、时频分析

对于平稳信号,傅里叶再好不过了。它反映的是信号总体的整个时间段的特点。在频率上,是点频的。而对于非平稳信号,它就无能为力了。而小波恰好对此派上用场。小波是反映信号,某个时间段的特

点的。在频域上,是某个频率段的表现。但小波,作为频谱分析确实存在很多问题。但我们确实可以做出很多的小波满足这个特点。大家可以看冉启文的《小波变换与分数傅里叶变换》书,这里我不再赘述。还有,我们老是说小波是近似频域二分的,这在DSP上是怎样的,最近我也在思考。

五、压缩、消噪、特征提取

傅里叶变换的压缩,已经广泛应用了。它的简化版本就是DCT 变换。而小波包的提出,也就使DCT有些相形见拙。首先,它提出代价函数,一般就是熵准则。其次,一个自适应树分解。再次,基于矩阵范数或较少位编码的稀疏化策略。这些使小波包的压缩近乎完美。小波包是从频域上实现的。从时域上,我们也可采用类似的分裂和并算法,来实现信号最优的表达,这种可变窗小波成为MALVAR小波。记住,压缩是小波最大的优势。

消噪,一般的傅里叶算法,一般可以是IIR滤波和FIR滤波。两者各有优缺点。而小波的消噪,一般也是由多层分解和阈值策略组成。我们需要的是信号的特点,噪声的特点,然后确定用不用小波,或用什么小波。这点上,小波的优势并不是很明显。

特征提取。这是小波的显微镜特点很好地运用。利用模极大值和LIPSCHITZ指数,我们可以对信号的突变点做分析。但这里面的问题也是很多。首先,在不同尺度上,噪声和信号的模极大值变化不同。再次,一般我们用求内积方法,求模极大值,而不用MALLET算法,或者改用叫多孔算法的东西来做。这点,我没任何体会,希望大家多讨论吧。

这里,我不能谈应用很多的细节。但我们必须明确:1。你要对小波概念有着明确的理解。对诸如多分辨率,时频窗口与分析,框架,消失矩,模极大值,LIPSCHITZ指数等有着清醒地认识。2。你必须考虑小波在此问题上的可行性,这点尤为重要,小波不是万能的。

类别:论文| | 添加到搜藏| 分享到i贴吧| 浏览(49) | 评论(0)

上一篇:MPEG-2压缩编码技术原理应用(九) 下一篇:快速傅立叶变换的应用

最近读者:

登录后,您就出现在这里。网友评论:

发表评论:

?2010 Baidu

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞-0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义: f(t )是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t )的傅立叶变换, ②式的积分运算叫做F (ω)的傅立叶逆变换。F (ω)叫做f(t )的像函数,f(t )叫做 F (ω)的像原函数。F (ω)是f(t )的像。f(t )是F (ω)原像。 ① 傅里叶变换 ②

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

几种时频分析综述1——傅里叶变换和小波变换

几种时频分析方法综述1——傅里叶变换和小波变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题。本文对傅里叶变换和小波变换进行了详细介绍,并用算例分析指出了两者的差别。 关键词:傅里叶变换;小波变换;时频分析技术; 1 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2 小波变换(Wavelet Transform ) 2.1 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由 于1()t χ在t= a,b 处突然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连 续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点, D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ +∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系 一 傅里叶级数展开与傅里叶变换 之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。 傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。 既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。 二 傅里叶变换与拉氏变换 上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为 f t e ?σt e ?j ωt ∞?∞dt = f(t)e ?(σ+j ω)t dt ∞?∞= f(t)e ?st ∞ ?∞ dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f t e ?σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。

和输出 y[n] 的傅里叶变换关系如下

马萨诸塞州技术学院 电气工程与计算机科学系 6.341:离散时间信号处理 开放课程课件 2006 第2讲 背景知识复习 相位、群延迟和广义线性相位 ——————————————————————————————————————— 阅读: Oppenheim ,Schafer & Buck (OSB )中的5.1,5.3和5.7部分。 ——————————————————————————————————————— 相位 一个 LTI 系统的频率响应 H (e )(z H j ω ) 可在单位圆 z = 1 上求得。 H (e j ω ) = ω j e z z H =)(系统输入x [n ] 和输出 y [n ] 的傅里叶变换关系如下 Y (e j ω ) = H (e j ω ) X (e j ω ) 通过观察幅度-相位表达式,可以更详细地理解输入-输出关系。 幅度/相位表示 例子: 在幅度/相位表示中,频率响应是实数不能充分意味着系统是零相位。 利用这个表达式, 且 则)(ωj e H 和 一般分别指系统增益和相移。

在幅度和相位图中,当ω通过单位圆上的零点时,幅度为零,相位跳变π,如下图所示。 椭圆型低通滤波器的幅度和相位响应 如果H(e jω )是实数且双极性的,经常更简单自然地用另一种表达式来移除相位图中π的 这些跳变。 振幅/相位表示 A(e jω ) 是实数但不一定是正数,这样θ2(ω) 不同于上面的θ1(ω)。A(e jω ) 存在符号的变 化,且在θ2(ω) 不存在π的跳变。 例子: 考虑下图给出的h[n]。 在幅度/相位表示中,θ1(ω) 在符号变化处有π的跳变。 在振幅/相位表示中,θ2(ω) = -ω(N-1)/2,斜率为-(N-1)/2的直线,而且在这个表达式中,无论A

FFT 与小波变换的区别---FFT的缺陷

分段平稳信号 这两种波形的FFT完全一样!完全分不出信号出现的位置,说明傅里叶变换缺乏时间对频率的定位功能。小波则可以还原。经过傅里叶变换

之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。

傅里叶变换: 1)首先傅里叶变换是傅里叶级数(有限周期函数)向(无限周期函数)的扩展,将该函数展开成无限多个任意周期的正弦或余弦函数的和(或积分)。 2)傅里叶级数中各项系数例如cosx项系数是原函数与其在某一定义域内的积分,显然我们可以将该过程理解为对这两个函数进行相关,将相关系数作为该频率处的强度。 3)经过傅里叶变换之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。 4)从泛函的角度,我们可以把傅里叶级数中的三角函数 {1/sqrt(2π),sin(t)/sqrt(π),cos(t)/sqrt(π),...}看做一个线性函数空间的一个基,这里与线性代数里的线性空间有两点不同,第一该处是函数空间,每个元素都是一个函数而不是一个数,第二这里是无限维空间,基有无限多个元素。但是这并不影响我们的理解。我们可以像在有限维线性空间中那样将傅里叶变换理解为这个函数在以三角函数为基的空间的展开,而将傅

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

(整理)小波变换与傅里叶变换.

百度空间 | 百度首页 | 登录 在狂风中摇曳 我的学习BLOG 主页博客相册个人档案好友 查看文章 [转]小波变换与傅里叶变换 2009-09-22 09:59 如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。 一、一、基的概念 我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。

二、二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。 下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。 也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。 一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。 第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以

短时傅里叶变换和小波变换

短时傅里叶变换和小波变换 吴桐 (西南交通大学峨眉校区机械工程系铁道车辆一班学号20116432)摘要:短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 关键词:傅里叶变换;实质;缺陷;小波变换 0引言 傅立叶变换是信号分析技术的基础,它在分析平稳信号时起着至关重要的作用。傅立叶变换是一种全局的变换,只能获得信号的整个频谱,并不能反映某一局部时间内信号的频谱特性。在许多科学领域的实验和工程测量中,普遍存在着非平稳信号。针对传统的傅立叶变换无法表达信号的时频局域性质,人们提出了一系列新的信号分析理论,其中以短时傅立叶和小波变换应用最为广泛。 1傅里叶变换的实质与缺陷 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别。所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。 基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用。但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改进。 信号的瞬时频率,表示了信号的谱峰在时间-频率平面上的位置及其随时间的变化情况,一般平稳信号的瞬时频率为常数,而非平稳信号的瞬时频率是时间t的函数。从傅里叶变换

傅里叶变换与拉普拉斯变换的区别与联系

傅里叶变换与拉普拉斯变换的区别与联系 摘要 通过对复变函数的学习,我基本上了解了傅里叶变换与拉普拉斯变换的基本理论知识,并且知道了他们在数学、物理以及工程技术等领域中有着广泛的应用,傅氏变换与拉氏变换存在许多类似之处,都能够在解决广义积分、微分积分方程、偏微分方程、电路理论等问题中得到应用。下面通过对他们做一些比较研究,来更清楚地认识他们。 关键词:两种积分变换积分与微分方程电路理论 正文 (一)前言: 1、傅里叶变换与拉普拉斯变换都属于积分变换,是两种常见的数学变换手段,而所谓的积分变换就是通过积分运算,把一个函数变成另一个函数的变换,其作用就是将复杂的函数运算变成简单的函数运算,当选取不同的积分域和变换核时,就得到不同名称的积分变换,傅里叶变换与拉普拉斯变换就是因取不同的积分域与变换核得来的。 2、傅里叶变换是拉普拉斯变换的特例。拉普拉斯变换是将时域信号变换到“复频域”,与变换的“频域”有所区别。拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。傅里叶变换则随着FFT算法的发展已经成为最重要的数学工具应用于数字信号处理领域。

(二)提出问题: 已知傅里叶变换是拉氏变换的特例,如何用例子进一步说明他们的关系,如何运用它们解决积分与微分方程和电路问题。 (三)解决问题: 傅里叶变换与拉普拉斯变换两种变换的性质有许多相似之处,故两者在求解问题时也会有许多类似,另外,由于傅氏变换的积分区间为(-∞,+∞),拉氏变换的积分区间为(0,+∞),两者又 会在不同的领域中有着各自的应用。下面通过一些具体的例子来对两种变换的应用做一些研究: 3.1 两种积分变换在求解积分、微分方程中的应用 例1 求解积分方程 ()()()()g t h t f g t d τττ+∞ -∞=+-? 其中(),()h t f t 都是已知的函数,且()g t 、()h t 和()f t 的傅里叶变换都存在。 分析:该积分方程中的积分区间是()+∞∞-,,故首先应考虑用傅里叶积分变换法求解。积分项内是函数()f t 与()g t 的卷积,对方程两边取傅氏变换,利用卷积性质便可以很方便的求解该问题。 解:设[()](),[()](ω),[()](ω)g t G w f t F h t H ===F F F 由卷积定义可知()()()()f g t d f t g t τττ+∞ -∞-=*?。因此对原积分方程两边取傅里叶变换, 可得 (ω)(ω)(ω)(ω)G H F G =+? 因此有

Matlab小波变换与傅立叶变换用于检测阶跃信号

Matlab 小波变换与傅立叶变换用于测阶跃信号 1 从傅立叶变换到小波变换 小波分析属于时频分析的一种,传统的信号分析是建立在傅立叶变换的基础上的,由于傅立叶分析使用的是一种全局的变换,要么完全在时域,要么完全在时域,要么完全在频域,因此无法表述信号的时频局域性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并发展了一系列新的信号分析理论:短时傅立叶变换、Gabor 变换、时频分析、小波变换、分数阶傅立叶变换、线调频小波变换、循环统计量理论和调幅-调频信号分析等。其中,短时傅立叶变换和小波变换也是应传统的傅立叶变换不能够满足信号处理的要求而产生的。短时傅立叶变换分析的基本思想是:假定非平稳信号在分析窗函数g(t)的一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,使 ) ()(τ-t g t f 在不同的有限时 间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数。因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜,利用连续小波变换进行动态系统故障检测与诊断具有良好的效果。 2 Fourier 变换 Fourier 变换由下列公式定义: 正变换 ? ∞ ∞ --∧ = dt e t f f t j ωω)()( (2-1) 逆变换 ? ∞ ∞ -∧ = dt e f t f t j ωωπ )(21)( 对于确定信号和平稳随机信号,傅里叶变换时信号分析和信号处理技术的理论基础,有着非凡的意义,起着重大作用。 傅里叶变换把时间域与频率域联系起来,)(ω∧ f 具有明确的物理含义,通过

傅里叶变换、离散余弦变换与小波变换

二维离散傅里叶、余弦、小波变换 专业班级:10 信息安全 学生姓名:王猛涛 学生学号:_ 20101616310049 _ 指导教师:姚孝明 完成时间:2013年4月13日

数字图像处理 实验三:二维离散傅里叶、余弦、小波变换 一、实验目的 1. 了解图像正变换和逆变换的原理。 2. 了解图像变换系数的特点。 3. 掌握常用图像变换的实现过程。 4. 掌握图像的频谱分析方法。 5. 了解图像 二、实验主要仪器设备 1. 微型计算机:Intel Pentium 及更高。 2. MATLAB 软件。 三、实验原理 二维离散傅里叶变换、余弦变换、小波变换的正逆变换公式,MATLAB 中的上述变换的实现函数以及讨论正交变换的应用。 1. 二维离散傅里叶变换(Discrete Fourier Transform ,DFT ) 对于二维傅立叶变换,其离散形式如式(1)所示;逆变换公式如式(2)所示: ∑∑-=-=+-=101 )//(2),(1),(M x N y N vy M ux j e y x f MN v u F π (1) ∑∑-=-=+=1010)//(2),(),(M u N v N vy M ux j e v u F y x f π (2) 频谱公式如式(3)所示: ) ,(),(|),(|),(),(|),(|),(22),(v u I v u R v u F v u jI v u R e v u F v u F v u j +=+==? (3) 由可傅立叶变换的分离性可知,一个二维傅立叶变换可分解为两步进行, 其中每一步都是一个一维傅立叶变换。先对f(x, y)按列进行傅立叶变换得到F(x, v),再对F(x, v)按行进行傅立叶变换,便可得到f(x, y)的傅立叶变换结果。显然对f(x, y)先按行进行离散傅立叶变换, 再按列进行离散傅立叶变换也是可行的,这里不再一一赘述。 此外,在实际工程应用中分析幅度谱较多,习惯上也常把幅度谱称为频谱。使用DFT 变换进行图像处理时,有如下特点: (1)频谱的直流成分为∑∑-=-==101 2),(1)0,0(M x N y y x f N F ,说明在频谱原点的傅里

彩色图片进行傅里叶变换小波变换、重构

找一张彩色图片,进行傅里叶、小波分解和重构。 操作过程: 1.傅里叶变换 [X,map]=imread('c:\10.jpg','jpg'); %读入原图 >> imshow(X); %显示原图

>> title('original pic'); %命名原图 >> r=X(:,:,1); %提取red原色 >> g=X(:,:,2); %提取green原色 >> b=X(:,:,3); %提取blue原色

>> fr=fft2(r); %对red原色进行傅里叶变换 >> fg=fft2(g); %对green原色进行傅里叶变换 >> fb=fft2(b); %对blue原色进行傅里叶变换 >> sfr=fftshift(fr); %将red原色的直流分量移到频谱中心>> sfg=fftshift(fg); %将green原色的直流分量移到频谱中心>> sfb=fftshift(fb); %将blue原色的直流分量移到频谱中心

>> RRr=real(sfr); %取red原色的傅里叶变换实部>> RRg=real(sfg); %取green原色的傅里叶变换实部>> RRb=real(sfb); %取blue原色的傅里叶变换实部 >> IIr=imag(sfr); %取red原色的傅里叶变换虚部>> IIg=imag(sfg); %取green原色的傅里叶变换虚部>> IIb=imag(sfb); %取blue原色的傅里叶变换虚部

>> Ar=sqrt(RRr.^2+IIr.^2); %计算red原色的频谱幅值 >> Ag=sqrt(RRg.^2+IIg.^2); %计算green原色的频谱幅值 >> Ab=sqrt(RRb.^2+IIb.^2); %计算blue原色的频谱幅值 >> Ar=(Ar-min(min(Ar)))/(max(max(Ar))-min(min(Ar)))*225; %归一化>> Ag=(Ag-min(min(Ag)))/(max(max(Ag))-min(min(Ag)))*225; %归一化>> Ab=(Ab-min(min(Ab)))/(max(max(Ab))-min(min(Ab)))*225; %归一化

相关主题