搜档网
当前位置:搜档网 › 定积分典型例题

定积分典型例题

定积分典型例题
定积分典型例题

定积分典型例题

例1求、

分析将这类问题转化为定积分主要就是确定被积函数与积分上下限。若对题目中被积函数难以想到,可采取如下方法:先对区间等分写出积分与,再与所求极限相比较来找出被积函数与积分上下限、

解将区间等分,则每个小区间长为,然后把得一个因子乘入与式中各项.于就是将所求极限转化为求定积分。即

==.

例2=_________.

解法1由定积分得几何意义知,等于上半圆周 ()

与轴所围成得图形得面积。故=.

解法2本题也可直接用换元法求解.令=(),则

====

例3 比较,,、

分析对于定积分得大小比较,可以先算出定积分得值再比较大小,而在无法求出积分值时则只能利用定积分得性质通过比较被积函数之间得大小来确定积分值得大小、解法1在上,有、而令,则、当时,,在上单调递增,从而,可知在上,有.又

,从而有.

解法2在上,有.由泰勒中值定理得。注意到.因此

例4 估计定积分得值、

分析要估计定积分得值, 关键在于确定被积函数在积分区间上得最大值与最小值。

解设, 因为, 令,求得驻点, 而

, , ,

,

从而

,

所以

例5设,在上连续,且,.求.

解由于在上连续,则在上有最大值与最小值。由知,。又,则

由于,故

=.

例6求,为自然数.

分析这类问题如果先求积分然后再求极限往往很困难,解决此类问题得常用方法就是利用积分中值定理与夹逼准则.

解法1利用积分中值定理

设,显然在上连续, 由积分中值定理得

,,

当时,,而,故

解法2利用积分不等式

因为

,

而,所以

例7求、

解法1由积分中值定理可知

=,、

且,

解法2因为,故有

于就是可得

又由于

因此

=.

例8设函数在上连续,在内可导,且.证明在内存在一点,使.

分析由条件与结论容易想到应用罗尔定理,只需再找出条件即可.

证明由题设在上连续,由积分中值定理,可得

,

其中.于就是由罗尔定理,存在,使得.证毕、

例9(1)若,则=___;(2)若,求=___.

分析这就是求变限函数导数得问题,利用下面得公式即可

解(1)=;

(2) 由于在被积函数中不就是积分变量,故可提到积分号外即,则可得

=。

例10 设连续,且,则=_________、

解对等式两边关于求导得

,

故,令得,所以.

例11函数得单调递减开区间为_________、

解,令得,解之得,即为所求.

例12求得极值点.

故为得极大值点,为极小值

点.

例13 已知两曲线与在点处得切线相同,其中

,,

试求该切线得方程并求极限.

分析 两曲线与在点处得切线相同,隐含条件,、 解 由已知条件得

,

且由两曲线在处切线斜率相同知

故所求切线方程为。而

.

例14 求 ;

分析 该极限属于型未定式,可用洛必达法则。 解 ===

==、

注 此处利用等价无穷小替换与多次应用洛必达法则. 例15 试求正数与,使等式成立。

分析 易见该极限属于型得未定式,可用洛必达法则. 解 ==

,

由此可知必有,得.又由

,

得、即,为所求、

例16 设,,则当时,就是得( )、

A 。等价无穷小. B.同阶但非等价得无穷小。 C.高阶无穷小. D 、低阶无穷小、 解法1 由于

. 故就是同阶但非等价得无穷小。选B 。

解法2 将展成得幂级数,再逐项积分,得到

, 则

34434

00011

11

sin (sin )

sin ()1

342342lim lim lim ()13

x x x x x x f x g x x x x

→→→-+

-+

===++. 例17 证明:若函数在区间上连续且单调增加,则有

.

证法1 令=,当时,,则 ==

=。

故单调增加。即 ,又,所以,其中。 从而

=.证毕。

证法2由于单调增加,有,从而

.

==、

.

例18计算.?

分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分。

解===、

注在使用牛顿—莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如,则就是错误得。错误得原因则就是由于被积函数在处间断且在被积区间内无界.

例19计算。

分析被积函数在积分区间上实际就是分段函数

.

例20设就是连续函数,且,则、

分析本题只需要注意到定积分就是常数(为常数)、

解因连续,必可积,从而就是常数,记,则

,且。

所以

,即,

从而,所以.

例21设,,,求, 并讨论得连续性.

分析由于就是分段函数,故对也要分段讨论.

解(1)求得表达式.

得定义域为.当时,, 因此

当时,, 因此, 则

==,

(2)在及上连续, 在处,由于

, , 、

因此, 在处连续,从而在上连续.

错误解答(1)求得表达式,

当时,

当时,有

=.

故由上可知

(2) 在及上连续,在处,由于

,, 、

因此, 在处不连续, 从而在上不连续.

错解分析上述解法虽然注意到了就是分段函数,但(1)中得解法就是错误得,因

为当时,中得积分变量得取值范围就是,就是分段函数,

才正确.

例22 计算.

分析由于积分区间关于原点对称,因此首先应考虑被积函数得奇偶性。

解=、由于就是偶函数,而就是奇函数,有,于就是

===

由定积分得几何意义可知,故

例23计算.

分析被积函数中含有及,考虑凑微分。

解===

==.

例24计算、

解==

=

==。

注此题为三角有理式积分得类型,也可用万能代换公式来求解,请读者不妨一试.

例25计算,其中。

解=,令,则

=

==、

注若定积分中得被积函数含有,一般令或.

例26 计算,其中.

解法1令,则

=.

解法2令,则

=.

又令,则有

=.

所以,

===.

注如果先计算不定积分,再利用牛顿莱布尼兹公式求解,则比较复杂,由此可瞧出定积分与不定积分得差别之一、

例27计算、

分析被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.

解设,,,则

=

.

例28计算,其中连续.

分析要求积分上限函数得导数,但被积函数中含有,因此不能直接求导,必须先换元使被积函数中不含,然后再求导.

解由于

=.

故令,当时;当时,而,所以

==,

===.

错误解答.

错解分析这里错误地使用了变限函数得求导公式,公式

中要求被积函数中不含有变限函数得自变量,而含有,因此不能直接求导,而应先换元.

例29计算、

分析被积函数中出现幂函数与三角函数乘积得情形,通常采用分部积分法、

例30计算。

分析被积函数中出现对数函数得情形,可考虑采用分部积分法。

解==

=

例31计算、

分析被积函数中出现指数函数与三角函数乘积得情形通常要多次利用分部积分法.

解由于

, (1)

, (2)

将(2)式代入(1)式可得

,

例32 计算。

分析被积函数中出现反三角函数与幂函数乘积得情形,通常用分部积分法、

.(1)

令,则

、(2)

将(2)式代入(1)式中得

例33 设在上具有二阶连续导数,且,求。

分析 被积函数中含有抽象函数得导数形式,可考虑用分部积分法求解. 解 由于

[]000

{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππ

π

π'''=-++??

.

故 .

例34(97研) 设函数连续,

,且(为常数),

求并讨论在处得连续性.

分析 求不能直接求,因为中含有得自变量,需要通过换元将

从被积函数中分离出来,然后利用积分上限函数得求导法则,求出,最后用函数连续得定义来判定在处得连续性.

解 由知,而连续,所以,. 当时,令,,;,.,则

,

从而

.

又因为,即.所以

=、

由于

=.

从而知在处连续.

注 这就是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点得连续性等知识点得综合题.而有些读者在做题过程中常会犯如下两种错误:

(1)直接求出

,

而没有利用定义去求,就得到结论不存在或无定义,从而得出在处不连续得结论.

(2)在求时,不就是去拆成两项求极限,而就是立即用洛必达法则,从而导致

又由用洛必达法则得到=,出现该错误得原因就是由于使用洛必达法则需要有条件:在得邻域内可导、但题设中仅有连续得条件,因此上面出现得就是否存在就是不能确定得、

例35(00研) 设函数在上连续,且

,.

试证在内至少存在两个不同得点使得.

分析 本题有两种证法:一就是运用罗尔定理,需要构造函数,找出 得三个零点,由已知条件易知,,为得两个零点,第三个零点得存在性就是本题得难点。另一种方法就是利用函数得单调性,用反证法证明在之间存在两个零点.

证法1 令,则有.又

,

由积分中值定理知,必有,使得

=。

故。又当,故必有.

于就是在区间上对分别应用罗尔定理,知至少存在

,,

使得

,即、

证法2 由已知条件及积分中值定理知必有

,,

则有.

若在内,仅有一个根,由知在与内异号,不妨设在内,在内,由

,,

以及在内单调减,可知:

=.

由此得出矛盾.故至少还有另一个实根,且使得

例36计算.

分析该积分就是无穷限得得反常积分,用定义来计算。

解==

==

=.

例37计算.

例38 计算、

分析该积分为无界函数得反常积分,且有两个瑕点,于就是由定义,当且仅当与均收敛时,原反常积分才就是收敛得.

解由于

==

==.

==

==。

所以。

例39计算。

分析此题为混合型反常积分,积分上限为,下限为被积函数得瑕点.

解令,则有

==,

再令,于就是可得

===

==

=

==。

例40计算.

解由于

,

可令,则当时,;当时,;当时,;当时,;故有

.

注有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形、

例41求由曲线,,,所围成得图形得面积、

分析若选为积分变量,需将图形分割成三部分去求,如图

5—1所示,此做法留给读者去完成。下面选取以为积分变量、

解选取为积分变量,其变化范围为,则面积元素为

图5-1

==.

于就是所求面积为

=。

例42抛物线把圆分成两部分,求这两部分面积之比、

解抛物线与圆得交点分别为与,如图所示5-2所示,抛物线

将圆分成两个部分,,记它们得面积分别为,,则有

图5—2

===,=,于就是

==、

例43 求心形线与圆所围公共部分得面积.

分析心形线与圆得图形如图5-3所示.由图形得对称

性,只需计算上半部分得面积即可.

解求得心形线与圆得交点为=,由图形得对称性得心

形线与圆所围公共部分得面积为

图5-3

==.

例44求曲线在区间内得一条切线,使得该切线与直线,与曲

线所围成平面图形得面积最小(如图5-4所示)。

分析要求平面图形得面积得最小值,必须先求出面积得表

达式、

解设所求切线与曲线相切于点,则切线方程为.又切线与直

图5-4

线,与曲线所围成得平面图形得面积为

==。

由于

==,

令,解得驻点.当时,而当时、故当时,取得极小值、由于驻点唯一.故当时,取得最小值、此时切线方程为:

.

例45求圆域(其中)绕轴旋转而成得立体得体积.

解如图5-5所示,选取为积分变量,得上半圆周得方程为

,

下半圆周得方程为

。图5—5

则体积元素为

==、于就是所求旋转体得体积为

====。

注可考虑选取为积分变量,请读者自行完成。

例46(03研)过坐标原点作曲线得切线,该切线与曲线及轴围成平面图形.

(1)求得面积;

(2)求绕直线旋转一周所得旋转体得体积。

分析先求出切点坐标及切线方程,再用定积分求面积,

旋转体积可用大得立体体积减去小得立体体积进行

图5-6

计算,如图5-6所示.

解(1)设切点横坐标为,则曲线在点处得切线方程就是

由该切线过原点知,从而,所以该切线得方程就是.从而得面积

(2)切线与轴及直线围成得三角形绕直线旋转所得得旋转体积为

,

曲线与轴及直线围成得图形绕直线旋转所得得旋转体积为

.

因此,所求体积为

例47有一立体以抛物线与直线所围成得图形为底,而垂直于

抛物线得轴得截面都就是等边三角形,如图5-7所示.求其体积、

解选为积分变量且、过轴上坐标为得点作垂直于轴得平面,与

立体相截得截面为等边三角形,其底边长为,得等边三角形得面积为

图5-7

==、

于就是所求体积为===。

例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩得阻力而作功,设土层对桩得阻力得大小与桩被打进地下得深度成正比(比例系数为,),汽锤第一次击打进地下(),根据设计方案,要求汽锤每次击打桩时所作得功与前一次击打时所作得功之比为常数()、问:

(1)汽锤打桩3次后,可将桩打进地下多深?

(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:表示长度单位米)

分析本题属于变力作功问题,可用定积分来求、

解(1)设第次击打后,桩被打进地下,第次击打时,汽锤所作得功为(,,)。由题设,当桩被打进地下得深度为时,土层对桩得阻力得大小为,所以

,。

由得

,即,

由得

,即。

从而汽锤击打3次后,可将桩打进地下().

(2)问题就是要求,为此先用归纳法证明:.

假设,则

.

,

从而

于就是.

若不限打击次数,汽锤至多能将桩打进地下。

例49有一等腰梯形水闸、上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受得水压力、

解建立如图5—8所示得坐标系,选取为积分变量.则过点,得直线方程为。

于就是闸门上对应小区间得窄条所承受得水压力为.故闸门所受水压力为==,其中为水密度,为重力加速度.

图5-8

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

定积分在高考中的常见题型

定积分在高考中的常见题 型 Last revision on 21 December 2020

定积分在高考中的常见题型解法 贵州省印江一中(555200) 王代鸿 定积分作为导数的后续课程,与导数运算互为逆运算,也是微积分基本概念之一,同时为大学数学分析打下基础。从高考题中来看,定积分是高考命题的一种新方向,在高考复习中要求学生了解定积分的定义,几何意义,掌握解决问题的方法。 一、利用微积分基本定理求定积分 1、微积分基本定理:一般地,如果)(x f 是区间[]b a ,上的连续函数,并且)()(x f x F =',那么?-=b a b F a F dx X f )()()(.这个结论叫做微积分基本定理(又叫牛顿-莱布尼兹公式)。 2、例题讲义 例1、计算?+e dx x x 1)21( 解:因为 x x x x 21 )ln 2+='+( 所以?+e dx x x 1)21(=22212)11(ln )(ln |ln e e e x x e =+-+=+)( 【解题关键】:计算?b a dx X f )(的关键是找到满足)()(x f x F ='的函数)(x F 。 跟踪训练:1计算?+2 0)cos (π dx x e x 二、利用定积分的几何意义求定积分。 1、定积分的几何意义 :设函数y=f(x)在 []b a ,上y=f(x)非负、连续,由直线x=a,x=b, y=0及曲线y=f(x) 所围成的曲边梯形面积 S=?b a dx X f )(

2、例题讲义: 例2、求由曲线12+=x y ,直线2y x =-及y 轴所围成的图形的面积S 等于=___________ 解: 联立方程组 (如图所示) ? ??-=+=11x y x y 解得???==34y x S =BCD OBCE AOB S S S 曲边梯形曲边梯形++? =dx x x dx x )1(11112 14210--++++????)()( = 412231023|)22 132(|)3221x x x x x +-+++( =3 8 【解题关键】:将曲边梯形进行分割成几个容易求面积的图形,再求面积 和 例3、求dx x ?+402)2-4( 的值 解:令)0()2(42≥+-=y x y 则有)0()2(42 2≥+-=y x y 及)()(04222≥=++y y x 右图所以π221)2-1402==+?A S dx x 圆( 【解题关键】:将被积函数转化为熟悉的曲线方程,利用曲线图形的特点 求其定积分。 练习:由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A. 415 B. 417 C. 2ln 21 D. 2ln 2 三、利用变换被积函数求定积分

定积分典型例题精讲

定积分典型例题 例1 求 332 1lim )n n n →∞ ++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2111 n n n =?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例2 0 ?=_________. 解法 1 由定积分的几何意义知,0 ?等于上半圆周 22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t ππ -≤≤ ), 则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较12x e dx ?,2 12x e dx ?,1 2(1)x dx +?.

分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当 0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2] 上,有1x e x >+.又 1 22 1()()f x dx f x dx =-? ?,从而有2 111 222 (1)x x x dx e dx e dx +>>???. 解法 2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得 1x e x >+.注意到12 2 1 ()()f x dx f x dx =-??.因此 2 1 11 2 22 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点 12 x = , 而 (0)1f e ==, 2 (2)f e =, 141 ()2 f e -=, 故 124 (),[0,2]e f x e x -≤≤∈,

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分的典型例题

定积分典型例题 例1 求 2 1lim n n →∞ .分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被 积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2 111n n n = ?的一个因子1n 乘入和式中各项.于是将所求 极限转化为求定积分.即 2 1lim n n →∞ = 1lim n n →∞ = 34 = ? . 例2 ? =_________. 解法1 由定积分的几何意义知, ? 等于上半圆周2 2(1) 1x y -+= (0y ≥) 与 x 轴所围成的图形的面积.故 ? =2 π. 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π-≤≤ ),则 ? = tdt =2 tdt =2 20 2 cos tdt π ? =2 π 例3 比较 12 x e dx ? ,2 1 2x e dx ?,12 (1)x dx +?.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无 法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0 x >时,()0f x '>,()f x 在(0,)+∞上单调 递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 12 2 1 ()()f x dx f x dx =-? ?,从而有 2 11 12 2 2 (1)x x x dx e dx e dx +>> ??? . 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ =++ 得1x e x >+.注意到 12 2 1 ()()f x dx f x dx =-??.因此 2 11 12 2 2 (1)x x x dx e dx e dx +>> ? ?? . 例4 估计定积分2 02 x x e dx -? 的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点12 x = , 而 0 (0)1f e ==, 2 (2)f e =, 1 4 1 ()2 f e -=, 故 1 2 4 (),[0,2]e f x e x -≤≤∈,从而2 122 4 22x x e e dx e - -≤ ≤? ,所以 2 102 4 2 22x x e e dx e - --≤ ≤-? . 例5 设 ()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (b a n g x →∞ ? . 解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又 ()0g x ≥()b a g x dx (b a g x ≤ ? ()b a g x dx .由于1n n →→,故lim (b a n g x →∞ ? = ()b a g x dx ? . 例6求sin lim n p n n x dx x +→∞ ? , ,p n 为自然数.分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用 方法是利用积分中值定理与夹逼准则.

定积分典型例题

定积分典型例题 例1求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解将区间[0,1]n 等分,则每个小区间长为1i x n ?= ,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例20 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法 2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分典型例题20例答案

定积分典型例题20例答案 例 1 求lim 丄(循2 丁2『L Vn 3) ? n n 分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函 数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来 找出被积函数与积分上下限. 解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘 n n n n n 入和式中各项?于是将所求极限转化为求定积分?即 lim A (习n 2 ^2n 2 L Vn 3) = lim -(^— L ^—) = VXdx - ? n n n nn,n ,n ° 4 2 -- ------ r 例 2 o (2x x dx = ___________ ? 2 . ________ 解法1由定积分的几何意义知, ° . 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0) 与x 轴所围成的图形的面积.故 2 ,2x x 2dx = _ ? 0 2 '1 sin 2 tcostdt = 2。 2 J sin 2t costdt =2 : cos 2 tdt^ 2 2 x 2 2 x 例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)= 分析这是求变限函数导数的问题,利用下面的公式即可 (1) f (x) =2xe x e x 可得 x f (x) = 0 f (t)dt xf (x) ? x 1 例 4 设 f(x)连续,且。f(t)dt x ,贝U f (26) = _________________ O A x 1 解 对等式0 f(t)dt x 两边关于x 求导得 3 2 f(x 1) 3x 1, 解法2本题也可直接用换元法求解.令 x 1 = Sint ( 2 t 2),则 d v(x) dx u(x) f(t)dt f[v(x)]v(x) f[u(x)]u (x) ? (2) 由于在被积函数中 x 不是积分变量,故可提到积分号外即 x f (x) x 0 f (t)dt ,则 x 2dx =

最新定积分典型例题20例答案

定积分典型例题20例答案 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分典型例题

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10 ()x dx xdx --+??=220210[][]22 x x --+=5 2. 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=? ≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=??? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

相关主题