搜档网
当前位置:搜档网 › 葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球
葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球

广州华南农业大学理学院09材化(2)班林勋,2

引言

炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。

葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。

由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。

图1 水热法形成炭球的结构变化示意图

1 实验部分

1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒

1.2 纳米碳球的制备

纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。

图2 反应釜实物与结构示意图

1.3 纳米碳球的表征

1.3.1 X-射线衍射分析

测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳)

1.3.2 红外光谱分析

测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化

2 结果与讨论

2.1 实验数据

实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式

C 6H 12O 6 6C+6H 2O

可得产率23%.5100%4

.21255.0100%理论产率实际产率ω=?=?=

2.2 纳米碳球的结构表征

2.2.1 纳米碳球的XRD表征分析

图3、图4给出的是天然石墨和非晶型碳的标准XRD谱图,图5、图6给出的是在不同样品板上检测实验制备的纳米碳球的XRD谱图。对比可得,实验制备所得的纳米碳球与非晶型碳更加接近,故而初步判断实验所得的纳米碳球是非晶型碳。

图5为在玻璃样品板上检测所得的XRD谱图,从图中可以看出在21°附近有一个大的“馒头峰”,可以断定纳米碳球是非晶态型结构物质;图6为在铝质样品板上检测所得的XRD谱图;可以看出除了有个大的“馒头峰”外,还有两个高而尖锐的峰,即存在晶型结构的物质:Al2O3 晶体,参见文献[2]可知,该晶体为α-Al2O3,属于三方晶系。

图3 天然石墨

图4 非晶型碳

图5 玻璃样品板图6 铝质样品板

2.2.2 红外光谱分析

图7为碳球的红外光谱图。从图7中可看出:3400cm-1 附近对应为羟基的吸收峰;同时羰基(C=O)振动吸收峰红移到1700 cm-1处;1620cm-1对应共轭烯烃骨架振动;1500 cm-1到1300 cm-1 峰的存在可能为苯环骨架振动。

由上述官能团存在的可能性表明碳球保留了葡萄糖分子中的大量官能团,葡萄糖在水解过程中可能产生一定程度的芳香化,因为在水热反应过程中糖分子之间发生了分子间脱水交联反应,再脱水、碳化形成碳碳单键和双键,使得产物部分碳化,达到制备碳微球目的,这与制备机理较为符合。综上,碳球的宫能团以―OH、C=O 为主,水热过程中发生了脱水缩合和芳环化过程。

图7 纳米碳球的红外谱图

2.3 水热法制备碳球的优缺点

优点:工艺流程简单、可连续生产、原料便宜、安全无毒;产物粒径小、分布均匀、颗粒团聚轻、晶形好且可控、不需高温烧结,省去了研磨以及由此带来的杂质,避免缺陷。

缺点:反应在密闭容器中进行,无法观察生长过程、对设备要求高(耐高温高压的钢材,耐腐蚀的内衬)、技术难度大(温压控制严格);安全性能差。

2.4 影响碳球形成的因素

葡萄糖的起始浓度、反应温度、反应时间和清洗过程都直接影响碳球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,纳米碳球团聚更加严重。因此反应时可以通过控制起始浓度、反应温度和反应时间从而控制碳球的大小。

2.5 制备碳球其他简易方法

化学气相沉积法、化学气相冷凝法、还原法、模板法、高温热解法、电弧放电法等

2.6 碳球的应用前景

2.6.1 用作模板制备空心球状材料

碳微球易于被锻烧除去,是一种较好的模板剂。尤其是表面含羟基,羧基等活性官能团的胶体碳微球,对金属离子具有选择性吸附功能,而被广泛的用做制备金属氧化物。

2.6.2 锂离子电池负极材料

碳微球具有平行排列的层状结构和球形特点,是电极的首选原料。Sn一Sb做锂电池的电极材料引起了较多的关注,但其粉化以及循环过程中的团聚问题限制了它的应用范围。

2.6.3 吸附剂

水热法制备的碳微球表面大量的含氧官能团能与金属离子相互键合进而达到去除金属离子的目的,作燃料电池催化剂载体,比一般Pt 作为载体的活性要高;

2.6.4 催化剂

Sun等[3]在不同条件制得了直径为200nm一1500nm,粒径分布均匀且含有活性官能团的碳微球。该碳微球在做催化剂载体时,不仅能将贵金属均匀的负载在碳微球的表面,还可以将它们包裹在碳微球的内部,有效的阻止贵金属的团聚。另一类具有特殊结构的核壳粒子是球形胶囊,该结构与其他球形材料相比具有较大的比表面积,较小的密度及特殊的力学、光电等物理性质及应用价值,成为材料研究领域引人注目的方向之一[4]。

2.6.5 超级电容器材料

Zhao等[5]将合成的SnO2/C双层球,在N2氛围内于700℃锻烧得到裹Sn空心碳微球(TNHCs)。TNHCs碳壳厚度均匀,内部包裹了很多纳米级的Sn粒子,如图8。碳微球壳层薄且有弹性,球内紧凑的空间能有效的抑制电极中Li一Sn合金的粉末化。TNHCs电极材料在循环使用10次后其电容>800mAh·g-1,循环100次后电容>550mAh·g-1,电化学性能优异[7]。

图8 (a)SnO2空心球的透射电镜图; (b)裹Sn空心碳球(TNHCs)的透射电镜图[5]

2.6.7 炭微球基C/C复合材料

以商品活性炭和葡萄糖为原料,制得了多含氧官能团的碳微球一活性炭复合材料如图8。由图9知,在活性炭表面和孔内形成大量的纳米炭微球,葡萄糖水热处理后在活性炭表面形成碳微球,有效的降低了活性炭的孔隙率,可通过调节葡萄糖浓度来调控碳微球的数量和及尺寸,且这些碳微球表面有大量活性官能团(以一OH为主)。这些活性官能团的存在有效的提高了该复合材料对重金属的吸附性能。

图9 碳球/活性炭混合物的扫描电镜图[6]

2.6.8 其他应用前景

电化学储氢材料;阻尼材料;生化及药物的运输载体;物化学、生物诊断以及药物传输领域;制备核壳结构材料或者多孔材料的模板。

3 结论

以葡萄糖为原料,经水热法在反应釜中制备纳米碳球,其具有的高密度、高强度、高比表面积的性能在锂离子电池等多方面具有广大的应用前景;碳微球的形状和大小也显著的影响着其化学性能。因此,严格控制反应条件,特别是控制反应的时间和温度对纳米碳球的粒径有大

的影响。

采用二次水热能得到较为理想的产物。二次水热是一种分离核与生长过程的极端措施。基本思路是:首先制备出单分散或类单分散的“晶核”,接着,在适当的条件下,使单体围绕“晶核”;接着,在适当的条件下,使单体围绕“晶核”均匀的长大,最终形成单分散碳微球[7]。参考文献:

[1] 范莉莉,王荣,孟建新,曹丽伟,彭文芳. 葡萄糖辅助水热法制备球形CaTiO3[J]. 电子元件与材料,2010, 29(5): 35一37

[2] 李波,邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J], 无机盐工业, 2008, 40(2): 54一57

[3]Sun X,Li Y D. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem.Int. Ed , 2004, 43: 597一601

[4] Zhang W M,Hu J S,Guo Y G, et al. Tin-nanoparticles encapsulated elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv. Mater., 2008, 20: 1160一1165

[5] Liu S X, Sun J,Huang Z H. Carbon spheres activated carbon composite material with high

Cr(VI)[J]. J Hazard. Mater, 2009, 173: 377一383

[6] 薛锐生,沈曾民. 不同KOH配比对中间相活性炭微球结构形态的影响[J].材料科学与工程,2002,20(4): 346一351

[7] 李敏. 炭微球的水热制备、表征及活化[D]. 东北林业大学:林产化学加工工程,2011

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

微波法制备碳量子点及其光学性能研究

摘要 传统的有机染料、半导体量子点等的制备方法复杂,设备和原料成本较高,合成环境 不友好,还容易发生光漂白,并且量子产率较低。作为碳纳米材料领域中的一名新成员,碳量子点(CDs)具有极好的荧光稳定性、水溶性、化学惰性、低毒性、抗漂白性以 及生物相容性,激发波长和发射波长可调控,无闪光现象等优点。另外,碳量子点还有 合成过程简单,仪器设备和原料成本低廉,制备过程可控等优点,使得它可以在生物标 记[1],生物成像和生物传感[2],分析检测[3,4]、光催化[5]和光电器件[6]等领域被 广泛的研宄与应用。 目前已经有很多方法成功合成了具有荧光性能的碳量子点,然而很多合成方法因为制 备过程繁琐,原料相对昂贵,反应时间长,荧光量子产率低等缺点,对碳量子点的应 用前景造成阻碍。因此,当前最重要的是寻找一种合成设备和仪器简单,原料成本低廉,并且能快速有效合成碳量子点,以实现荧光碳量子点的大批量合成。微波法制备 过程简单,反应条件能够程序控制,反应速度快,一步完成合成与钝化,并且荧光量 子产率相对较高,因此能够广泛用于荧光碳量子点的合成。 本实验采用微波合成的方法,以柠檬酸为碳源,尿素为表面修饰剂一步合成具有荧光 的碳量子点。通过改变反应温度、时间,结果得到的碳量子点的碳化程度不一样。此外,对所制备的碳点进行了形态、结构的表征及光学性质的研究。该方法合成操作简单,加热和反应速度快,所需时间短,能量高且均匀,所用原料价格低廉易得,绿色 环保,适用于碳点的大批量生产。 第一章绪论 纳米世界在原子和分子等微观世界和宏观物体世界交界过度区域,纳米的长度量级为 10-9 m。二十世纪后期新兴的纳米材料,其在光学、电学、热学、力学、磁学以及化 学等方面具有优良的特性,使其受到了人们广泛的研究。纳米材料即纳米量级结构材 料的简称。纳米材料狭义上是指用晶粒尺寸为纳米级的微小颗粒制成的各种材料,其 粒径为0.1-100nm。广义上所说的纳米材料包括二维纳米薄膜和纳米材料的超晶格等, 一维纳米线、纳米管、纳米棒等,以及零维的纳米粒子。现在,各种纳米材料在物理,化学,材料科学,临床医学以及生命科学等领域具有广泛应用[7]。 纳米效应是在纳米尺度下,物质的电子波性和原子间的相互作用会受到尺寸大小的影响,此时物质表现出的性质完全不同,纳米材料的熔点,磁性,电学,光学,力学以

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米氧化铁

第一章综述 1.1 概述 1.1.1 氧化铁的性质 纳米科学技术是20世纪80年代末诞生并崛起的新科技,它的基本内涵是指在-9-7)范围内认识和改造自然,通过直接和安排原子,分子创造1010~纳米尺寸(新物质,以及改造原有物质使其具有新的性质[1]。纳米材料具有量子尺寸效应,小尺寸效应,表面效应及宏观量子隧道效应等基本特性[1]。这些基本特性使纳米材料具有不同与常规材料的潜在的物理,化学性质,因此引起人们的广泛兴趣。纳米氧化铁( nano- sized iron oxide) 具有良好的耐候性、耐光性、磁性 和对紫外线具有良好的吸收和屏蔽效应, 可广泛应用于闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、催化剂以及生物医学工程等方面, 且可望开发新的用途[2,3]。 通常,铁的氧化物及其羟基氧化物均归属于氧化铁系列化合物,按价态,晶型结构的不同可以分为(α-﹑β-﹑γ-)FeO ﹑FeO ﹑FeO 和(α-﹑β-﹑γ-) 4323FeOOH.按色泽又可以分为,红﹑黄﹑橙﹑棕﹑黑。较具实用价值的有,α- FeO32﹑β- FeO ﹑α- FeOOH﹑FeO等。43321.1.2 氧化铁的应用 1 纳米氧化铁在装饰材料中的应用 在颜料中, 纳米氧化铁又被称为透明氧化铁( 透铁) 。所谓透明, 并非特指粒子本身的宏观透明, 而是指将颜料粒子分散在有机相中制成一层漆膜( 或称油膜) , 当光线照射到该漆膜上时, 如果基本不改变原来的方向而透过漆膜, 就称该颜料粒子是透明的。透明氧化铁主要有5 个品种, 即透铁红、黄、黑、绿、棕。透明氧化铁颜料因其有0.01μm 的粒径, 因而具有高彩度、高着色力和高透明度, 经特殊的表面处理后具有良好的研磨分散性。透明氧化铁颜料可用于油化与醇酸、氨基醇酸、丙烯酸等漆料制成透明色漆, 有良好的装饰性。此种透明漆既可单独, 也可和其他有机彩色颜料的色浆相混, 如加入少量非浮性的铝粉浆则可制成有闪烁感的金属效应漆; 与不同颜色的底漆配套, 可用于汽车、自行车、仪器、仪表、木器等要求高的装饰性场合。透铁颜料强烈吸收紫外线的特性使其可作为塑料中紫外线屏蔽剂,而用于饮料、医药等包装塑料中。纳米FeO 在32 1 静电屏蔽涂料中也有广阔的应用前景, 日本松下公司已研制成功具有良好静电屏蔽的FeO 纳米涂料。这种具有半导体特性的纳米粒子在室温下具有比常规的23氧化物高的导电性, 因而能起到静电屏蔽作用。 2 纳米氧化铁在油墨材料中的应用 透铁黄可用于罐头外壁的涂装, 透铁红油墨为红金色, 特别适合罐头内壁用, 加之透铁红耐300 ℃的高温, 是油墨中难得的颜料珍品。为提高钞票的印制质量, 往往在印钞油墨中加入纳米氧化铁颜料来保证钞票的色度和彩度等指标。 3 纳米氧化铁在着色剂中的应用 随着人们生活水平的提高, 人们越来越重视医药、化妆品、食品中使用的着色剂, 无毒着色剂成了人们关注的焦点。纳米氧化铁在严格控制砷和重金属含量的情况

水热法制备纳米材料3

水热法制备ZnO纳米棒 10092629 朱晓清 10092632 蒋桢 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式(1) P 1 V=nRT (1) P 2=P (2) P=P 1+P 2 =nRT/V+P (3) 式中:P 1 ——T温度时高压釜内空气的压强; P 2 ——T温度时高压釜内水的压强; P——T温度时高压釜内的总压强; P ——T温度时水的饱和蒸汽压; V——高压釜内气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。 ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH) 2 (4) (CH 2) 6 N 4 +10H 2 O → 6HCHO + 4NH 3 ·H 2 O (5) NH 3·H 2 O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3 ) 4 2+ (7) Zn(OH) 2→ZnO+H 2 O (8) Zn(OH) 42-→ZnO+ H 2 O+2OH- (9) 当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2 白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水

(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 4 2+(见反应式 7),而溶液中生成的Zn(OH) 4 2-为这个过程提供了条件,在这种溶液环境下,一 部分的Zn(OH) 2 胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂:铜衬底,丙酮,无水乙醇(C 2H 5 OH,分析纯),去离子水,硫酸锌(ZnSO 4 ·7H 2 O, 分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C 6H 12 N 4 ,分 析纯)。 四、实验步骤: 1、铜衬底的清洗 清洗的目的是为了去掉衬底表面的油渍、脏物和表面杂质等,使其表面光亮平滑,避免杂质及缺陷在纳米棒生长过程中对纳米棒的形貌产生影响。具体的清洗过程如下: (1)将大小约为1cm×1cm 的铜衬底放入盛有乙醇的烧杯中,在超声仪中超声 10 分钟。 (2)取出衬底片,放入丙酮中超声10 分钟。 (3)取出衬底片,放入乙醇中超声10 分钟。 (4)最后再用去离子水超声一次,并经流动的去离子水反复冲洗后,用洗耳球 小气流吹干。 2、在铜衬底上制备ZnO纳米棒步骤: 将0.0056 mol硫酸锌溶于35 mL 去离子水中配制成溶液,同时按Zn2 +与OH-摩尔比值1:8将0.056 mol氢氧化钠溶于35 mL去离子水中;在磁力搅拌条件下,将氢氧化钠溶液逐滴滴加到硫酸锌的溶液中; 持续搅拌10 min 后,将0.50 g六次甲基四胺加入到上述溶液中并持续磁力搅拌10 min; 然后将混合溶液转移到内衬为聚四氟乙烯的反应釜中,将第一步中清洗的铜衬底垂直放置(如图1所示)。

一步水热法制备手性碳量子点

Material Sciences 材料科学, 2019, 9(6), 549-557 Published Online June 2019 in Hans. https://www.sodocs.net/doc/a28545509.html,/journal/ms https://https://www.sodocs.net/doc/a28545509.html,/10.12677/ms.2019.96070 One-Step Hydrothermal Synthesis of Chiral Carbon Quantum Dots Yao Wang, Yupeng Lu, Yuanzhe Li, Lumeng Wang, Fan Zhang College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi Received: May 21st, 2019; accepted: Jun. 4th, 2019; published: Jun. 11th, 2019 Abstract Carbon Quantum Dots (CQDs) have many excellent properties, such as low toxicity, biocompatibil-ity, photoluminescence, etc., which play an important role in many fields such as photocatalytic electrocatalytic chemical sensing in biological imaging and endowing CQDs with chiral proper-tiesto broaden its applications in chiral recognition and separation and asymmetric catalysis and chiral detection. Chiral carbon quantum dots (L-CQDs and D-CQDs) were synthesized by one-step hydrothermal method using tryptophan (L-Trp and D-Trp) as carbon source and chiral source and sodium hydroxide as reaction regulator. The optical properties and surface structures of L-CQDs and D-CQDs were characterized by high resolution lens electron microscopy, elemental analyzer, ultraviolet-visible absorption spectrometer, steady-state fluorescence spectrometer and circu-lar dichroism (CD). The results show that the prepared L-CQDs and D-CQDs with particle size less than 10 nm presented similar characteristics and optical properties, with strong fluores-cence characteristics and the property of stimulating independence, whose the maximum emis-sion wavelength is 476 nm as well as the optimal excitation wavelength is 360 nm. CD signals taking on mirror symmetry feature near 223 and 290 nm indicate that L-CQDs and D-CQDs are enantiomers. Keywords Hydrothermal Method, Chirality, Carbon Quantum Dots, Circular Dichroism 一步水热法制备手性碳量子点 王耀,鲁羽鹏,李远哲,王璐梦,张帆 太原理工大学材料学院,山西太原 收稿日期:2019年5月21日;录用日期:2019年6月4日;发布日期:2019年6月11日

氧化铁制备的方法

氧化铁制备的方法 制备氧化铁的方法有很多,根据反应物料的状态分别有干法和湿法两种。干法又包括气相法和固相法两种,其中气相法包括热分解法、鲁式法、焙烧法等。其中湿法包括空气氧化法、水解法、沉淀法、溶胶?凝胶法等;此外,还有催化法、包核法、水热法等工艺改进方法。 2.1 干法 气相法通常以羰基铁(Fe(CO)5)或者二茂铁(FeCP2)等为原材料,采用气相沉积、低温等离子化学沉积法(PCVD)、火焰热分解或激光热分解等方法来制备。固相法是把金属盐或金属氧化物按照配方充分混合、研磨以后进行煅烧,固相反应结束后,直接产生纳米粒子或研磨方法得到纳米粒子。 2.1.1 热分解法 热分解法通常以羰基铁(Fe(CO)5)或二茂铁(FeCP2)等为原材料,利用火焰热分解、激光分解或气相分解等技术制备而成。蔺恩惠等采用激光气相反应法,光源采用红外激光脉冲CO2激光器、以(Fe(CO)2)/O2作为反应物质,利用爆炸式反应,同时能够得到晶形和无定形态的三氧化二铁超细粉;该方法具有反应时间较短,工艺简单,产率高,能耗低等优点。余高奇等利用Fe(NO3)3·9H2O在高温加热到一定的温度会分解的特性,利用配制成的Fe(NO3)3·9H2O 的盐液体,经过超临界干燥,直接可得到纳米级氧化铁粉。热分解法具有操作环境好,影响因素少,产品质量高,工艺流程简单,分散性好,粒子超细等特点。但是其技术难度较大,对设备的结构和材质要求较高,一次性投资耗费大。 2.1.2 焙烧法 传统的焙烧法通常指的是绿矾焙烧法,该方法是指硫酸亚铁经过高温煅烧得到氧化铁红。该方法因为产生的SO2和SO3等气体严重污染环境,只应用于小规模生产。此外,还有煅烧铁黄、煅烧铁黑法。孙本良等提出一种利用化工等行业产生废铁泥为原料得到氧化铁红的工艺,该工艺包括筛分、磁选、煅烧等几个过程,其炉尾废气中粉尘通过除尘器收集后一方面可以作为后续产品的原料,另一

水热法制备TiO2纳米材料

水热法制备TiO2纳米材料 实验目的:采用水热法,制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。 实验原理:以无水TiCl4为原料制备出的纳米晶是锐钛矿相的, 而用钛酸四正丁酯制备的纳米晶是金红石相的。两者的晶相有所不同, 这是因为无水TiCl4 中加入水后水解剧烈, 已经直接生成了大量的锐钛矿相TiO2。而钛酸四正丁酯中加入水后, 水解速度较慢, 首先生成锐钛相TiO2, 而生成的锐钛矿相TiO2 颗粒较小, 故其反应的活性较大。在水热反应过程中, 如果保温时间足够长, 就有可能由锐钛矿相完全转变为金红石相。采用本方法制备出的金红石相的TiO2 纳米晶相的过程更简单、反应温度更低。 实验药品,器材 无水TiCl4、钛酸四正丁酯、HCl 溶液(12 mol/L) X 射线衍射(XRD)、透射电子显微镜( TEM) 高压反应釜、高速离心机、恒温干燥箱 实验过程:T iO 2 纳米颗粒的制备 (1)以无水TiCl4 为原料取容量为10 mL 的小量筒1 只, 将其放进干燥箱彻底干燥后(因为TiCl4 极易水解)取出, 量取2 mL 的无水TiCl4。把量筒内的无水TiCl4 倒入已经清洗干净、并且已经干燥过的高压反应釜的内衬中。用容量为20 mL的量筒量取20 mL 蒸馏水并快速倒入反应釜的内衬中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 ( 2) 以钛酸四正丁酯为原料 用量筒量取2 mL 的钛酸四正丁酯倒入反应釜的内衬后, 以体积比为1 ∶10 量取20 mL 蒸馏水, 将蒸馏水倒入内衬和钛酸四正丁酯混合后放入烘箱中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 数据记录 参考文献: 夏金德. 水热法制备二氧化钛纳米材料[J].安徽工业大学学报,2007 ,24(2)140- 141. 肖逸帆,柳松. 纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报,2007, 26(3)523-527

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米氧化铁材料的制备与现代发展.

课题名称MITobj004 姓名 院系 专业班级 指导教师 2009 年10 月01 日

摘要纳米氧化铁的制备方法有沉淀法、固液气相法、水热法、凝胶—溶胶法、共混包埋法、单体聚合法等.。本文通过分析比较各种纳米氧化铁的制备方法, 水热法由于操作简单、粒子可控等优点广泛应用于自分散氧化物的制备研究中。 关键词水热法,沉淀法,固液气相法,比较 前言 定,催化活性高,具有良好的耐光性、耐候性和对紫外线的屏蔽性,在精细陶瓷、塑料制品、涂料、催化剂、磁性材料以及医学和生物工程等方面有着广泛的应用价值和前景,因此研究纳米氧化铁有着很重要的意义。由于纳米氧化铁具有如此多的优点及其广泛的应用前景,近年来国内外研究者对其制备和应用投入了大量的研究工作。本文综述了纳米氧化铁制备方法的一些研究进展,分析了当前急需解决的问题,并对今后发展做了展望。重点介绍了水热法制备纳米氧化铁材料,以及在铁离子浓度、PH值、水解时间分别不同的情况下的水解程度。【1】 文献综述 国内外研究现状: 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,科院上海硅酸盐研究所、南京大学、科院固体物理所、科院金属所、物理所、国科技大学、清华大学和科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的坚力量。【2】 近年来美国纳米技术研究与产品开发发展迅速。如医学领域的纳米医药机器人、纳米定向药物载体、纳米在基因工程蛋白质合成中的应用,微电子及信息技术领域的导电聚合物在信息技术的应用、纳米电子元器件FET二极管、用于感应器的电子序列、纳米传感器,化工领域的利用纳米材料提高催化剂的效能等,都取得了很大进展。 日本科学家在2003年12月发现,当温度降到极端低时,非常接近于一维金属的碳纳米管的电阻急剧增大,变成绝缘体,与普通金属的导电性截然相反。从

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

碳点制备总结

碳量子点和碳纳米管、石墨烯一样是一种新型碳纳米材料,除了碳材料本身的低毒特性,原材料丰富,生物相容性好之外,碳量子点还有一系列其他的独特的性质,例如:多色荧光性、荧光稳定性、导电性和催化特性等。常用来制备碳量子点的方法分为自上而下和自下而上两种方法,其中自上而下的方法是指大分子碳材料通过一定的物理、化学等方法破碎成小分子的碳纳米颗粒,包括:电解法、酸刻蚀、激光刻蚀和高温热解等方法。而自下而上的方法是指将小分子的碳材料通过一定的化学手段合成团聚成更大分子量的碳纳米颗粒,其中包括:化学合成法、水热法、溶剂热法、等方法。 其中我们主要挑选了几种比较常见的制备碳量子点的方法。自上而下中最长用的是酸刻蚀自然界存在的碳源,或者人工合成出来具有特定结构的碳源,前者是对自然存在的碳源加以利用,后者是为了得到更好的碳结构而处理的。常用酸刻蚀的自然界的碳源包括动物毛发、植物纤维等,例如酸刻蚀人类头发[3],这类材料最大的特点就是原料丰富,价格低廉,是材料多级利用很好的选择。另外常用碳纤维、石墨烯、氧化石墨烯、碳纳米管等结构有序的碳材料[4-8]作为碳点的 制备原材料,这类材料可以给碳量子点提供更加规则,具有高度结晶特性的结构。 碳量子点一般选择硫酸和硝酸等稳定的浓酸作为溶剂刻蚀碳材料,硝酸和硫酸按体积比3:1 的混酸是现在酸刻蚀碳材料制备碳量子点的主要方法。这种方法可以根据不同的需要来调节碳量子点表面的含氧基团,是一种表面改性的很好的方法。但是由于酸的引入很难简单地分离和纯化,这也是限制这种方法发展的主要原因。此外除了酸刻蚀方法外,电化学方法点解石墨棒也得到了很大的发展[1]。将电极两端接上一定的电压电解成碳量子点溶液,这种方法简单,易操作,而且基本不引入其他杂质,很好的提纯和分离,是这种方法得到广泛的关注。高温热解碳材料是一种传统的制备碳量子点的方法,一般将碳源材料在高温下人分解成小分子碳点,通过溶剂提取,从而分离纯化,但是这种方法的产率太低,因此发展受到很大的限制。

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

碳量子点综述

碳量子点综述 胡东旭 2014级环境工程卓越班 201475050112 摘要:碳量子点(CQDs, C-dots or CDs)是一种新型的碳纳米材料,尺寸在10 nm以下,具有良好的水溶性、化学惰性、低毒性、易于功能化和抗光漂白性、光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星。最近几年的研究报道了各种方法制备的CQDs在生物医学、光催化、光电子、传感等领域中都有重要的应用价值。这篇综述主要总结了关于CQDs的最近的发展,介绍了CQDs的合成方法、物理化学性质以及在生物医学、光催化、环境检测等领域的应用。 1 引言 在过去的20年间,鉴于量子点特殊的性质,尤其是量子点相对于有机染料而言,容易调节的光学性质和抗光降解性质,使量子点得到了广泛的关注。如果量子点可以克服造价昂贵、合成条件严格和众所周知的高毒性等缺点,则有望广泛地应用于生物传感和上物成像领域。最近几年,量子点的研究非常活跃,尤其是关于它在生物和医学中的应用。量子点一般是从铅、镉和硅的混合物中提取出来的,但是这些材料一般有毒,对环境也有危害。所以科学家们开始在一些良性化合物中提取量子点。因此,很多的研究均围绕着合成毒性更低的其它材料量子点来进行,这些替代材料的碳量子点,如硅纳米粒子、碳量子点均具有优异的光学性质。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研

究进入了一个新的阶段。 2 碳量子点的合成 大多数的碳量子点主要是由无定形的碳到晶化的碳核组成的以sp2 杂化为主的碳,碳量子点的晶格间距和石墨碳或者无定形层状碳的结构一致。如果没有其他修饰试剂的修饰碳量子点表面会含有一些含氧基团,而含氧基团的多少和种类与实验条件相关。发光碳量子点的合成方法可以分为两大类(图一),化学法和物理法。 图一碳量子点的制备方法 2.1化学法 2.1.1电化学法 Zhou利用离子液体辅助电解高纯石墨棒和高温热解纯定向石墨(HOPG)于离子液体和水溶液中,通过控制离子了液体中水的含量得到不同荧光性质的荧光纳米粒子、纳米带、石墨等产物。 Kang等以石墨棒为

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

学术周报告--水热法制备纳米氧化铁材料

水热法制备纳米氧化铁材料 摘要:水热水解法制备纳米氧化铁材料,是通过控制一定的温度和酸碱度,使一定浓度的金属铁的水解,生成氧化铁。条件适当可以得到颗粒均匀的多晶态溶胶,其颗粒尺寸在纳米级,对提高气敏材料的灵敏度和稳定性有利。 关键字:水热水解法纳米材料氧化铁制备影响因素 水解反应是中和反应的逆反应,是一个吸热反应。水热法【1】又称为热液法, 是指在特制的密闭反应器(高压釜)中, 采用水溶液作为反应体系, 通过对反应体系加热, 产生一个高温高压的环境, 加速离子反应和促进水解反应, 在水溶液或蒸气流体中制备氧化物, 再经过分离和热处理得到氧化物纳米粒子, 可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。 纳米材料【2】是指晶粒和晶界等显微结构能够达到纳米级尺度水平的材料,是材料科学的一个重要发展方向。纳米材料由于粒径较小,比表面很大,表面原子数会超过体原子数。因此纳米材料常表现出与本体材料不同的性质,在保持原有物质化学性质的基础上,呈现出热力学上的不稳定性。纳米材料在发光材料、生物材料方面也有重要的应用。 纳米氧化铁是一种多功能材料,在催化、磁介质、医药等方面具有广泛的应用。纳米氧化铁还被广泛应用到生产生活中,被用作颜料和涂料、装饰材料、油墨材料、磁性材料和磁记录材料、

敏感材料等。 实验仪器和试剂 仪器:台式烘箱,721或722型分光光度计,医用高速离心机或800型离心沉淀器,酸度计,多用滴管,20mL具塞锥形瓶,50mL容量瓶,离心试管,5mL吸量器。 试剂:1.0mol/LFeCl3溶液,1.0mol/L盐酸,1.0mol/LEDTA 溶液,1.0mol/L(NH4)2SO4溶液。 实验步骤 1.实验中的玻璃仪器均需严格清洗,先用铬酸洗液洗,再用离子水冲洗干净,然后烘干备用。 2.根据文献及实验时间,本实验选定水解温度为105摄氏度,有兴趣的同学可用95摄氏度,80摄氏度对照。 3.水解时间的影响,需读取6次,绘制A-t图。 4.水解液pH的影响,改变水解液的浓度,分别为1.0,1.5,2.0,2.5,3.0;用分光光度计观察水解pH的影响,绘制pH-t 图。 5.水解液中的三家铁离子浓度的影响,绘制A-t图。 6.沉淀的分解,取上述水解液一份,迅速用冷水冷却,分为二分,一份用高速离心机离心分离,一份加入硫酸铵使溶胶沉淀后用普通离心机离心分离。沉淀用去离子水洗至··无氯离子为止。 7.产品鉴定。

相关主题