搜档网
当前位置:搜档网 › (完整版)技校电工学第五版第二章磁场与电磁感应

(完整版)技校电工学第五版第二章磁场与电磁感应

(完整版)技校电工学第五版第二章磁场与电磁感应
(完整版)技校电工学第五版第二章磁场与电磁感应

第二章磁场与电磁感应

§2-1 磁场

一、填空题(将正确答案填写在横线上).

1.当两个磁极相互靠近时,它们之间会产生相互作用的力:同名磁极相互排斥,异名磁极相互吸引。

2.磁体周围的空间中存在着一种特殊的物质—磁场。

3.磁感线的方向定义为:在磁体外部由N极指向S极,在磁体内部由S极指向N极。磁感线是闭合曲线。磁感线上任意一点的切线方向,就是该点磁场的方向。

4.在磁场的某一区域里,如果磁感线是一些方向相同分布均匀的平行直线,这一区域称为均匀磁场。

5.磁场中某一平面上所通过磁感线的数量称为磁通量,简称磁通,用符号Φ表示,磁通的单位是韦伯(Wb),简称韦。描述磁场中各点磁场强弱和方向的物理量叫做磁感应强度,用符号B示,单位为特斯拉(T)。

6.通常把通电导体在磁场中受到的力称为电磁力,通电直导体在磁场内的受力方向可用左手定则来判断。

7.把一段通电导线放入磁场中,当电流方向与磁场方向垂直时,导线所受到的电磁力最大;当电流方向与磁场方向平行时,导线所受的电磁力最小。

8.在均匀磁场中放入一个线圈,当给线圈通人电流时,它就会旋转,当线圈平面与磁感线平行时,线圈所产生转矩最大,当线圈平面与磁感线垂直时,转矩为0。

一、选择题(将正确答案的序号填写在括号内)

1.条形磁铁中,磁性最强的部位在(B)。

A.中间B.两极C.整体

2.磁感线上任一点的(B)方向,就是该点的磁场方向。

A.指向N极B.切线C.直线

3.通电矩形线圈,将其用线吊住并放入磁场,线圈平面垂直于磁场,线圈将(C)o

A.转动B.向左或向右移动C.不动

4.如图2-1所示,通电导体向下运动的是(C)。

三、简答题

1.如图2-2所示,A、B是两个用细线悬着的闭合铝环,当合上开关S的瞬

间,分析这两个铝环如何运动,并说明理由。

答:A环向左,B环向右。因为S闭合瞬间,通过A、B环的磁通变大,根据楞次定律,为了阻碍磁通的增大,A环向左,B环向右。

2.判断如图2-3中电流磁场的方向,在图上标出。

答:A图上为S极,下为N极。B图左为S极,右为N极

3.判断图2-4中电源的正极和负极,在图上标出。

答:电源左负右正。

4.判断图2-5中,导体所受的电磁力的方向,在图上标出。

答:a图向左;b图线圈逆时针旋转;c图与导线垂直向左上;d图与磁感应

线垂直向左上。

四、计算题

如图2-6所示,在磁感应强度大小为B的磁场中垂直于磁场方向放置1根长为5m的载流直导体,导体中的电流为2A,测得受到的电磁力为2N,试求:

(1)磁感应强度B;

(2)标出电磁力的方向;

(3)若通入导体的电流为O,则导体受到的电磁力为多少?该区域的磁感应强度为多少?

解:(1)F=BIL B=F/IL=2/(2×5)=0.2(T)

(2)电磁力垂直向上。

(3)I=0 F=0 B=0.2T

§2—2 电磁感应

一、填空题(将正确答案填写在横线上)

1.利用磁场产生电流的现象称为电磁感应现象,产生的电流称为感应电流,产生感应电流的电动势称为感应电动势。

2.楞次定律的内容是感应电流产生的磁通总是阻碍引起感应电流的磁通的变化,当线圈中磁通增加时,感应磁场的方向与原磁通的方向相反;当线圈中的磁通减少时,感应磁场的方向与原磁通方向相同。

3.在电磁感应中,用楞次定律判别感应电动势的方向;用法拉第电磁感应定律计算感应电动势的大小,其表达式为t

N e ??=φ。 4.当直导体的运动方向与磁感线垂直时,导体中的感应电动势最大;当直导体的运动方向与磁感线平行时,导体中感应电动势为0。

二、判断题(正确的,在括号内画√;错误的,在括号内画×)

1.当磁通发生变化时,导线或线圈中就会有感应电流产生。(×)

2.通过线圈中的磁通越大,产生的感应电动势就越大。(×)

3.感应电流产生的磁通总是与原磁通的方向相反。(×)

4.左手定律既可以判断通电导体的受力方向,又可以判断直导体的感应电流方向。(×)

*5.直导线在磁场中运动一定会产生感应电动势。(×)

*6.在电磁感应中,感应电流和感应电动势是同时存在的;没有感应电流,也就没有感应电动势。(×)

三、选择题(将正确答案的序号填写在括号内)

1.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小

(A )。

A .与穿过这一闭合电路的磁通变化率成正比

B .与穿过这一闭合电路的磁通成正比

C .与穿过这一闭合电路的磁感应强度成正比

D .与穿过这一闭合电路的磁通变化量成正比

2.运动导体在切割磁感应线而产生最大感应电动势时,导体与磁感应线的夹角为(C )。

A .O °

B .45°

C .90°

3.与电磁感应电动势大小有关的物理量是(A )。

A .在磁场中的导线长度

B .在磁场中导线的截面积

C .导线总长

D .电阻

四、简答题

1.如图2—7所示,导体或线圈在均匀磁场中按图示方向运动,是否会产生感应电动势?如产生,其方向如何?

答:A 图产生感应电动势,方向由下向上;B 图不产生感应电动势;C 图产生感应电动势,方向由a 向o 。

2.图2-8所示,将一条形磁铁插入或拔出线圈,试标出电阻R 上的电流方向。

答:A 图向上;B 图向下;C 图向下;D 图向上。

五、计算题

1.将线圈垂直置于变化磁场中,已知该磁场的磁感应强度变化率为0.5T/s ,线圈的截面积为25cm 2,求线圈中产生的感应电动势。 解:)(1025.110255.0134V t

BS N t N e --?=???=??=??=φ

2.如图2-9所示,已知导体AB 在外力F 作用下,在均匀磁场中做匀速运动,若B=0.5T ,导体有效长度L=20cm ,其电阻R 0=2Ω,运动速度v=15m/s ,负载电阻

R=18Ω,试求导体AB 中的感应电动势和电流及负载两端的电压。

解:E=BLv=0.5×0.2×15=1.5(V)

I=E/(R+r)=1.5/(18+2)=0.075(A)

U=IR=0.075×18=1.35(V)

§2-3 自感和互感

一、填空题(将正确答案填写在横线上)

1.产生自感现象的原因是线圈本身的电流发生变化,自感电动势用符号e

L 表示,自感电流用符号i

表示。

L

2.由于一个线圈中的电流产生变化而在另一个线圈中产生电磁感应的现象叫做互感现象。

3.当两个线圈相互平行时,互感系数最大,当两个线圈相互垂直时,互感系数最小。互感系数最大的情况也称全耦合。

4.由于线圈的绕向一致而产生感应电动势极性相同的端子叫做同名端。

5.有铁心的线圈,其电感要比空心线圈的电感大。

二、判断题(正确的,在括号内画√;错误的,在括号内画×)

1.线圈中的电流变化越快,则其自感系数就越大。(×)

2.自感电动势的大小与线圈的电流变化率成正比。(√)

3.空心线圈插入铁心后电感变小。(×)

4.当结构一定时,铁心线圈的电感是一个常数。(×)

三、选择题(将正确答案的序号填写在括号内)

1.当线圈中通入(B)时,就会引起自感现象。

A.不变的电流B.变化的电流C.电流

2.线圈中产生的自感电动势总是(C)。

A.与线圈内的原电流方向相同B.与线圈内的原电流方向相反

C.阻碍线圈内原电流的变化D.上面三种说法都不正确

四、简答题

1.电路如图2-10所示,试标出当滑动变阻器中间触头向右滑动时,A、B线圈中感应电流的方向。

答:由于原磁场增大,所以a中感应电流有电流表的右进左出;b中的感应电流有电流表的右进左出。

2.如图2-11所示为半导体收音机磁性线圈Ll,L2及再生线圈L3。试根据图示线圈的绕法标出它们的同名端。

答:1、3、5(或2、4、6)为同名端。

五、计算题

1.在0.Ols 内,通过一个线圈的电流由0.2A 增加到0.4A ,线圈产生5V 的自感电动势,求:

(1)线圈的自感系数L 是多大?

(2)如果通过该线圈的电流在0.05s 内由0.5A 增加到1A ,产生的自感电动势又是多大?

解:(1)t

I L e ??= 所以 )(25.001

.02.04.05H t I e L =-=??= (2))(5.205

.05.0125.0V t I L e =-?=??=

2.电感L=500mH 的线圈,忽略其电阻,设在某一瞬间通过线圈的电流每秒增加5A ,此时线圈两端的电压是多少? 解:)(5.2155.0V t I L e =?=??=

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

电工学(第五版)教案

武汉工程职业技术学院 (铁山校区培训部教案) 适用工种:B类员工培训 班级:程潮铁矿、金山店铁矿B类员工培训班任课教师:付斌 日期:2012-8

二0一二年下学期 教学进度计划表 任课教师:付斌班级:B类员工培训班 2012-8

第一章直流电路 本章教学要求: 1、了解电路的组成和状态,理解有关基本物理量的定义,熟记它们的单位和符号; 2、掌握欧姆定律,熟悉电路的三种状态。 3、了解电流热效应的应用与危害,了解负载额定值的意义; 4、熟练掌握电阻串联、并联和混联电路的特点及其应用; 5、了解基尔霍夫定律。 6、会用万用表测量电压、电流和电阻。 重点: 1.电路的基本定律(欧姆定律、基尔霍夫定律); 2.电位的计算。 3、电阻串并联计算。 难点: 1.电源与负载电压方向的判别方法; 2.基尔霍夫电压方程的列写。 教学方法: 讲授法、讲练结合、启发式 §1-1 电路及其基本物理量 一、电路:电流流通的通路,是为了某种需要由电工设备或电路元件按一定方式组合而成。 1、电路的作用 (1)实现电能的传输、分配与转换

(2)实现信号的传递与处理 2、电路的组成和状态 组成部分:电源、负载、导线、控制装置。 状态:通路、开路(断路)、短路 二、电流 1、电流的形成:电荷有规则的定向移动形成电流。 2、电流的大小:是指单位时间内通过导体横截面的电荷,即I=Q/t ,电流用符号I 表示,单位是安培(A )。 3、电流的方向:正电荷移动的方向。 4、电流的换算关系: 三、电压、电位和电动势 1、电压 (1)概念:电场力将单位正电荷从a 点移到b 点所做的功,称为a 、b 两点的电压,用U ab 表示。电压单位是伏特(V )。 (2)方向:高电位 ? 低电位,电位降低的方向。 (3)换算关系: A 101kA 3=A 101mA -3=A 10mA 10A 1-6-3==μ

磁场、电磁感应要点

一、 选择题:(每小题3分,共6) 磁场 1 一个带电粒子以速度v 垂直进入匀强磁场B 中,其运动轨迹是一半径为R 的圆。要使半径变为 2R ,磁感应强度B 应变为:( ) (A) 2B (B) B/2 (C) 2 B (D) 2 B/2 2. 磁场的高斯定理说明了稳恒磁场的某些性质。下列说法正确的是 ( ) (A) 磁场力是保守力; (B) 磁场是无源场; (C) 磁场是非保守力场; (D) 磁感应线不相交。 3 如图所示,1/4圆弧导线 ab,半径为r,电流为I ,均匀磁场为B, 方向垂直ab 向上,求圆弧ab 受的安培力的大小和方向( ) (A 垂直纸面向外 (B 垂直纸面向里 (C )2BIr π 垂直纸面向外 (D )2BIr π 垂直纸面向里 4. 如图所示,圆型回路L 内有电流1I 、2I ,回路外有电流3I ,均在真空中,P 为L 上的点,则( )

(A )012()L d I I μ?=-+?B l (B )0123()L d I I I μ?=++?B l (C )0123()L d I I I μ?=+-?B l (D )012()L d I I μ?=+?B l 5 匀强磁场B 中有一半径为r ,高为L 的圆柱面,B 方向与柱轴平行,则穿过圆柱面的磁通量为:( ) (A) B R 2π (B) 0 (C) B R 22π (D) B R 221π 6 载有电流I 的导线如图放置,在圆心O 处的磁感应强度B 为:( ) (A)μ0I/4R+μ0I/4πR (B)μ0I/2πR+ 3μ0I/8R (C) μ0I/4πR -3μ0I/8R (D) μ0I/4R+ μ0I/2πR

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题 一、电磁感应现象的两类情况 1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =? 感应电流:11E I R = 由力的平衡得:12BI L mg ?= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势 2222E B Lv =? 感应电流:2 2E I R = 由力的平衡得:222BI L mg ?=

解以上各式得:222 16mgR v B L = 设感应电流在线圈中产生的热量为Q ,由能量守恒定律得: 22122 mg L Q mv ?-= 解以上各式得:322 44 2512m g R Q mgL B L =- 2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。 【答案】(1)22 FR v B L =;(2)F I BL =;(3)4FL Q = 【解析】 【分析】 【详解】 (1)线圈向右匀速进入匀强磁场,则有 F F BIL ==安 又电路中的电动势为 E BLv = 所以线圈中电流大小为 = =E BLv I R R 联立解得 22 FR v B L = (2)根据有F F BIL ==安得线圈中的电流大小 F I BL = (3)AB 边产生的焦耳热 22( )4AB F R L Q I R t BL v ==??

技校电工学第五版第四章-三相交流电路

技校电工学第五版第四章-三相交流电路

第四章 三相交流电路 §4-1 三相交流电 一、填空题(将正确答案填写在横线上) 1.三相交流电源是三个大小相等、频率相同而相位互差120°的单相交流电源、按一定方式的组合。 2.由三根线相和一根中线所组成的供电线路,称为三相四线制电网。三相电动势到达最大值的先后次序称为相序。 3.从三相电源始端引出的输电线称为相线或端线,俗称火线。通常用黄、绿和红三种颜色导线表示;从中性点引出的输电线称为中性线,简称中线,一般用黄绿相间色导线表示。 4.三相四线制电网中,线电压是指相线与相线之间的电压,相电压是指相线与中性线之间的电压,这两种电压的数值关系是U L =3U P ,相位关系是线电压 超前相电压30°。 5.目前民用建筑在配电布线时,常采用三相五线制供电,设有两根零线,一根是工作零线,另一根是保护零线。 二、判断题【正确的,在括号内画√;错误的,在括号内画×) 1.对于三相交变电源,相电压一定小于线电压。(√) *2.三相对称电源接成三相四线制,目的是向负载提供两种电压,在低压配电系统中,标准电压规定线电压为380V ,相电压为220V 。(√) 3.当三相负载越接近对称时,中线电流就越小。(√) 4.两根相线之间的电压叫做线电压。(√) 5.三相交流电源是由频率、有效值、相位都相同的三个单个交流电源按一定方式组合起来的。(×) 三、选择题(将正确答案的序号填写在括号内) 1.关于三相交流发电机的使用,下列说法正确的是(D )。 A .三相交流发电机发出的三相交流电,只能同时用于三相交变负载 B .三相交流发电机不可当做3个单相交流发电机 C .三相交流发电机必须是3根火线、一根中性线向外输电,任何情况下都不能少一根输电线 D .如果三相负载完全相同,三相交流发电机也可以用3根线(都是火线)向外输电 2.某三相对称电源相电压为380V ,则其线电压的最大值为(C )。 A .3802 V B .3803V C .3806V D .V 32 380 3.已知对称三相电压中,V 相电压为u v =2202 sin(314t+π)V ,则按正序U 相和W 相电压为(B )。

第三章--磁场及电磁感应

课题 ※第三章磁场及电磁感应 ※第一节磁场课型 新课授课班级授课时数 1 教学目标 1.了解磁场及电流的磁场。 2.了解安培力的大小及方向。 教学重点 1.磁场。 2.安培力的大小及方向。 教学难点 安培力的大小及方向。 学情分析 教学效果 教后记

新授课 A、新授课 ※第一节磁场 一、磁场 1.磁体 某些物体具有吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物体叫磁体。磁体 分为天然磁体和人造磁体。常见的条形磁铁、马蹄形磁铁和针形磁铁等都是人造磁体, 如下图所示。 3-2 常见人造磁铁 2.磁极 磁体两端磁性最强,磁性最强的地方叫磁 极。任何磁体都有一对磁极,一个叫南极,用S 表示;另一个叫北极,用N表示,如右图所示。 N极和S极总是成对出现并且强度相等,不存在 独立的N极和S极。 当用一个条形磁铁靠近一个悬挂的小磁针(或条形磁铁)时,如下图所示。我们发现: 当条形磁铁的N极靠近小磁针的N极时, 小磁针N极一端马上被排斥;当条形磁铁 的N极靠近小磁针的S极时,小磁针S极 一端立刻被条形磁铁吸引。说明磁极之间 存在相互作用力,同名磁极互相排斥,异 名磁极互相吸引。 3.磁场 力是物质之间相互作用的结果。用手推门,门就会转动打开,这是因为力直接作用 于门。上述实验中,磁极之间存在的作用力并没有直接作用,到底是什么神密的物质使 得它们之间有力的作用呢?这种神密的物质就是磁场。磁极之间相互作用的磁力就是通 过磁场传递的。磁场是磁体周围存在的特殊物质。磁极在自己周围的空间里产生磁场, 磁场对它里面的磁极有磁场力的作用。 4.磁场方向 把小磁针放在磁场中的任一点,可以看到小磁针受磁场力的作用。静止时它的两 极不再指向南北方向,而指向一个别的方向。在磁场中的不同点,小磁针静止时指的 方向一般并不相同。 这个现象说明,磁场是有方向性的。一般规定,在磁场中某点放一个能自由转动的 (展示磁 铁) (对照实 物形进行 说明) (演示) (讲解)

技校电工学第五版第三章单相交流电路

第三章单相交流电路 §3-1 交流电的基本概念 一、填空题(将正确答案填写在横线上) 1.正弦交流电流是指电流的大小和方向均按正弦规律变化的电流。 2.交流电的周期是指交流电每重复变化一次所需的时间,用符号T表示,其单位为秒(S);交流电的频率是指交流电1S内变化的次数,用符号f表示,其单位为赫兹(Hz),周期与频率的关系是T=1/f或f=1/T。 3.我国动力和照明用电的标准频率为50Hz,习惯上称为工频,其周期是 0.02s,角频率是314rad/s。 4.正弦交流电的三要素是周期(频率或角频率)、有效值(最大值)和初相位。 5.已知一正弦交流电流i=sin(314t-π/4)A,则该交流电的最大值为1A,有效值为0.707A,频率为50Hz,周期为0.02S,初相位为-π/4。 6.阻值为R的电阻接入2V的直流电路中,其消耗功率为P,如果把阻值为 R/2的电阻接到最大值为2V的交流电路中,它消耗的功率为P。 7.如图3-1所示正弦交流电流,其电流瞬时值表达式是: i=4sin314t(A)。 8.常用的表示正弦量的方法有解析式、波形图和相量图。 9.作相量图时,通常取逆(顺、逆)时针转动的角度为 正,同一相量图中,各正弦量的频率应相同。用相量表示正弦 交流电后,它们的加、减运算可按平行四边形法则进行。 二、判断题(正确的,在括号内画√;错误的,在括号内画×) 1.正弦交流电的三要素是指:有效值、频率和周期。(×) 2.用交流电压表测得交流电压是220V,则此交流电压的最大值是380V。(×) 3.一只额定电压为220V的白炽灯,可以接到最大值为311V的交流电源上。(√) 4.用交流电流表测得交流电的数值是平均值。(×) 三、选择题(将正确答案的序号填写在括号内) 1.交流电的周期越长,说明交流电变化得(B). A.越快B.越慢C.无法判断 *2.某一正弦交流电压的周期为0.Ols,其频率为(C)。 A.60Hz B.50Hz C.100Hz D.80Hz 3.已知一交流电流,当t=O时的值i0=1A,初相位为30°,则这个交流电的有效值为(B)。 A.0.5A B.1.414A C.1A D.2A 4.已知一个正弦交流电压波形如图3-2所示,其瞬时值表达式为(C)。 A.μ=lOsin(ωt-π/2)V B.μ=-lOsin(ωt-π/2)V C.μ

电工基础第四章磁场与电磁感应教(学)案

第四章 磁场和电磁感应 第一节 电流的磁效应 一、 磁场 1.磁场:磁体周围存在的一种特殊的物质叫磁场。磁体间的相互作用力是通过磁场传送的。磁体间的相互作用力称为磁场力,同名磁极相互排斥,异名磁极相互吸引。 2.磁场的性质:磁场具有力的性质和能量性质。 3.磁场方向:在磁场中某点放一个可自由转动的小磁针,它N 极所指的方向即为该点的磁场方向。 二、磁感线 1.磁感线 在磁场中画一系列曲线,使曲线上每一点的切线方向都与该点的磁场方向相同,这些曲线称为磁感线。如图所示。 2.特点 (1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。 (2) 磁感线是闭合曲线,在磁体外部,磁感线由N 极出来,绕到S 极;在磁体部,磁感线的方向由S 极指向N 极。 (3) 任意两条磁感线不相交。 说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。 图5-2所示为条形磁铁的磁感线的形状。 3.匀强磁场 在磁场中某一区域,若磁场的大小方向都相同,这部分磁场称为匀强磁场。匀强磁场的磁感线是一系列疏密均匀、相互平行的直线。 三、电流的磁场 1.电流的磁场 条形磁铁的磁感线 磁感线

直线电流所产生的磁场方向可用安培定则来判定,方法是:用右手握住导线,让拇指指向电流方向,四指所指的方向就是磁感线的环绕方向。 环形电流的磁场方向也可用安培定则来判定,方法是:让右手弯曲的四指和环形电流方向一致,伸直的拇指所指的方向就是导线环中心轴线上的磁感线方向。 螺线管通电后,磁场方向仍可用安培定则来判定:用右手握住螺线管,四指指向电流的方向,拇指所指的就是螺线管部的磁感线方向。 2.电流的磁效应 电流的周围存在磁场的现象称为电流的磁效应。电流的磁效应揭示了磁现象的电本质。

电工学教案

第一章直流电路 本章教学要求: 1、了解电路的组成和状态,理解有关基本物理量的定义,熟记它们的单位和符号; 2、掌握欧姆定律,熟悉电路的三种状态。 3、了解电流热效应的应用与危害,了解负载额定值的意义; 4、熟练掌握电阻串联、并联和混联电路的特点及其应用; 5、了解基尔霍夫定律。 6、会用万用表测量电压、电流和电阻。 重点: 1.电路的基本定律(欧姆定律、基尔霍夫定律); 2.电位的计算。 3、电阻串并联计算。 难点: 1.电源与负载电压方向的判别方法; 2.基尔霍夫电压方程的列写。 教学方法: 讲授法、讲练结合、启发式

电工学教案——焦作市高级技工学校 - 3 -

组织教学:查出勤,板书本次课重点、难点 知识回顾:触电急救电气消防 导入新课:同学们家里有各种电器,发光的发热的转动的带响的,都要用电,电是什么,是怎么送到用户的呢? §1-1 电路及其基本物理量 一、电路组成及作用: 电流流通的通路即电路,是为了某种需要由电工设备或电路元件按一定方式组合而成。 1、电路的作用 (1)实现电能的传输、分配与转换 (2)实现信号的传递与处理 2、电路的组成和状态 组成部分:电源、负载、导线、控制装置。 状态:通路、开路(断路)、短路 复习旧课:同学们初中学过欧姆定律,电流大小单位方向大家还记得吗? 二、电流 - 4 -

- 5 - 1、电流的形成:电荷有规则的定向移动形成电流。 2、电流的大小:是指单位时间内通过导体横截面的电荷。 即I=Q/t , 电流用符号I 表示,单位是安培(A )。【而电量Q 的单位是库仑】 3、电流的方向:正电荷移动的方向。提醒:可假定电流的方向,运算结果为负值,则电流实际方向与假定方向相反,反之相同。 4、电流的换算关系: *提出问题:电路中电流方向大小有哪些因素决定呢?谁在驱动电荷移动的呢?电动车有36伏特48伏特,意味着什么? 导入:大家见过喷泉,见过水泵工作,也知道水是往低处流的。电路中电流如何流动呢?电压起什么作用呢? 三、电压、电位和电动势 在物理课中学过,电场力可移动电荷做功,做功多少与电场中两点位置有关,就像石块儿落下3米和5米,落差不同,重力做功是不一样。同理,在电场中我们用电压描述电场力做功多少或做功的规模。 A 101kA 3=A 101mA -3=A 10mA 10A 1-6-3==μ

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

电磁感应 电磁场和电磁波(附答案)

一 填空题 1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转?180的过程中,流过环某一横截面的电量为 。 答:R BS 2。 2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B ρ 垂直于线圈平面。欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少 1s T -?。 答:1s T 18.3-?。 3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε 2ε 答:>。(也可填“大于”) 4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。已知ab 长 m 1.0,质量为kg 001.0,电阻为Ω1.0,框架电阻不计,取2s m 10?=g ,导体ab 下落的最大速度 1s m -?。

答:1s m 10-?。 5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab V V。 答:V 0.2。 6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流 t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为 。 答:t nI r ωωμsin π002。 7. 铁路的两条铁轨相距L ,火车以v 的速度前进,火车所在地处地磁场强度在竖直方向上的分量为B 。两条铁轨除与车轮接通外,彼此是绝缘的。两条铁轨的间的电势差U 为 。 答:BLv 。 8. 图中,半圆形线圈感应电动势的方向为 (填:顺时针方向或逆时针方向)。 答:逆时针方向。 9. 在一横截面积为0.2m 2的100匝圆形闭合线圈,电阻为0.2Ω。线圈处在匀强磁场中,磁场方向垂直线圈截面,其磁感应强度B 随时间t 的变化规律如图所示。线圈中感应电流的大小是 A 。

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应现象的两类情况练习题

课后巩固作业 限时:45分钟总分:100分 一、选择题(包括8小题,每小题8分,共64分) 1.下列说法中正确的是( ) A.感生电场由变化的磁场产生 B.恒定的磁场也能在周围空间产生感生电场 C.感生电场的方向也同样可以用楞次定律和右手定则来判定 D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向解析:磁场变化时在空间激发感生电场,其方向与所产生的感应电流方向相同,可由楞次定律和右手定则判断,故A、C项正确,B、D项错. 答案:AC 2.如图所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,因而在电路中有电流通过,下列说法中正确的是( ) A.因导体运动而产生的感应电动势称为动生电动势

B.动生电动势的产生与洛伦兹力有关 C.动生电动势的产生与静电力有关 D.动生电动势和感生电动势产生的原因是一样的 解析:根据动生电动势的定义可知A项正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,B项正确,C、D项错误. 答案:AB 3.如图所示,一个带正电的粒子在垂直于匀强磁场的平面做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( ) A.不变B.增加 C.减少D.以上情况都可能 解析:当磁感应强度均匀增大时,产生感生电场,根据楞次定律判断出感生电场的方向沿逆时针方向.粒子带正电,所受电场力与感生电场的方向相同,因而运动方向也相同,从而做加速运动,动能增大,B选项正确. 答案:B 4.如图所示,一金属半圆环置于匀强磁场中,当磁场突然减弱

时,则( ) A.N端电势高 B.M端电势高 C.若磁场不变,将半圆环绕MN轴旋转180°的过程中,N端电势高 D.若磁场不变,将半圆环绕MN轴旋转180°的过程中,M端电势高 解析:将半圆环补充为圆形回路,由楞次定律可判断圆环中产生的感应电动势方向在半圆环中由N指向M,即M端电势高,B正确;若磁场不变,半圆环绕MN轴旋转180°的过程中,由楞次定律可判断,半圆环中产生的感应电动势在半圆环中由N指向M,即M端电势高,D正确. 答案:BD 5.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,假定线圈产生的磁感线全部集中在铁芯.a、b、c为三个闭合金属圆环,位置如图所示.当滑动变阻器滑片左右滑动时,能产生感应电流的圆环是( )

技校电工学第五版第四章 三相交流电路

第四章 三相交流电路 §4-1 三相交流电 一、填空题(将正确答案填写在横线上) 1.三相交流电源是三个大小相等、频率相同而相位互差120°的单相交流电源、按一定方式的组合。 2.由三根线相和一根中线所组成的供电线路,称为三相四线制电网。三相电动势到达最大值的先后次序称为相序。 3.从三相电源始端引出的输电线称为相线或端线,俗称火线。通常用黄、绿和红三种颜色导线表示;从中性点引出的输电线称为中性线,简称中线,一般用黄绿相间色导线表示。 4.三相四线制电网中,线电压是指相线与相线之间的电压,相电压是指相线与中性线之间的电压,这两种电压的数值关系是U L =3U P ,相位关系是线电压 超前相电压30°。 5.目前民用建筑在配电布线时,常采用三相五线制供电,设有两根零线,一根是工作零线,另一根是保护零线。 二、判断题【正确的,在括号内画√;错误的,在括号内画×) 1.对于三相交变电源,相电压一定小于线电压。(√) *2.三相对称电源接成三相四线制,目的是向负载提供两种电压,在低压配电系统中,标准电压规定线电压为380V ,相电压为220V 。(√) 3.当三相负载越接近对称时,中线电流就越小。(√) 4.两根相线之间的电压叫做线电压。(√) 5.三相交流电源是由频率、有效值、相位都相同的三个单个交流电源按一定方式组合起来的。(×) 三、选择题(将正确答案的序号填写在括号内) 1.关于三相交流发电机的使用,下列说法正确的是(D )。 A .三相交流发电机发出的三相交流电,只能同时用于三相交变负载 B .三相交流发电机不可当做3个单相交流发电机 C .三相交流发电机必须是3根火线、一根中性线向外输电,任何情况下都不能少一根输电线 D .如果三相负载完全相同,三相交流发电机也可以用3根线(都是火线)向外输电 2.某三相对称电源相电压为380V ,则其线电压的最大值为(C )。 A .3802 V B .3803V C .3806V D .V 32 380 3.已知对称三相电压中,V 相电压为u v =2202 sin(314t+π)V ,则按正序U 相和W 相电压为(B )。

大学物理习题册---磁场与电磁感应

一 选择题 (共36分) 1. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥. (C) 先排斥后吸引. (D) 先吸引后排斥. [ ] 2. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀 外磁场B v 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) °60sin 32IB Na . (D) 0. [ ] 3. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直. (D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. [ ] 4. (本题 3分)(2404) 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移. (D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ] 5. (本题 3分)(5137) 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中 (A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同. (D) 感应电动势相同,感应电流不同. [ ]

技校电工学第五版第三章-单相交流电路

技校电工学第五版第三章-单相交流电路

第三章单相交流电路 §3-1 交流电的基本概念 一、填空题(将正确答案填写在横线上) 1.正弦交流电流是指电流的大小和方向均按正弦规律变化的电流。 2.交流电的周期是指交流电每重复变化一次所需的时间,用符号T表示,其单位为秒(S);交流电的频率是指交流电1S内变化的次数,用符号f表示,其单位为赫兹(Hz),周期与频率的关系是T=1/f或f=1/T。 3.我国动力和照明用电的标准频率为50Hz,习惯上称为工频,其周期是0.02s,角频率是314rad/s。 4.正弦交流电的三要素是周期(频率或角频率)、有效值(最大值)和初相位。 5.已知一正弦交流电流i=sin(314t-π/4)A,则该交流电的最大值为1A,有效值为0.707A,频率为50Hz,周期为0.02S,初相位为-π/4。 6.阻值为R的电阻接入2V的直流电路中,其消耗功率为P,如果把阻值为R/2的电阻接到最大值为2V的交流电路中,它消耗的功率为P。 7.如图3-1所示正弦交流电流,其电流瞬时值表达式是: i=4sin314t(A)。 8.常用的表示正弦量的方法有解析式、波形图和相量图。 9.作相量图时,通常取逆(顺、逆)时针转动的角度为正, 同一相量图中,各正弦量的频率应相同。用相量表示正弦交流 电后,它们的加、减运算可按平行四边形法则进行。 二、判断题(正确的,在括号内画√;错误的,在括号内画×) 1.正弦交流电的三要素是指:有效值、频率和周期。(×) 2.用交流电压表测得交流电压是220V,则此交流电压的最大值是380V。(×) 3.一只额定电压为220V的白炽灯,可以接到最大值为311V的交流电源上。(√) 4.用交流电流表测得交流电的数值是平均值。(×) 三、选择题(将正确答案的序号填写在括号内) 1.交流电的周期越长,说明交流电变化得(B). A.越快B.越慢C.无法判断 *2.某一正弦交流电压的周期为0.Ols,其频率为(C)。 A.60Hz B.50Hz C.100Hz D.80Hz =1A,初相位为30°,则这个交流电的3.已知一交流电流,当t=O时的值i 有效值为(B)。 A.0.5A B.1.414A C.1A D.2A 4.已知一个正弦交流电压波形如图3-2所示,其瞬时值表达式为(C)。 A.μ=lOsin(ωt-π/2)V B.μ=-lOsin(ωt-π/2)V C.μ=lOsin(ωt+π)V

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

相关主题