搜档网
当前位置:搜档网 › C语言实现文件的DES加解密实例

C语言实现文件的DES加解密实例

C语言实现文件的DES加解密实例
C语言实现文件的DES加解密实例

密码学基础课程设计指导书

《现代密码学基础》课程设计指导书 杨柳编 湖南科技大学计算机科学与工程学院 2014年12月

一、概述 本课程在简要复习数学基础知识之后,探讨了密码学研究的基本问题:通过不安全的通信媒介如何进行安全通信。也可以理解为关心任何希望限制不诚实者达到目的的问题,把度量和评价一个密码体制(协议)的安全性作为一个重点。就目前来说,密码学的研究领域已从消息加密扩大到了数字签名、消息认证、身份识别、抗欺骗协议等。无疑,在整个教学过程中非常重视密码学的基础,当然包括数学基础。并针对实际的密码体制(协议)强调设计与分析(攻击),对现代密码学的主要研究问题都进行了介绍。 对于密码学这样的课程,同学们一定要从理论、技术、应用三个方面进行学习与思考。密码体制(协议)无疑是我们的学习重点,密码体制(协议)也可以单纯地理解为计算机算法,从而有设计、分析、证明、实现的问题。实现密码体制(协议)就是我们经常讲的八个字:模型、算法、程序、测试。 二、课程设计步骤 课程设计步骤要求如下: 1.模型 从数学的角度看,解决任何问题都要建立一个数学模型,对于密码学来说更是如此。我们还可以认为,数据结构中的存储结构也是模型。于是这一部分的任务就是建立起问题的逻辑结构和存储结构,为算法设计和编码实现打下基础。 2.算法 这一部分对同学们的要求是能看懂书上的常用算法,并对其中的参数可以进行调整和设置,能实现和应用它们。 3.程序 编码实现得到程序。 4. 测试 5. 提交课程设计报告

三、课程设计报告编写要求 课程设计报告开头标明课程设计题目、设计者的班级、姓名、学号和完成日期,内容包括:模型、算法、程序、测试四个部分。 四、设计要求 可以只做第7题,不做第7题的要做第1题-第6题。 五、课程设计题目 大整数运算包的设计与实现 1.问题描述 大整数运算是现代密码学算法实现的基础,重要性不言而喻。大整数我们指的是二进制位512、1024和2048的数,一般的语言不支持。 2.基本要求 以类库头文件的形式实现。 3.实现提示 在选择了大整数的存储结构之后,主要实现以下运算: ①模加; ②模减; ③模乘; ④模整除; ⑤模取余。这五种运算模拟手算实现。 ⑥幂模:利用“平方-乘法”算法实现。 ⑦GCD:利用欧几里得算法实现。 ⑧乘法逆: 利用扩展的欧几里得算法实现。 ⑨素数判定与生成:概率性素数产生方法产生的数仅仅是伪素数,其缺点在于,

AES密码学课程设计(C语言实现)

成都信息工程学院课程设计报告 AES加密解密软件的实现 课程名称:应用密码算法程序设计 学生姓名:樊培 学生学号:2010121058 专业班级:信息对抗技术101 任课教师:陈俊 2012 年6月7日

课程设计成绩评价表

目录 1、选题背景 (4) 2、设计的目标 (4) 2.1基本目标: (4) 2.2较高目标: (5) 3、功能需求分析 (5) 4、模块划分 (6) 4.1、密钥调度 (6) 4.2、加密 (8) 4.2.1、字节代替(SubBytes) (8) 4.2.2、行移位(ShiftRows) (10) 4.2.3、列混合(MixColumn) (11) 4.2.4、轮密钥加(AddRoundKey) (13) 4.2.5、加密主函数 (14) 4.3、解密 (16) 4.3.1、逆字节替代(InvSubBytes) (16) 4.3.2、逆行移位(InvShiftRows) (17) 4.3.3、逆列混合(InvMixCloumns) (17) 4.3.4、轮密钥加(AddRoundKey) (18) 4.3.5、解密主函数 (18) 5.测试报告 (20) 5.1主界面 (20) 5.2测试键盘输入明文和密钥加密 (20) 5.3测试键盘输入密文和密钥加密 (21) 5.3测试文件输入明文和密钥加密 (22) 5.4测试文件输入密文和密钥加密 (22) 5.5软件说明 (23) 6.课程设计报告总结 (23) 7.参考文献 (24)

1、选题背景 高级加密标准(Advanced Encryption Standard,AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael 之命名之,投稿高级加密标准的甄选流程。(Rijndael的发音近于 "Rhine doll") 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael 密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。 截至2006年,针对AES唯一的成功攻击是旁道攻击 旁道攻击不攻击密码本身,而是攻击那些实作于不安全系统(会在不经意间泄漏资讯)上的加密系统。2005年4月,D.J. Bernstein公布了一种缓存时序攻击法,他以此破解了一个装载OpenSSL AES加密系统的客户服务器[6]。为了设计使该服务器公布所有的时序资讯,攻击算法使用了2亿多条筛选过的明码。有人认为[谁?],对于需要多个跳跃的国际互联网而言,这样的攻击方法并不实用[7]。 Bruce Schneier称此攻击为“好的时序攻击法”[8]。2005年10月,Eran Tromer和另外两个研究员发表了一篇论文,展示了数种针对AES的缓存时序攻击法。其中一种攻击法只需要800个写入动作,费时65毫秒,就能得到一把完整的AES密钥。但攻击者必须在执行加密的系统上拥有执行程式的权限,方能以此法破解该密码系统。 虽然高级加密标准也有不足的一面,但是,它仍是一个相对新的协议。因此,安全研究人员还没有那么多的时间对这种加密方法进行破解试验。我们可能会随时发现一种全新的攻击手段会攻破这种高级加密标准。至少在理论上存在这种可能性。 2、设计的目标 2.1基本目标: (1)在深入理解AES加密/解密算法理论的基础上,能够设计一个AES加密/解密软件系统,采用控制台模式,使用VS2010进行开发,所用语言为C语言进行编程,实现加密解密; (2)能够完成只有一个明文分组的加解密,明文和密钥是ASCII码,长度都为16个字符(也就是固定明文和密钥为128比特),输入明文和密钥,输出密文,进行加密后,能够进

1密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称对称密码实验(实习)日期得分指导教师 系计软院专业网络工程年2011 班次 1 姓名学号20111346026 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16) 三.流程图&原理图

流程图

DES原理图

华科大密码学课程设计实验报告

密码学课程设计实验报告 专业:信息安全 班级:0903 姓名:付晓帆 学号:U200915328

一、 DES 的编程实现 1.实验目的 通过实际编程掌握DES 的加、脱密及密钥生成过程,加深对DES 算法的认识。 2.实验原理 a.加密过程 DES 是一个分组密码,使用长度为56比特的密钥加密长度为64比特的明文,获得长度为64比特的密文,其加密过程: (1) 给定一个明文X ,通过一个固定的初始置换IP 置换X 的比特,获得X0,X0=IP(X)=L0R0,L0R0分别是X0的前32比特和后32比特。 (2) 然后进行16轮完全相同的运算,有如下规则,其中0

密码学课程设计

一、设计题目 随机数产生器应用系统 二、课题要求 系统功能要求: 1)模拟线性移位寄存器、线性同余发生器等产生伪随机数,并比较算法性能以及伪随机数的随机性; 2)利用该模拟随机数,应用到口令认证系统中,完成口令的生产、口令的加密保护、登陆验证等功能; 3)利用该模拟随机数,应用到密钥生成系统中,可以利用该密钥完成对称密钥的加密和解密功能。 三、系统设计和模块设计 1.总体设计思路 利用线性同余发生器(LCG)和线性反馈移位寄存器(LFSR)生成伪随机数M序列,并通过口令认证系统完成口令生成加密工作,同时完成对随机数的加密和解密功能。 2.模块设计思路 2.1原理 通过一定的算法对事先选定的随机种子(seed)做一定的运算可以得到一组人工生成的周期序列,在这组序列中以相同的概率选取其中一个数字,该数字称作伪随机数,由于所选数字并不具有完全的随机性,但是从实用的角度而言,其随机程度已足够了。这里的“伪”的含义是,由于该随机数是按照一定算法模拟产生的,

其结果是确定的,是可见的,因此并不是真正的随机数。伪随机数的选择是从随机种子开始的,所以为了保证每次得到的伪随机数都足够地“随机”,随机种子的选择就显得非常重要,如果随机种子一样,那么同一个随机数发生器产生的随机数也会一样。 2.2线性同余算法生成随机数 到目前为止,使用最为广泛的随机数产生技术是由Lehmer首先提出的称为线性同余算法,即使用下面的线性递推关系产生一个伪随机数列x1,x2,x3,… 这个算法有四个参数,分别是: a 乘数 0 ≤ a < m c 增量 0 ≤ c< m m 模数 m > 0 ≤ x0 < m x0 初始种子(秘密) 0 伪随机数序列{ xn}通过下列迭代方程得到: xn+1=(axn+c)modm 如果m、a、c和x0都是整数,那么通过这个迭代方程将产生一系列的整数,其中每个数都在0 ≤ xn < m的范围内。数值m、a和c的选择对于建立一个好的伪随机数产生器十分关键。为了形成一个很长的伪随机数序列,需要将m设置为一个很大的数。一个常用准则是将m选为几乎等于一个给定计算机所能表示的最大非负整数。因而,在一个32位计算机上,通常选择的m值是一个接近或等于231的整数。此外,为了使得随机数列不易被重现,可以使用当前时间的毫秒数作为初始种子的位置。 2.2 线性反馈移位寄存器生成随机数 LFSR是指给定前一状态的输出,将该输出的线性函数再用作输入的线性寄存器。异或运算是最常见的单比特线性函数:对寄存器的某些位进行异或操作后作为输入,再对寄存器中的各比特进行整体移位。赋给寄存器的初始值叫做“种子”,因为线性反馈移位寄存器的运算是确定性的,所以,由寄存器所生成的数据流完全决定于寄存器当时或者之前的状态。而且,由于寄存器的状态是有

杭电密码学DES密码实验报告

课程实验报告 课程密码学实验 学院通信工程学院 专业信息安全 班级14083611 学号14084125 学生姓名刘博 实验名称DES密码实验 授课教师胡丽琴

DES密码实验 一、实验要求: 1、了解分组密码的起源与涵义。 2、掌握DES密码的加解密原理。 3、用Visual C++实现DES密码程序并输出结果。 二、实验内容: 1、1949年,Shannon发表了《保密系统的通信理论》,奠定了现代密码学的基础。他还指出混淆和扩散是设计密码体制的两种基本方法。扩散指的是让明文中的每一位影响密文中的许多位,混淆指的是将密文与密钥之间的统计关系变得尽可能复杂。而分组密码的设计基础正是扩散和混淆。在分组密码中,明文序列被分成长度为n的元组,每组分别在密钥的控制下经过一系列复杂的变换,生成长度也是n的密文元组,再通过一定的方式连接成密文序列。 2、DES是美国联邦信息处理标准(FIPS)于1977年公开的分组密码算法,它的设计基于Feistel对称网络以及精心设计的S盒,在提出前已经进行了大量的密码分析,足以保证在当时计算条件下的安全性。不过,随着计算能力的飞速发展,现如今DES已经能用密钥穷举方式破解。虽然现在主流的分组密码是AES,但DES的设计原理仍有重要参考价值。在本实验中,为简便起见,就限定DES 密码的明文、密文、密钥均为64bit,具体描述如下: 明文m是64bit序列。 初始密钥K是64 bit序列(含8个奇偶校验bit)。 子密钥K1, K2…K16均是48 bit序列。 轮变换函数f(A,J):输入A(32 bit序列), J(48 bit序列),输出32 bit序列。 密文c是64 bit序列。 1)子密钥生成: 输入初始密钥,生成16轮子密钥K1, K2 (16) 初始密钥(64bit)经过置换PC-1,去掉了8个奇偶校验位,留下56 bit,接着分成两个28 bit的分组C0与D0,再分别经过一个循环左移函数LS1,得到C1与D1,连成56 bit数据,然后经过置换PC-2,输出子密钥K1,以此类推产生K2至K16。

DES算法及其程序实现

DES算法及其程序实现 一.D ES算法概述 ①DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。明文按64位进行分组,密钥长64位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。 ②DES算法的特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。 ③DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下: 二.D ES算法的编程实现 #include #include using namespace std;

const static char ip[] = { //IP置换 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; const static char fp[] = { //最终置换 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; const static char sbox[8][64] = { //s_box /* S1 */ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, /* S2 */ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, /* S3 */ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, /* S4 */ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,

密码学课程设计

信息安全技术应用实践 课程设计报告 设计题目信息的安全传递 专业名称: 班级: 学号: 姓名: 指导教师: 2014年7月

目录 一、引言 (3) 二、设计方案 (3) 1.安全需求 (3) 2.概要设计 (3) 3.详细设计 (5) 三、安全性分析........................................................................................................... 错误!未定义书签。 四、运行结果 (8) 五、总结 (8) 参考文献 (11)

一、引言 对于信息安全问题,经常出现QQ被盗号骗取财物等案件的出现。信息的安全性十分重要,尤其是一些个人的隐私。 人们也越来越重视信息的安全传递,所以设计出一个安全传递信息的系统刻不容缓。所以在此次课程设计我设计了一个信息传递系统,此系统是基于JAVA应用程序开发的,结合密码学的加密算法实现。其主要特性是安全的完成信息的传递。 二、设计方案 1.安全需求 1).服务器端每一客户口令安全存储(口令保护) 2).对所有通信内容用分组密码以计数器模式进行加密 3).对所有的通信内容用认证码(MAC)进行完整性检验 4).服务器对每个客户进行身份认证 5).服务器端抗重放攻击 2概要设计 1. (BrokerGUI) 发送代理端代替发送者进行内部操作,它设置了与服务端的共享密钥、实现共享口令的加密密钥的加密、随机密钥的加密,、文件的加密、消息的验证。 工作进程:

假设口令“sharedPwd”为代理与授权服务器共享口令 1)用“sharedPwd”生成加密密钥“K-BC”,以及MAC密钥“K-MAC” 2)随机生成一个密钥“K”;并且用“K”生成一个新的加密密钥“K-temp” 和一个新的MAC密钥“K-MAC-temp”。 3)对输入文件内容进行加密和计算MAC E[ K-temp, file contents ] || MAC[ K-MAC-temp, E[ K-temp, file contents ] ] 4)对新的密钥“K”进行加密和计算MAC E[ K-BC, K ] || MAC[ K-MAC, E[ K-BC, K ] ] 5)输出所有上述信息 2.(BrokerClient) 接收代理端应该设置自己的用户名和密码,且要发防重放的随机数。与服务器端建立通信通道,向服务器端发送加密后的信息。对方接收来自服务器的信息。 相对服务器而言,接收端的任务主要就是保证消息的安全性、保密性、完整性等。 1)用“用户口令”生成加密密钥“K-BC-user”,以及MAC密钥“K-MAC-user1”; 2)接收端提供给服务器 R ||user1 || MAC[ K-MAC-user1, R || user1 ] 这里R是一个随机数,user1为用户名 3)接收端从服务器获得 E[ K-BC-user1, K ] || MAC[ K-MAC-user1, E[ K-BC-user1, K ] ] 解密得“K”,并计算出加密密钥“K-temp”和 一个新的MAC密钥“K-MAC-temp”。 解密和验证“file contents”。 3.AuthorityServer) 服务端实现发送代理端和接收代理端之间的连接,是一个中转站。服务器接受和发送的信息都是加密的,保证了消息的安全性。 服务端实现对了发送代理端的消息认证,实现接收代理端的用户身份认证,对密钥的解密和加密,实现了防重放攻击。 工作进程:

密码学课程设计(格式)2016

南京航空航天大学 课程设计报告 课程名称密码学课程设计 学院计算机科学与技术年级2014 学生姓名陶超权学号161420330 开课时间2016 至2017 学年第一学期

一、实验目的 通过实现简单的古典密码算法,理解密码学的相关概念如明文(plaintext )、密文(ciphertext )、加密密钥(encryption key )、解密密钥(decryption key )、加密算法(encryption algorithm)、解密算法(decryption algorithm )等。 二、实验内容 1)用C\C++语言实现单表仿射(Affine )加/解密算法; 2)用C\C++语言实现统计26个英文字母出现频率的程序; 3)利用单表仿射加/解密程序对一段较长的英文文章进行加密,再对明文和密文中字母出现的频率进行统计并作对比,观察有什么规律。 仿射变换: 加密:()26mod )(21m k k m E c k +== 解密:( )26mod )(11 2k c k c D m k -==- 其中,k 1和k 2为密钥,k 1∈Z q ,k 2∈Z q *。 三、实验步骤 1)在main 函数中构建框架,函数主要分为三部分,加密,解密,计算字符出现频率; 2)加密函数encrypt(),首先需要输入两个密钥K1,k2,需要注意k2是和26互质的,所以这里用gcd()函数判断了k2与26的最大公约数,加解密都采用了文件操作,明文和密文都保存在文件中,这里加密时根据ascii 码,对大小字母分别加密,其他字符则保持不变; 3)解密函数decode(),和加密函数类似,需要注意解密要用到密钥K2的逆元,所以这里用函数inverse_k2()进行了逆元的求解,另外需要注意的是解密运算过程中可能出现数值为负数的情况,在模运算下应该将它们重新置为整数。 4)计算字符频率函数calculateCharFreq(),这里只对大小字母进行统计,不计其他字符。 源代码: ********************* main.cpp ********************** #include #include int main () { void encrypt (); void decode (); void calculateCharFreq ();

中国矿业大学 密码学课程设计

密码学 课程设计报告 张辰洋 信息安全08-3班学号:08083703 2011年6月25日

目录 实验一古典密码算法 (1) 1.1 古典密码Hill (1) 1.11 古典密码Hill概述 (1) 1.14 运行结果 (2) 1.15 密码安全性分析 (3) 1.2 古典密码 Vignere (4) 1.21 古典密码 Vignere概述 (4) 1.22 算法原理与设计思路 (4) 1.23 关键算法分析 (4) 1.24 运行结果 (5) 1.25 密码安全性分析 (6) 1.3古典密码Playfair (6) 1.31 古典密码Playfair概述 (6) 1.32 算法原理与设计思路 (6) 1.34 运行结果 (8) 1.35 密码安全性分析 (8) 1.4古典密码Vernam (8) 1.41 古典密码Vernam概述 (8) 1.42 算法原理与设计思想 (9) 1.43 关键代码分析 (9) 1.44 运行结果 (10) 1.45 安全性分析 (10) 实验二分组密码DES加密解密 (11) 2.1 分组密码DES加密解密概述 (11) 2.2 算法原理与设计思想 (11) 2.3 DES加密解密主要算法分析 (12) 2.4 运行结果 (13) 2.5 密码安全性分析 (14) 实验三公钥密码算法RSA (15) 3.1 公钥密码算法RSA概述 (15) 3.2 算法原理与设计思想 (15) 3.3 关键算法分析 (16) 3.4 运行结果 (17) 3.5 密码安全性分析 (18) 实验总结和体会 (19)

实验一 古典密码算法 1.1 古典密码Hill 1.11 古典密码Hill 概述 Hill 体制是1929年由Lester S.Hill 发明的,它实际上就是利用了我们熟 知的线性变换方法,是在Z26上进行的。Hill 体制的基本思想是将n 个明文字 母通过线性变换转化为n 个密文字母,解密时只需要做一次逆变换即可,密钥就 是变换矩阵。 1.12算法原理与设计思路 1.假设要加密的明文是由26个字母组成,其他字符省略。将每个字符与0-25 的一个数字一一对应起来。(例如:a/A —0,b/B —1,……z/Z —25)。 2.选择一个加密矩阵n n A ?,其中矩阵A 必须是可逆矩阵,例如 ??????????? ?? ???=15227132102123916 296101 571823055 117 A 3.将明文字母分别依照次序每n 个一组(如果最后一组不足n 个的话,就将其补 成n 个),依照字符与数字的对应关系得到明文矩阵ming n n len ?/。 4.通过加密矩阵A ,利用矩阵乘法得到密文矩阵mi n n len ?/= ming n n len ?/?n n A ?mod 26; 将密文矩阵的数字与字符对应起来,得到密文。 5.解密时利用加密矩阵的逆矩阵1-A 和密文,可得到明文。 6. 设明文为n n Z m m m m 2621),,(∈?+=,密文n n Z c c c c 2621),,.,(∈?=,密钥为26 Z 上的n*n 阶可逆方阵n n ij k K ?=)(,则 26mod 26 mod 1-==cK m mK c 解密:明文加密:密文 1.13 关键算法分析

密码学课程设计

中国矿业大学 密码学课程设计报告 院系: 计算机学院 专业: 信息安全 班级: 信安08-3班 姓名: 许多 学号: 08083701 指导老师: 汪楚娇 2011年6月 1绪论 密码技术是一门古老而十分有用的技术,随着计算机通信技术的迅猛发展,大量的敏感信息通过公共设施或计算机网络进行交换。特别是Internet的广泛应用、电子商务和电子政务的迅速发展,越来越多的信息需要严格的保密,如:银行账号、个人隐私等。正是这种对信息的机密性和真实性的需求,密码学才逐成为比较热门的学科。 近几年来,信息安全成为全社会的需求,信息安全保障成为国际社会关注的焦点。而密码学是信息安全的核心,应用密码学技术是实现安全系统的核心技术。应用密码学研究如何实现信息的机密性、完整性和不可否认性。随着信息系统及网络系统的爆炸性增长,形形色色的安全

威胁严重阻碍了当前的信息化进程,因此,亟待使用密码学来增强系统的安全性。而密码学课程设计正是为这方面做出了具体的实践。 经过前一段时间的学习,我们对于密码学这门课程有了更深的认识和了解,对于一般的密码学算法学会了怎么样使用。因此,通过密码学课程设计这么课程,对前一段的学习进行了检查。在设计中,我们选择做了古典密码算法,分组密码算法DES,公钥密码算法RSA。这几种经典的密码算法是我们学习密码学课程设计所必须掌握的,也是学习信息安全的基础。在接下来的部分,我将详细介绍我设计的过程以及思路。 2 古典密码算法 2.1 古典密码Hill 2.11 古典密码Hill概述 Hill体制是1929年由Lester S.Hill发明的,它实际上就是利用了我们熟知的线性变换方法,是在Z26上进行的。Hill体制的基本思想是将n个明文字母通过线性变换转化为n个密文字母,解密时只需要做一次逆变换即可,密钥就是变换矩阵。

密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称实验(实习)日期得分指导教师------ 系计算机专业软件工程年2011 班次 3 姓名唐一鑫学号24 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16)

三.流程图&原理图 流程图

DES原理图

应用密码学DES实验报告

密码学DES实验报告 DES简介: DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM 公司研制的对称密码体制加密算法。明文按64位进行分组, 密匙4位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。 DES基本原理: 其入口参数有三个:key、data、mode。key为加密解密使用的加密 解密的数据,mode为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,key使用模式时,key于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。 实验目的: 通过这次的实验,来了解和实验DES算法在加密中的应用,增强对DES算法的理解和运用,为以后进一步的密码学学习打好基础。 实验内容: 置换规则表 其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表: 58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4, 62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8, 57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3, 61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7, 即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50 (8) R0=D57D49 (7) 经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置换的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示: 40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31, 38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29, 36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27, 34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25, 子密钥Ki(48bit)的生成算法 Ki的生成算法描述图中我们可以看到:初始Key值为64位,其中6偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行等等,这里就不在赘述。。。

密码学课程设计报告(文件加密解密系统)

密码学课程设计 实验报告 实验题目:文件加密/解密系统

实验任务书

第一章、AES加密解密原理 由于DES已经无法满足高保密性的要求,美国于1997年1月开始征集新一代数据加密标准(即高级数据加密标准,Advanced Encryption Standard,AES)。2000年10月2日,正式宣布选择比利时密码学家所开发的Rijndael算法成为AES的最终算法。 AES(The Advanced Encryption Standard)是美国国家标准与技术研究所用于加密电子数据的规范。它被预期能成为人们公认的加密包括金融、电信和政府数字信息的方法。AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。 1.1AES算法设计及性能研究现状: 目前在理论上对于AES算法的研究主要集中在算法设计和性能分析上。 1.1.1算法设计主要研究算法设计遵循的原则和整体结构。研究算法设计的目的一方面为性能分析提供了一条途径,从算法的结构上分析算法性能是简单有效的,研究算法整体结构上的缺陷为提出新的密码分析方法提供新的手段。另一方面,研究AES的算法设计对研发新的分组密码提供了设计原则和参考。目前分组数据加密算法的整体结构有两大类:Festiel 网络、非平衡网络和SP网络。作为AES选择的Rijndael算法遵循分组密码的安全性和实现性原则,在整体结构上采用的是SP网络结构。 1.1.2 性能分析主要研究算法的各项特性,主要可以分为实现分析和密码分析两类。 (1)实现分析主要研究AES算法可实现的能力,即算法的实现性分析。当前实现性分析主要集中在AES的硬、软件实现的难易度和实现算法的效率等领域中。 (2)密码分析主要研究AES算法抵抗现有己知密码攻击的能力,即算法的安全性分析。除此之外,由于S-盒是AES算法的唯一非线性变换器件,S-盒的性能在很大程度上决定了AES算法的安全性。因此,出现了许多分析和研究S-盒代数性质的研究成果。在这些成果中分析了S-盒的代数特征或是表达S-盒的线性方程组,以达到求解S-盒或是研究S-盒安全性的目的。 1.2AES算法基础: 1.2.1AES算法的数学基础 定义一一个由b7b6b5b4b3b2b1b0组成的字节b可表示成系数为{0,1}的二进制多项式 b7x7+b6x6+b5x5+b4x4+b3x3+b2x2+b1x1+b0x0 定义二在GF(28)上加法的定义为二进制多项式的加法,且其系数模2。 定义三在GF(28)上乘法(用符号·表示)定义为二进制多项式的乘积模一个次数为8的不可约多项式.此不可约多项式为(十六进制为‘11B’) m(x) = x8+x4+x3+x+1 上面定义的乘法在GF(28)上满足结合律,且有一个本原元(01)。 例如: (57)16(83)16 = (x6+x4+x2+x+1)( x7+x+1) =x13+x11+x9+x8+x7+x7+x5+x3+x2+x+x6+x4+x2+x+1 = (x13+x11+x9+x8 +x6+x5+ x4+x3 +x+1) mod (x8+x4+x3+x+1) = x7+x6+1 = (C1) 16 定义四在GF(28)上的二进制多项式b(x)的乘法逆为满足下面方程式的二进制多项式a(x),记为b-1(x).

密码学基础课程设计指导书

《现代密码学基础》 课程设计指导书 杨柳编 湖南科技大学计算机科学与工程学院 2014年12月 一、概述 本课程在简要复习数学基础知识之后,探讨了密码学研究的基本问题:通过不安全的通信媒介如何进行安全通信。也可以理解为关心任何希望限制不诚实者达到目的的问题,把度量和评价一个密码体制(协议)的安全性作为一个重点。就目前来说,密码学的研究领域已从消息加密扩大到了数字签名、消息认证、身份识别、抗欺骗协议等。无疑,在整个教学过程中非常重视密码学的基础,当然包括数学基础。并针对实际的密码体制(协议)强调设计与分析(攻击),对现代密码学的主要研究问题都进行了介绍。 对于密码学这样的课程,同学们一定要从理论、技术、应用三个方面进行学习与思考。密码体制(协议)无疑是我们的学习重点,密码体制(协议)也可以单纯地理解为计算机算法,从而有设计、分析、证明、实现的问题。实现密码体制(协议)就是我们经常讲的八个字:模型、算法、程序、测试。 二、课程设计步骤 课程设计步骤要求如下: 模型 从数学的角度看,解决任何问题都要建立一个数学模型,对于密码学来说更是如此。我们还可以认为,数据结构中的存储结构也是模型。于是这一部分的任务就是建立起问题的逻辑结构和存储结构,为算法设计和编码实现打下基础。 算法 这一部分对同学们的要求是能看懂书上的常用算法,并对其中的参数可以进行调整和设置,能实现和应用它们。 程序 编码实现得到程序。 4. 测试 5. 提交课程设计报告 三、课程设计报告编写要求 课程设计报告开头标明课程设计题目、设计者的班级、姓名、学号和完成日期,内容包括:模型、算法、程序、测试四个部分。 四、设计要求 可以只做第7题,不做第7题的要做第1题-第6题。 五、课程设计题目 题目1 大整数运算包的设计与实现 1.问题描述 大整数运算是现代密码学算法实现的基础,重要性不言而喻。大整数我们指的是二进制位512、1024和2048的数,一般的语言不支持。 2.基本要求 以类库头文件的形式实现。 3.实现提示

密码学课程设计

密码学的重要性: 随着计算机网络技术和通讯技术的迅猛发展,大量的敏感信息常常通过计算机网络进行交换,在这些信息的传输与处理的过程中,如何保护信息安全使之不被非法窃取或篡改,成为人们关注的问题。因此计算机密码学就成为信息安全中的一个重要的研究领域。密码体制的分类方法有很多,常用的几种分类方法如下:根据加密与解密算法中使用密钥是否相同,将其分为对称密钥密码体制和非对称密钥密码体制。 非对称密码体制的由来 在公开的计算机网络上安全地传送和保管密钥是一个严峻的问题。正是由于对称密码学中双方都使用相同的密钥,因此无法实现数据签名和不可否认性等功能。20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、解密密钥的分离。加密密钥是公开的,解密密钥是保密的。密钥对的工作是可以任选方向的。这提供了"数字签名"的基础,如果要一个用户用自己的私人密钥对数据进行了处理,别人可以用他提供的公共密钥对数据加以处理。由于仅仅拥有者本人知道私人密钥,这种被处理过的报文就形成了一种电子签名----一种别人无法产生的文件。数字证书中包含了公共密钥信息,从而确认了拥有密钥对的用户的身份。 从对称密码到非对称密码 对称密码算法计算开销小,算法简单,加密速度快,是目前用于信息加密的主要算法。但它在进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某些情况下会非常困难,甚至无法实现。例如,某一贸易方有几个贸易关系,他就要维护几个专用密钥且没法鉴别贸易发起方或贸易最终方,因为贸易的双方的密钥相同。另外,由于对称加密系统仅能用于对数据进行加解密处理,提供数据的机密性,不能用于数字签名。因而人们迫切需要寻找新的密码体制。 在谈到加密的时候,最新的不一定是最好的。应该选择那种合适的、已经被大量公开分析和测试过的加密算法,因为在密码学领域是没有机会去尝试一个新算法的。 算法和密钥 明文M,密文C,加密E,解密D 密钥用K表示 K可以是很多数值里的任意值,密钥K的可能值的范围叫做密钥空间。加密和解密运算都使用这个密钥,即运算都依赖于密钥,并用K作为下标表示,加解密函数表达为: E(M , k)=C D(C , k)=M D(E(M , k), k)=M,如图所示。

相关主题