搜档网
当前位置:搜档网 › 第四章 第4讲 万有引力定律及其应用—2021高中物理一轮复习学案

第四章 第4讲 万有引力定律及其应用—2021高中物理一轮复习学案

第四章 第4讲 万有引力定律及其应用—2021高中物理一轮复习学案
第四章 第4讲 万有引力定律及其应用—2021高中物理一轮复习学案

第4讲 万有引力定律及其应用

ZHI SHI SHU LI ZI CE GONG GU

知识梳理·自测巩固

知识点1 开普勒三定律

开普勒第一定律:所有的行星围绕太阳运动的轨道都是__椭圆__,太阳处在所有椭圆的一个__焦点__上。

开普勒第二定律:行星与太阳的连线在相等的时间内__扫过的面积__相等。

开普勒第三定律:所有行星的轨道的半长轴的三次方与__公转周期的二次方__的比值都相等,即a 3

T

2=k 。

(1)对于椭圆轨道,公式a 3

T 2=k 中的a 是半长轴,即长轴的一半,注意椭圆轨道的对称性;

(2)对于圆轨道,公式a 3

T 2=k 中的a 是轨道半径,圆周上的任何位置,万有引力等于向心

力;

(3)公式a 3

T

2=k 中的k 是一个只与中心天体的质量有关的量,与行星的质量无关。

知识点2 万有引力定律

1.内容:宇宙间的一切物体都是相互吸引的,引力的大小跟它们质量的乘积成正比,跟它们距离的平方成反比。

2.公式:F =G m 1m 2r

2,G 为万有引力常量,G =__6.67×10-

11 N·m 2/kg 2__。

3.适用条件:适用于相距很远,可以看作质点的物体之间的相互作用。质量分布均匀的球体可以认为质量集中于球心,也可用此公式计算,其中r 为两球心之间的距离。

思考:卡文迪许把他的实验说成是可以“称量地球的质量”。阅读教材,怎样通过推导公式来证明卡文迪许的实验是能够称量地球质量的。

[答案] 若忽略地球自转的影响,则mg =G Mm R 2,由此得到M =gR 2

G 。地球表面的重力加

速度g 和地球半径R 在卡文迪许之前就已知道,卡文迪许通过实验测得了引力常量G ,所以就可以算出地球的质量M 。

知识点3 人造卫星

表达式:应用万有引力定律分析天体运动的方法 G Mm r 2=ma =m v 2r =mrω2=__mr (2π

T

)2__ 应用时可根据实际情况选用适当的公式进行分析和计算。

基本特征:把天体运动看成是__匀速圆周__运动,其所需的向心力由天体间的万有引力提供。

知识点4宇宙速度

1.第一宇宙速度(环绕速度)

指人造卫星近地环绕速度,它是人造卫星在地面附近环绕地球做匀速圆周运动所必须具有的速度,是人造卫星的最小发射速度,也是最大的线速度,其大小为v1=__7.9__ km/s。

2.第二宇宙速度

在地面上发射物体,使之能够脱离地球的引力作用,成为绕太阳运动的人造行星或飞到其他行星上去所必需的最小发射速度。其大小为v2=__11.2__ km/s。

3.第三宇宙速度

在地面上发射物体,使之能够脱离太阳的引力范围,飞到太阳系以外的宇宙空间所必需的最小发射速度,其大小为v3=__16.7__ km/s。

思考:发射卫星,要有足够大的速度才行,请思考:

(1)不同星球的第一宇宙速度是否相同?如何计算第一宇宙速度?

(2)把卫星发射到更高的轨道上需要的发射速度越大还是越小?

[答案](1)不同。围绕星球表面运转卫星的线速度即为第一宇宙速度。

(2)越大。

思维诊断:

(1)当两物体间的距离趋近于0时,万有引力趋近于无穷大。(×)

(2)牛顿根据前人的研究成果得出了万有引力定律,并测量得出了万有引力常量。(×)

(3)人造地球卫星绕地球运动,其轨道平面一定过地心。(√)

(4)在地球上,若汽车的速度达到7.9k m/s,则汽车将飞离地面。(√)

(5)“嫦娥三号”探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则周期较小的轨道半径一定较小。(√)

自测巩固

ZI CE GONG GU

1.(2019·江西抚州七校联考)(多选)2018年7月是精彩天象集中上演的月份,“水星东大距”“火星冲日”“月全食”等天象先后扮靓夜空,可谓精彩纷呈。发生于北京时间7

月28日凌晨的“月全食”,相对于2018年1月31日发生的“月全食”来说,7月的全食阶段持续时间更长。已知月球绕地球的运动轨道可看成椭圆,地球始终在该椭圆轨道的一个焦点上,则相对于1月的月球而言,7月的月球( CD )

A .绕地球运动的线速度更大

B .距离地球更近

C .绕地球运动的线速度更小

D .距离地球更远

[解析] 本题考查开普勒第二定律的应用。地球绕着太阳公转,月球又绕着地球公转,发生月食的条件是地球处于月球和太阳中间,挡住了太阳光,月全食持续的时间长短和太阳、地球、月球三者的位置关系密切相关,7月这次月全食的时间比较长是由于月球和地球的距离比较远,所以7月的月球离地球更远,根据开普勒第二定律可知此时月球绕地球运动的线速度更小,故A 、B 错误,C 、D 正确。

2.在距地面不同高度的太空有许多飞行器。其中“天舟一号”距地面高度约为393 km ,哈勃望远镜距地面高度约为612 km ,“张衡一号”距地面高度约为500 km 。若它们均可视为绕地球做圆周运动,则( A )

A .“天舟一号”的加速度大于“张衡一号”的加速度

B .哈勃望远镜的线速度大于“张衡一号”的线速度

C .“天舟一号”的周期大于哈勃望远镜的周期

D .哈勃望远镜的角速度大于“张衡一号”的角速度 [解析] 根据万有引力提供飞行器的向心力,

GMm r 2=ma ,a =GM

r

2,“天舟一号”的加速度大于“张衡一号”的加速度,故A 正确;根据万有引力提供飞行器的向心力,GMm

r 2=

m v 2

r

,v =GM

r

,哈勃望远镜的线速度小于“张衡一号”的线速度,故B 错误;根据万有引力提供飞行器的向心力,GMm r 2=m 4π2

T

2r ,T =

4π2r 3

GM

,“天舟一号”的周期小于哈勃望远镜的周期,故C 错误;根据万有引力提供飞行器的向心力,GMm

r 2=mω2r ,ω=

GM

r 3

,哈勃望远镜的角速度小于“张衡一号”的角速度,故D 错误。

3.(多选)已知火星的质量约为地球质量的19,火星的半径约为地球半径的1

2。下列关于

火星探测器的说法中正确的是( CD )

A .发射速度只要大于第一宇宙速度即可

B .发射速度只有达到第三宇宙速度才可以

C .发射速度应大于第二宇宙速度而小于第三宇宙速度

D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的

23

倍 [解析] 根据三个宇宙速度的定义,可知选项A 、B 错误,选项C 正确;已知M 火=M 地

9

,R 火=R 地2,则v 火

v 地

GM 火

R 火

∶GM 地R 地

=2

3,选项D 正确。

HE XIN KAO DIAN ZHONG DIAN TU PO

核心考点·重点突破

考点一 中心天体质量和密度的估算

1.“g 、R ”法:已知天体表面的重力加速度g 和天体半径R 。 (1)由G Mm R 2=mg ,得天体质量M =gR 2

G 。

(2)天体密度ρ=M V =M 43

πR 3=3g

4πGR

2.“T 、r ”法:测出卫星绕中心天体做匀速圆周运动的半径r 和周期T 。 (1)由G Mm r 2=m 4π2T 2r ,得M =4π2r 3

GT

2。

(2)若已知天体的半径R ,则天体的密度ρ=M V =M 43

πR 3=3πr 3

GT 2R 3

(3)若卫星绕天体表面运行时,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3π

GT 2。

故只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度。

例 1 (2019·广东广州天河区二模)假定太阳系一颗质量均匀且可看成球体的小行

星,起初自转可以忽略。现若该行星自转加快,当其自转的角速度增加为ω时,该行星表面“赤道”上的物体对星球的压力减小至原来的2

3。已知引力常量G ,则该星球密度ρ为

( B )

A .9ω28πG

B .9ω24πG

C .3ω22πG

D .ω2

3πG

[解析] 本题考查行星密度的求解问题。忽略行星的自转影响时,该行星表面的物体受到的万有引力等于重力,即G Mm

r 2=mg ,自转不可忽略时,万有引力提供重力及物体随行星

自转的向心力,则自转角速度为ω时有G Mm r 2=23mg +mω2r ,行星的密度为ρ=M

43

πr 3

,解得ρ

=9ω24πG

,故选B 。 规律总结:

万有引力与重力的关系

地球对物体的万有引力F 有两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示。

(1)在赤道上:G Mm

R 2=mg 1+mω2R 。

(2)在两极上:G Mm

R

2=mg 2。

(3)在一般位置:万有引力G Mm

R

2等于重力mg 与向心力F 向的矢量和。

越靠近南北两极g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMm

R

2=mg 。

〔类题演练1〕

(2020·四川成都七中诊断)(多选)中国已经开发出了低轨道太空测试设备,目前安装在了“天宫二号”上进行测试。若该设备能将飞行器P 送到火星附近使其绕火星做匀速圆周运动。如图所示,火星相对飞行器的张角为θ,火星半径为R ,飞行器绕火星做匀速圆周运动的轨道半径为r ,已知引力常量为G 。下列说法正确的是( BD )

A .若测得飞行器周期和火星半径R ,可得到火星的质量

B .若测得飞行器周期和轨道半径r ,可得到火星的质量

C .若测得飞行器周期和张角θ,可得到火星的质量

D .若测得飞行器周期和张角θ,可得到火星的平均密度

[解析] 本题考查根据卫星环绕中心天体做圆周运动,求解中心天体的质量、密度。设火星的质量为M ,平均密度为ρ。飞行器的质量为m ,周期为T 。对于飞行器,根据万有引力提供向心力有GMm r 2=mr 4π2T 2,得M =4π2r 3

GT

2,所以若测得飞行器周期和轨道半径r ,可得到

火星的质量,选项B 正确;由几何关系得R =r sin θ

2

,所以M =

4π2? ??

??R sin θ23

GT 2

; 若测得飞行器周

期、火星半径R 和张角θ,可得到火星的质量,选项A 、C 错误;火星的平均密度ρ=M

43πR 3=

3πGT 2·sin 3

θ

2

,知测得飞行器周期和张角,可得到火星的平均密度,选项D 正确。

考点二 人造卫星问题

1.人造卫星的运动规律

(1)一种模型:无论自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看作质点,围绕中心天体(视为静止)做匀速圆周运动。

(2)两条思路

①万有引力提供向心力,即G Mm

r

2=ma 。

②天体对其表面的物体的万有引力近似等于重力,即

GMm

R 2

=mg 或gR 2=GM (R 、g 分别是天体的半径、表面重力加速度),公式gR 2=GM 应用广泛,称“黄金代换”。

(3)四个关系:人造卫星的加速度、线速度、角速度、周期与轨道半径的关系。

GMm

r 2

=??????

???

?

ma →a =GM r 2→a ∝1r

2

m v 2

r →v =GM r →v ∝1r mω2

r →ω=GM

r

3

→ω∝

1r 3m 4π

2

T 2

r →T =4π2r

3

GM

→T ∝r 3

越高越慢 2.地球同步卫星的特点

(1)轨道平面一定:轨道平面和赤道平面重合。

(2)周期一定:与地球自转周期相同,即T =24h =86 400 s 。 (3)角速度一定:与地球自转的角速度相同。

(4)高度一定:据G Mm r 2=m 4π2

T 2r 得r =3GMT 24π2

=4.23×104 km ,卫星离地面高度h =r -

R ≈6R (为恒量)。

(5)绕行方向一定:与地球自转的方向一致。 3.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。

(3)两种卫星的轨道平面一定通过地球的球心。

例2 (2019·重庆一中月考)如图所示,卫星A 、B 绕地球做匀速圆周运动,用T 、a 、

v 、S 分别表示卫星的周期、加速度、速度、与地心连线在单位时间内扫过的面积。下列关系式正确的是( A )

A .T A >T

B B .a A >a B

C .v A >v B

D .S A =S B

[解析] 本题考查开普勒第二定律与万有引力定律的应用。根据万有引力提供向心力可得GMm r 2=m v 2r =m ·4π2r

T

2=ma ,可知线速度为v =

GM

r

,周期为T =4π2r 3

GM

,加速度为a =GM

r 2

,A 的轨道半径较大,则v A T B ,a A

〔类题演练2〕

(2019·四川泸州一诊)2018年6月14日1时06分,探月工程“嫦娥四号”任务“鹊桥”中继星成功实施轨道捕获控制,进入环绕距月球约6.5万千米的地月拉格朗日L2点的Halo 轨道,成为世界首颗运行在地月L2点Halo 轨道的卫星,地月L2是个“有趣”的位置,在这里中继星绕地球转动的周期与月球绕地球转动的周期相同,下列说法正确的是( D )

A .“鹊桥”中继星绕地球转动的角速度比月球绕地球转动的角速度大

B .“鹊桥”中继星与地心的连线及月球与地心的连线在相同时间内分别扫过的面积相等

C .“鹊桥”中继星绕地球转动的向心加速度比月球绕地球转动的向心加速度小

D .“鹊桥”中继星绕地球转动的向心力由地球和月球的万有引力共同提供

[解析] 本题考查卫星运行规律。根据题意知“鹊桥”中继星绕地球转动的周期与月球

绕地球转动的周期相同,根据ω=2π

T 知“鹊桥”中继星绕地球转动的角速度与月球绕地球转

动的角速度相等,故A 错误;“鹊桥”中继星与地心的连线及月球与地心的连线在相同时间内分别转过的角度相等,但是因“鹊桥”中继星轨道半径大于月球轨道半径,可知在相同时间内分别扫过的面积不相等,故B 错误;“鹊桥”中继星的轨道半径比月球绕地球的轨道半径大,根据a =ω2r 知,ω相等时,“鹊桥”中继星绕地球转动的向心加速度比月球绕地球转动的向心加速度大,故C 错误;“鹊桥”中继星在地月连线延长线上,同时受地球及月球的万有引力,则绕地球转动的向心力由地球和月球的万有引力共同提供,故D 正确。

JIE DUAN PEI YOU CHA QUE BU LOU

阶段培优·查缺补漏 多星运动模型

(一)双星模型

绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示,双星系统模型有以下特点:

(1)各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2

=m 1ω21r 1,Gm 1m 2

L 2

=m 2ω2

2r 2

(2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2 (3)两颗星的半径与它们之间的距离关系为r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2

r 1

(5)双星的运动周期T =2π

L 3

G (m 1+m 2)

(6)双星的总质量公式m 1+m 2=4π2L 3

GT 2

例3 (2019·吉林省实验中学八模)某双星系统由a 、b 两颗星体组成,这两颗星绕

它们连线上的某一点做匀速圆周运动。这两颗星之间的距离为L ,a 星绕它们连线上的某点每秒转动n 圈,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的轨道半径),引力常量为G 。则( A )

A .a 、b 两颗星的质量之和为4π2n 2L 3

G

B .a 、b 两颗星的质量之比为L +Δr

L -Δr

C .b 星的角速度为2πn (L +Δr )

L -Δr

D .a 、b 两颗星的轨道半径之比为L

L -Δr

[解析] 本题考查双星问题。设a 、b 两颗星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,由题意r 1>r 2,则r 1+r 2=L ,r 1-r 2=Δr ,解得r 1=12(L +Δr ),r 2=12(L -Δr ),则r 1r 2=L +Δr

L -Δr ,

选项D 错误;两星围绕它们连线上的某点运动的角速度相同,a 星绕它们连线上的某点每秒转动n 圈,角速度为ω1=2πn ,则b 星的角速度也为2πn ,选项C 错误;根据万有引力提供向心力可知Gm 1m 2L 2=m 1r 1ω2=m 2r 2ω2

,整理可得G (m 1+m 2)L 2=(r 1+r 2)4π2

T 2=4π2n 2L ,解得质量

之和m 1+m 2=4π2n 2L 3G ,选项A 正确;由Gm 1m 2

L 2=m 1ω2r 1=m 2ω2r 2,可得a 、b 两颗星的质量

之比为m 1m 2=r 2r 1=L -Δr

L +Δr

,选项B 错误。

(二)三星模型 1.直线模型

如图所示,三颗质量相等的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动。这三颗行星始终位于同一直线上。两行星转动的方向相同,角速度、线速度的大小相等。运转的行星由其余两颗行星的引力提供向心力:Gm 2r 2+Gm 2

(2r )2

=ma 。

2.三角形模型

如图所示,三颗质量相等的行星位于一正三角形的顶点处,都绕三角形的中心做圆周运动。三颗行星转动的方向相同,角速度、线速度的大小相等。每颗行星运行所需向心力都由其余两颗行星的万有引力的合力来提供:Gm 2

L

2×2×cos 30°=ma

其中L =2r cos 30°。

例4 (2019·甘肃静宁一中二模)(多选)三颗质量均为M 的星球分别(可视为质点)位

于边长为L 的等边三角形的三个顶点上。如图所示,如果他们中的每一颗都在相互的引力作用下沿等边三角形的外接圆轨道运行,引力常量为G ,下列说法正确的是( BD )

A .其中一个星球受到另外两个星球的万有引力的合力大小为3GM 2

2L 2

B .其中一个星球受到另外两个星球的万有引力的合力指向圆心O

C .它们运行的轨道半径为

32

L D .它们运行的线速度大小为

GM

L

[解析] 本题考查多星系统问题。根据万有引力定律,任意两个星体间的引力大小为F =G M 2L 2,每个星球所受的合力为F 合=2F cos 30°=3GM 2L 2,根据几何关系可知,合力的方向

指向圆心O ,故A 错误,B 正确;由几何知识可知星球做圆周运动的轨道半径R =L 2cos 30°=

3

3

L ,故C 错误;根据万有引力的合力提供向心力可知,F 合=M v 2

R

,可得v =F 合R

M

=3GM 2L 2·3

3

L M

GM

L

,故D 正确。

2 NIAN GAO KAO MO NI XUN LIAN

2年高考·模拟训练

1.(2019·全国卷Ⅰ,21)(多选)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示。假设两星球均为质量均匀分布的球体。已知星球M 的半径是星球N 的3倍,则( AC )

A .M 与N 的密度相等

B .Q 的质量是P 的3倍

C .Q 下落过程中的最大动能是P 的4倍

D .Q 下落过程中弹簧的最大压缩量是P 的4倍

[解析] B 错:如图,当x =0时,对P :m P g M =m P ·3a 0,即星球M 表面的重力加速度g M =3a 0;对Q :m Q g N =m Q a 0,即星球N 表面的重力加速度g N =a 0。

当P 、Q 的加速度a =0时,对P 有m P g M =kx 0,则m P =kx 0

3a 0

;对Q 有m Q g N =k ·2x 0,则

m Q =2kx 0

a 0

,即m Q =6m P 。

A 对:根据mg =G Mm R 2得,星球质量M =gR 2G ,则星球的密度ρ=M 43πR 3=3g

4πGR

,所以M 、

N 的密度之比ρM ρN =g M g N ·R N R M =31×1

3

=1。

C 对:当P 、Q 的加速度为零时,P 、Q 的动能最大,机械能守恒,对P 有:m P g M x 0=E p 弹+E kP ,

即E kP =3m P a 0x 0-E p 弹;

对Q 有:m Q g N ·2x 0=4E p 弹+E kQ , 即E kQ =2m Q a 0x 0-4E p 弹=12m P a 0x 0-4E p 弹 =4×(3m P a 0x 0-E p 弹)=4E kP 。

D 错:P 、Q 在弹簧压缩到最短时,其位置关于加速度a =0时的位置对称,故P 下落过程中的最大压缩量为2x 0,Q 为4x 0。

2.(2019·全国卷Ⅱ,14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆。在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图象是( D )

A B C D

[解析] 由万有引力公式F =G Mm

(R +h )2

可知,探测器与地球表面距离h 越大,F 越小,

排除B 、C ;而F 与h 不是一次函数关系,排除A 。

3.(2019·全国卷Ⅲ,15)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们

的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。已知它们的轨道半径R 金

A .a 金>a 地>a 火

B .a 火>a 地>a 金

C .v 地>v 火>v 金

D .v 火>v 地>v 金

[解析] 行星绕太阳做圆周运动时,由牛顿第二定律和圆周运动知识: 由G mM R 2=ma 得向心加速度a =GM R 2,

由G mM

R 2=m v 2R 得速度v =

GM

R

由于R 金<R 地<R 火

所以a 金>a 地>a 火,v 金>v 地>v 火,选项A 正确。

4.(2019·北京,18)2019年5月17日,我国成功发射第45颗

北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星( D ) A .入轨后可以位于北京正上方 B .入轨后的速度大于第一宇宙速度 C .发射速度大于第二宇宙速度 D .若发射到近地圆轨道所需能量较少

[解析] A 错: 同步卫星只能位于赤道正上方。

B 错:由GMm r 2=m v 2

r 知,卫星的轨道半径越大,环绕速度越小,因此入轨后的速度小于

第一宇宙速度(近地卫星的速度)。

C 错:同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度。

D 对:若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少。

5.(2019·天津,1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。已知月球的质量为M 、半径为R ,探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( A )

A .周期为 4π2r 3

GM B .动能为GMm

2R

C .角速度为

Gm r 3

D .向心加速度为GM

R

2

[解析] A 对:探测器绕月运动由万有引力提供向心力,对探测器,由牛顿第二定律得,G Mm

r

2=m ????2πT 2r ,解得周期T = 4π2r 3

GM

B 错:由G Mm r 2=m v 2r 知,动能E k =12m v 2=GMm

2r 。

C 错:由G Mm

r

2=mrω2得,角速度ω=

GM

r 3

。 D 错:由G Mm r 2=ma 得,向心加速度a =GM

r 2。

高中物理必修一第一章第一节-课件

第一章运动的描述 第一课时质点参考系和坐标系 一情景导入 “满眼风波多闪烁,看山恰似走来迎。仔细看山山不动,是船行。诗人为什么会有“山迎”“船行”这两种不同的感觉呢?为了生活和梦想,我们的祖先从远古就开始探索自然运动的奥秘.经过长期的探索,人们逐渐建立了描述运动的概念,并不断寻求探索运动问题的方法,揭开了一个又一个与运动有关的奥秘. 二课标点击 1.知道质点的概念及条件 2.知道参考系的概念及其作用,体验不同参考系中运动的相对性 3.掌握坐标系的简单应用. 三课前导读 要点1 质点 1.在某些情况下,我们可以忽略物体的大小和形状,而突出“物质具有质量”这个要素,把它简化为一个有质量的物质点,称为质点. 2.一个物体能否看作质点是由问题的性质决定的. 3.质点是一种科学抽象,是在研究物体运动时,抓住主要因素,忽略次要因素度,对实际物体简化,是一个理想化模型. 我们总这样描述物体的运动,例如“他向我们走来”“车急驰而去”“月亮绕着地球转,地球绕着太阳转”.在这些描述中,我们并没有考虑“他”的高矮胖瘦、“车”的型号款式,我们也没有特意去想“月亮”或“地球”是个庞然大物,这样合理吗? 1.将物体看成质点的条件. (1)当物体上各部分的运动情况都相同时,物体上任何一点的运动情况都能反映物体的运动,物体可看成质点. (2)当物体的大小、形状对所研究的问题无影响或可以忽略不计的情况下,物体可看成质点,如研究地球绕太阳公转时,地球大小相对太阳到地球的距离可忽略不计,故可视为质点.(3)只研究物体的平动时,或物体虽转动但不研究转动及转动的各个部分时,可以把物体看作质点. 2.质点与物体的异同. 质点是一个理想模型,没有体积,没有大小,也不是几何上的“点”,是一个与物体质量相等的,不占空间的抽象模型. 特别提示:能否把物体看作质点是由问题的性质决定的,而不是由物体的大小决定的.同一物体在不同的问题中,有时可看作质点,有时则不能. 1.下列关于质点的概念正确的是() A.只有质量很小的物体才可以看成质点 B.只要物体运动得不是很快,就一定可以把物体看成质点 C.质点是把物体抽象成有质量而没有大小的点 D.旋转的物体,肯定不能看成质点

高一物理必修一第二章测试题及答案

一、选择题 1.物体做自由落体运动时,某物理量随时间的变化关系如图所示,由图可知,纵轴表示的这个物理量可能是( ) A .位移 B .速度 C .加速度 D .路程 2.物体做匀变速直线运动,初速度为10 m/s ,经过2 s 后,末速度大小仍为10 m/s ,方向与初速度方向相反,则在这2 s 内,物体的加速度和平均速度分别为( ) A .加速度为0;平均速度为10 m/s ,与初速度同向 B .加速度大小为10 m/s 2,与初速度同向;平均速度为0 C .加速度大小为10 m/s 2,与初速度反向;平均速度为0 D .加速度大小为10 m/s 2,平均速度为10 m/s ,二者都与初速度反向 3.物体做匀加速直线运动,其加速度的大小为2 m/s 2,那么,在任一秒内( ) A .物体的加速度一定等于物体速度的2倍 B .物体的初速度一定比前一秒的末速度大2 m/s C .物体的末速度一定比初速度大2 m/s D .物体的末速度一定比前一秒的初速度大2 m/s 4.以v 0 =12 m/s 的速度匀速行驶的汽车,突然刹车,刹车过程中汽车以a =-6 m/s 2的加速度继续前进,则刹车后( ) A .3 s 内的位移是12 m B .3 s 内的位移是9 m C .1 s 末速度的大小是6 m/s D .3 s 末速度的大小是6 m/s 5.一个物体以v 0 = 16 m/s 的初速度冲上一光滑斜面,加速度的大小为8 m/s 2,冲上最高点之后,又以相同的加速度往回运动。则( ) A .1 s 末的速度大小为8 m/s B .3 s 末的速度为零 C .2 s 内的位移大小是16 m D .3 s 内的位移大小是12 m 6.从地面上竖直向上抛出一物体,物体匀减速上升到最高点后,再以与上升阶段一样的加速度匀加速落回地面。图中可大致表示这一运动过程的速度图象是( ) 7.物体做初速度 为零的匀加速直线运动,第1 s 内的位移大小为5 m ,则该物体( ) A .3 s 内位移大小为45 m B .第3 s 内位移大小为25 m C .1 s 末速度的大小为5 m/s D .3 s 末速度的大小为30 m/s

2021万有引力定律人教版高中物理必修二学案

导学案6-3 万有引力定律(1课时) 班别:姓名学号 青春寄语:停课不停学,要求我们更加严格的要求自己。自律则能自 强! 【核心素养】 1、理解万有引力定律的内容及数学表达式,在简单情景中能计算万有引力。 2、知道牛顿发现万有引力定律的意义。 3、认识万有引力定律的普遍性。(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力)。 【教学重点难点】】万有引力定律的内容及数学表达式 【预习案】 1、万有引力定律:自然界中________两个物体之间都相互吸引,引力的方向在它们的_____________上,引力的大小与物体的质量M和m的_______________成____比,跟两物体之间的____________的________次方成____比。 2、引力常量G=_________________Nm2/kg2 【探究案】 探究一:万有引力定律 1、公式:F=_____________ 其中,M和m指两物体的_______________,r是指两物体间的________。

2、万有引力定律的适用范围:适用于___________两个物体 3、通常,万有引力常量G=_____________________Nm2/kg2, 由英国物理学家__________测出。 4、公式2r Mm G F =万 的适用条件: ①适用于两_________间引力大小的计算。 ②两物体是质量均匀分布的球体,式中的r 是指两球心间距离。 ③一个质量分布均匀的球体与球外一个质点之间,式中的r 是指质点与球心的距离。 例1:(多选)对于质量为M 和m 的两个物体间的万有引力的表达式2r Mm G F =万,下列说法正确的是( ) A 、公式中的G 是引力常量,它是由实验得出的,而不是人为规定的 B 、当两物体间的距离r 趋于零时,万有引力趋于无穷大 C 、M 和m 所受引力大小总是相等的 D 、两个物体间的引力总是大小相等,方向相反的,是一对平衡力 【训练案】 1、地球质量是月球质量的81倍,若地球吸引月球的力的大小为F ,则月球吸引地球的力的大小为( ) R M h m

高一物理必修一第二章-测试题及答案2

高一物理必修一第二章_测试题 一、选择题 1.物体做自由落体运动时,某物理量随时间的变化关系如图所示,由图可知,纵轴表示的这个物理量可能是( ) A .位移 B .速度 C .加速度 D .路程 2.物体做匀变速直线运动,初速度为10 m/s ,经过2 s 后,末速度大小仍为10 m/s ,方向与初速度方向相反,则在这2 s 内,物体的加速度和平均速度分别为( ) A .加速度为0;平均速度为10 m/s ,与初速度同向 B .加速度大小为10 m/s 2 ,与初速度同向;平均速度为0 C .加速度大小为10 m/s 2,与初速度反向;平均速度为0 D .加速度大小为10 m/s 2,平均速度为10 m/s ,二者都与初速度反向 3.物体做匀加速直线运动,其加速度的大小为2 m/s 2 ,那么,在任一秒内( ) A .物体的加速度一定等于物体速度的2倍 B .物体的初速度一定比前一秒的末速度大2 m/s C .物体的末速度一定比初速度大2 m/s D .物体的末速度一定比前一秒的初速度大2 m/s 4.以v 0 =12 m/s 的速度匀速行驶的汽车,突然刹车,刹车过程中汽车以a =-6 m/s 2 的加速度继续前进,则刹车后( ) A .3 s 内的位移是12 m B .3 s 内的位移是9 m C .1 s 末速度的大小是6 m/s D .3 s 末速度的大小是6 m/s 5.一个物体以v 0 = 16 m/s 的初速度冲上一光滑斜面,加速度的大小为8 m/s 2 ,冲上最高点之后,又以相同的加速度往回运动。则( ) A .1 s 末的速度大小为8 m/s B .3 s 末的速度为零 C .2 s 内的位移大小是16 m D .3 s 内的位移大小是12 m 6.从地面上竖直向上抛出一物体,物体匀减速上升到最高点后,再以与上升阶段一样的加速度匀加速落回地面。图中可大致表示这一运动过程的速度图象是( ) 7.物体做初速度 为零的匀加速直线运动,第1 s 内的位移大小为5 m ,则该物体( ) A .3 s 内位移大小为45 m B .第3 s 内位移大小为25 m C .1 s 末速度的大小为5 m/s D .3 s 末速度的大小为30 m/s

6.3万有引力定律学案

6.3万有引力定律学案 一、月—地检验 月球的轨道半径约为地球半径的倍,月球轨道上一个物体受到的引力是在地面附近受到引力的,这说明月球对物体的引力与半径之间也遵从“”的规律。 二、万有引力定律 1.内容:自然界中两个物体都相互吸引,引力的方向在上,引力的大小与成正比、与它们之间的距离的成反比。 2.表达式:。 3.适用条件:万有引力公式只适合于两个可以看做的物体,即物体(原子)的自身半径相对两者的间距可以忽略时适用。 4.理解:“两物体的距离”—如果两个物体可以看作质点,这个距离就是的距离,如果是地球、月球等球体,这个距离应该是的距离。 三、引力常量 英国物理学家在实验室里通过几个之间万有引力的测量,比较准确地测得了G的数值,通常取G= 。 四、万有引力的作用 1.地球上:如图所示,地球上的物体所受的万有引力指向 地心,它分解为两个力:物体的重力G=mg和物体随地球 的自转做圆周运动所需的向心力F向=mω2r,r指物体所在 纬线圈的半径。 当物体在赤道上,F、G和F向三个力方向相同,则有 + =,随着纬度的升高,纬线圈的半径越越小, Fω mg r m2 向心力越越小,重力越越大,重力加速度g越越大。 当物体在两极时,F向=0,此时F=mg,重力呈现最大 值,g也最大。 2.在空中围绕地球公转的卫星:地球的自转对卫星不起作 用,所以F用充当公转的向心力,物体处于失重状态。 五、应用 1.请估算同桌两人相距1m时的万有引力,并说明为什么当两个人接近时他们不会吸在一起? 2.两个物体的质量分别是m1和m2,当它们相距为r时,它们之间的引力是F=__________。 (1)若把m1改为2m1,其他条件不变,则引力=______F。 (2)若把m1改为2m1,m2改为3m2,r不变,则引力= F。 (3)若把r改为2r,其他条件不变,则引力=_____ F。 (4)若把m l改为3m1,m2改为m2/2,r改为r/2,则引力=_________F 3.假如月亮绕地球公转可看做是匀速圆周运动,已知地球的质量为M,月亮到地球中心的距

人教版高中物理必修一第一章测试题(含答案)

1.下列几个速度中,指瞬时速度的是() A.上海磁悬浮列车行驶过程中的速度为400 km/h B.乒乓球运动员陈玘扣出的乒乓球速度达23 m/s C.子弹在枪膛内的速度为400 m/s D.飞机起飞时的速度为300 m/s 2.在公路上常有交通管理部门设置的如图2-3-8所示的限速标志,这是告诫驾驶员在这一路段驾驶车辆时() 图2-3-8 A.平均速度的大小不得超过这一规定数值 B.瞬时速度的大小不得超过这一规定数值 C.必须以这一规定速度行驶 D.汽车上的速度计指示值,有时还是可以超过这一规定值的 3.短跑运动员在100 m比赛中,以8 m/s的速度迅速从起点冲出,到50 m处的速度是9 m/s,10 s末到达终点的速度是10.2 m/s,则运动员在全程中的平均速度是() 图2-3-9 A.9 m/s B.10.2 m/s C.10 m/s D.9.1 m/s 4.2012伦敦奥运会上,中国游泳名将孙杨以3分40秒14的成绩,夺得男子400米自由泳冠军,并打破奥运会记录,改写了中国男子泳坛无金的历史,高科技记录仪测得他冲刺终点的速度为3.90 m/s,则他在400米运动过程中的平均速率约为() 图2-3-6 A.2.10 m/s B.3.90 m/s C.1.67 m/s D.1.82 m/s 5.(2013·临高一中高一检测)晓宇和小芳同学从网上找到几幅照片,根据照片所示情景

请判断下列说法正确的是() 大炮水平发射炮弹轿车紧急刹车 高速行驶的磁悬浮列车13秒15!刘翔出人 意料完成复出之战 图2-3-10 A.当点燃火药炮弹还没发生运动瞬间,炮弹的加速度一定为零 B.轿车紧急刹车时速度变化很快,所以加速度很大 C.高速行驶的磁悬浮列车的加速度可能为零 D.根据图中数据可求出110 m栏比赛中任意时刻的速度 6.一物体自原点开始在x轴上运动,其初速度v0>0,加速度a>0,当加速度不断减小直至为零时,物体的() A.速度不断减小,位移不断减小 B.速度不断减小,位移不断增大 C.速度不断增大,当a=0时,速度达到最大,位移不断增大 D.速度不断增大,当a=0时,位移达到最大值 7.一个物体以恒定加速度做变速直线运动,某时刻速度的大小为4 m/s,1 s后的速度大小为10 m/s,在这1 s内该物体的() A.速度变化的大小可能小于4 m/s B.速度变化的大小可能大于10 m/s C.加速度的大小可能小于4 m/s2 D.加速度的大小可能大于10 m/s2 8.(2012·郑州高一检测)物体做加速直线运动,已知第1 s末的速度大小是6 m/s,第3 s 末的速度大小是10 m/s,则该物体的加速度可能是() A.2 m/s2B.4 m/s2 C.-4 m/s2D.-2 m/s2 9.(2013·福州三中高一检测)小明同学在学习了DIS实验后,设计了一个测物体瞬时速度的实验,其装置如图2-3-11所示.在小车上固定挡光片,使挡光片的前端与车头齐平,将光电门传感器固定在轨道侧面,垫高轨道的一端.小明同学将小车从该端同一位置由静止释放,获得了如下几组实验数据.

高一物理必修一第二章习题及答案

第二章匀变速直线运动的研究 一、选择题 1.物体做自由落体运动时,某物理量随时间的变化关系如图所示,由图可知,纵轴表 A.位移B.速度 C.加速度D.路程 2.物体做匀加速直线运动,其加速度的大小为2 m/s2,那么,在任1秒内( ) A.物体的加速度一定等于物体速度的2倍 B.物体的初速度一定比前1秒的末速度大2 m/s C.物体的末速度一定比初速度大2 m/s D.物体的末速度一定比前1秒的初速度大2 m/s 3.物体做匀变速直线运动,初速度为10 m/s,经过2 s后,末速度大小仍为10 m/s,方 向与初速度方向相反,则在这2 s内,物体的加速度和平均速度分别为( ) A.加速度为0;平均速度为10 m/s,与初速度同向 B.加速度大小为10 m/s2,与初速度同向;平均速度为0 C.加速度大小为10 m/s2,与初速度反向;平均速度为0 D.加速度大小为10 m/s2,平均速度为10 m/s,二者都与初速度反向 4.以v0 =12 m/s的速度匀速行驶的汽车,突然刹车,刹车过程中汽车以a =-6 m/s2的加速度继续前进,则刹车后( ) A.3 s内的位移是12 m B.3 s内的位移是9 m C.1 s末速度的大小是6 m/s D.3 s末速度的大小是6 m/s 5.一个物体以v0 = 16 m/s的初速度冲上一光滑斜面,加速度的大小为8 m/s2,冲上最 高点之后,又以相同的加速度往回运动。则( ) A.1 s末的速度大小为8 m/s B.3 s末的速度为零 C.2 s内的位移大小是16 m D.3 s内的位移大小是12 m

6.从地面竖直向上抛出的物体,其匀减速上升到最高点后,再以与上升阶段一样的加速度匀加速落回地面。图中可大致表示这一运动过程的速度图象是( ) 7.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v 0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知在刹车过程中所行的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为( ) A .s B .2s C .3s D .4s 8.物体做直线运动,速度—时间图象如图所示。由图象可以判断( ) A .第1 s 末物体相对于出发点的位移改变方向 B .第1 s 末物体的速度改变方向 C .前2 s 物体的位移之和为零 D .第3 s 末和第5 s 末物体的位置相同 9.一辆沿笔直公路匀加速行驶的汽车,经过路旁两根相距50 m 的电线杆共用5 s 时间,它经过第二根电线杆时的速度为15 m/s ,则经过第1根电线杆时的速度为( ) A .2 m/s B .10 m/s C .2.5 m/s D .5 m/s 10.某物体由静止开始做加速度为a 1的匀加速直线运动,运动了t 1时间后改为加速度为a 2的匀减速直线运动,经过t 2时间后停下。则物体在全部时间内的平均速度为( ) A . 2 1 1t a B . 2 2 2t a C .2 + 2211t a t a D .) +(2 + 212 2 2211t t t a t a

高一物理新人教版必修二学案-6.3-万有引力定律

6.3 万有引力定律 学案(人教版必修2) 1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍, 所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体 在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表 示即________________.其中G 叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r 是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是( ) A .不能看做质点的两物体间不存在相互作用的引力 B .只有能看做质点的两物体间的引力才能用F =Gm 1m 2 r 2计算 C .由F =Gm 1m 2 r 2知,两物体间距离r 减小时,它们之间的引力增大 D .万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11 N ·m 2/kg 2 5.对于公式F =G m 1m 2 r 2理解正确的是( ) A .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力 C .当r 趋近于零时,F 趋向无穷大 D .当r 趋近于零时,公式不适用 6.要使两物体间的万有引力减小到原来的1 4 ,下列办法不可采用的是( ) A .使物体的质量各减小一半,距离不变 B .使其中一个物体的质量减小到原来的1 4 ,距离不变 C .使两物体间的距离增为原来的2倍,质量不变 D .使两物体间的距离和质量都减为原来的1 4 【概念规律练】 知识点一 万有引力定律的理解 1.关于万有引力定律的适用范围,下列说法中正确的是( ) A .只适用于天体,不适用于地面上的物体 B .只适用于球形物体,不适用于其他形状的物体 C .只适用于质点,不适用于实际物体

高中物理必修一第二章知识点整理

第二章知识点整理 2.1实验:探究小车速度随时间变化的规律 1.实验步骤: (1)把一端附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路。 (2)把一条细绳栓在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳的加速滑行一段距离。把纸带穿过限位孔,复写纸在压在纸带上,并把它的一端固定在小车后面。 (3)把小车停在靠近打点计时器处,先接通电源,后释放小车,让小车运动,打点计时器就在纸带上打出一系列的点。关闭电源,取下纸带,换上新纸带,重复实验两次。 2.数据处理 (1)纸带的选取:选择两条比较理想的纸带,舍掉开头的比较密集的点;确定零点,选取5-6个计数点,标上0、1、2、3、4、5; 应区别打点计时器打出的点和人为选取的计数点(一般相隔0.1s取一个计数点),选取的计数点最好5-6个。 (2)采集数据的方法:先量出各个计数点到计时零点的距离,然后再计算出相邻的两个计数点的距离。 不要分段测量各段位移,应尽可能一次测量完毕(可先统一量出到计数点0之间的距离),读数时应估读到最小刻度(毫米)的下一位。 (3)数据处理 ①表格法 ②图像法:做v-t图象,注意坐标轴单位长度的选取,应使图像尽量分布在坐标平面中央。应让尽可能多的点处在直线上,不在直线上的点应对称地分布在直线两侧,偏差比较大的点忽略不计。 ?运用图像法求加速度(求图像的斜率)。 ★常考知识点: 1、求瞬时速度(注意单位的换算,时间间隔的读取,是否要求保留几位有效数字)说明:“每两个计数点间还有四个点没有标出”和“每隔五个点取一个计数点”都表明每两个计数点间的时间间隔为0.1s。“有效数字”指从左边第一个不为零的数字数起。 2、求加速度:逐差法(具体公式运用见下文) 3、要求用公式表示时,注意使用题意中提供的字母,而不能自己编撰。 2.2匀变速直线运动的速度与时间的关系 1.匀变速直线运动 (1)定义:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。 (2)特点:任意相等时间内的△v相等,速度均匀变化。 (3)分类: ①匀加速直线运动:物体的速度随时间均匀增加的匀变速直线运动。 ②匀减速直线运动:物体的速度随时间均匀减小的匀变速直线运动。 2.速度与时间的关系式:v=v0+at 公式的适用条件:匀变速直线运动 解题步骤: (1)认真审题,弄清题意,确定正方向(一般以初速度的方向为正方向); (2)画草图,根据正方向确定各已知矢量的大小和方向; (3)运用速度公式建立方程,代入数据(注意单位换算),根据计算结果说明所求量的大小和方向。 (4)如果要求t或v0,应该先由v= v0 + at变形得到t或v0的表达式,再将已知物理量代入进行计算。 ★典型例题:如果汽车以108km/h在高速公路上行驶,紧急刹车时加速度的大小仍是6m/s2,则(1)3s后速度为多大?(2)6s后速度为多大? 解:取汽车初速度方向为正方向, 由题意知a= -6m/s2,v0=108km/h=30m/s, (1)3s后速度v= v0 + at =30m/s+(-6m/s2)×3s=12m/s (2)设汽车刹车至停止时用时为t, 由v= v0 + at 得s s s m s m a v v t6 5 / 6 / 30 2 0< = - - = - = 所以汽车刹车6s秒后速度为零。 ?对于刹车问题,一要注意方向,二要注意刹车时间。 2.3匀变速直线运动的位移与时间的关系

6.3万有引力定律导学案

§6.3 万有引力定律 命题人:郑州星源外国语学校 王留峰 一、预习指导: 1、了解万有引力发现的思路和过程,知道地球上的重物下落与天体运动的统一性 2、知道万有引力是存在于所有物体之间的吸引力,知道万有引力定律公式的适用范围 3、会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r 的物理意义,了解万有引力常量G 的测定在科学历史上的重大意义 4、了解万有引力定律了现的意义,体会在科学规律发现过程中猜想与求证的重要性 5、阅读课本P36—P37 二、问题思考: 1、什么力量支配着行星绕着太阳做如此和谐而有规律的运动? 2、考虑一下月球绕地球的向心加速度是多大? 三、新课教学: 【例1】两物体质量都是lkg ,两物体相距1 m ,则两物体间的万有引力是多少? 【例2】已知地球质量大约是M=6.0×1024kg ,地球半径为R=6370 km ,地球表面的重力加速度g=9.8 m /s 2. 求:(1)地球表面一质量为10kg 物体受到的万有引力? (2)地球表面一质量为10kg 物体受到的重力? (3)比较万有引力和重力? 【例3】如图所示,质量为m 的质点与一质量为M 、半径 为R 、密度均匀的球体距离为2R 时,M 对m 的万有引力为F 1, 当从球M 中挖去一个半径为0.5R 的小球时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少? 【例4】假设火星和地球都是球体,火星的质量M 火和地球的质量M 地之比为p ,半径之比为q ,那么,离火星表面R 火高处的重力加速度与离地面R 地高处的重力加速度之比为多少? 新课标第一网 【例5】宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G ,求该星球的质量M 四、课后练习: 1.(单选)设想把质量为m 的物体放到地球中心,地球质量为M ,半径为R ,则此物体此时与地球间的万有引力为 ( ) A .零 B .2R Mm G C .无穷大 D .不能确定 2.(单选)如图所示,两球的半径分别是r 1和r 2,均小于r ,而球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为 ( ) 新课标第一网

高中物理必修一第二章知识点精华

高中物理必修一知识点总结:第二章匀变速直线运动 的研究 匀变速直线运动是运动学中最典型的也是最简单的理想化的运动形式,学习本章的有关知识对于运动学将会有更深入地了解,难点在于速度、时间以及位移这三者物理量之间的关系。要熟练掌握有关的知识,灵活的加以运用。最后,本章末讲学习一种最具有代表性的匀变速直线运动形式:自由落体运动。 考试的要求: Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。 Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。 要求Ⅱ:匀速直线运动,匀变速直线运动,速度与时间的关系,位移与时间的关系,位移与速度的关系,v-t图的物理意义以及图像上的有关信息。

新知归纳: 一、匀变速直线运动的基本规律 ●基本公式:(速度时间关系)(位移时间关系) ●两个重要推论:(位移速度关系) (平均速度位移关系) 二、匀变速直线运动的重要导出规律: ●任意两个边疆相等的时间间隔(T) 内的,位移之差(△s)是一恒量,即

●在某段时间的中间时刻的速度等于这段时间内的平均速度,即 ●在某段位移中点位置的速度和这段位移的始、末瞬时速度的关系为 三、初速度为零的匀变速直线运动以下推论也成立 (1) 设T为单位时间,则有 ●瞬时速度与运动时间成正比, ●位移与运动时间的平方成正比 ●连续相等的时间内的位移之比 (2)设S为单位位移,则有 ●瞬时速度与位移的平方根成正比, ●运动时间与位移的平方根成正比, ●通过连续相等的位移所需的时间之比。 四、自由落体运动 ●定义:物体只在重力作用下从静止开始下落的运动。 ●自由落体加速度(重力加速度) ●定义:在同一地点,一切物体自由下落的加速度。用g表示。 ●一般的计算中,可以取g=9.8m/s2或g=10m/s2 ●公式:

海南省高中物理 第五章第一节《曲线运动》(第一课时)教学设计 新人教版必修2

第五章第一节《曲线运动》(第一课时) 人教版高中《物理》必修二第五章第一节《曲线运动》。主要介绍了曲线运动的定义、物体做曲线运动的速度方向及其条件,是继第四章牛顿运动力学之后,对运动和力关系的进一步理解和深化,同时为后面研究学习平抛、圆周、天体等复杂曲线运动奠定基础。因此,本节课起承前启后的作用。从本节课内容安排上,我选取了两个实际情景和一个演示实验,帮助学生经历科学探究和理论推导两个过程,让学生感悟科学探究的思想,学会科学探究的方法;在学习的内容上深入理解曲线运动是变速运动,知道物体做曲线运动的条件,会画做曲线运动的物体的速度方向,能根据所学知识解决实际问题。 二、学生学习情况的分析: 学习者是高中一年级学生,在初中的学习中对于直线运动的特点和规律已经理解透彻,曲线运动在知识结构上对于学习者是比较新的内容,又涉及对矢量的理解,学生掌握这部分知识就有一定的难度。但是由于现实生活中曲线运动的实例不胜枚举,通过平时的生活经验学习者对曲线运动的定义和特点已经有了一定的认识基础,可以首先从熟悉的内容开始,然后进入新知识,当学习者将新知识与过去的知识和经验联系起来时,就会对新知识产生比较浓厚的兴趣。利用生活中曲线运动的图景,可以缩短物理知识与学生之间的距离,建立学生对物理、对科学的亲近感。 三、设计理念: 设计为了充分体现教师与学生的主导——主体的作用的统一,采用了教师创设情境——学生参与探究——教师引导学生设置情境问题——学生思考、讨论——教师引导分析情境——学生在情境中逐步完成对知识的意义建构,从而达到突出重点,突破难点的效果。同时,笔者通过演示实验,使学生自己观察获得曲线运动的速度方向,获得如何画曲线运动的速度方向的方法。笔者还通过自行车挡泥板,以便学生把自己获得的知识应用于实践,体验学以致用、知识有价的感受。 四、教学目标: 知识与技能 1.知道曲线运动中速度的方向,理解曲线运动是一种变速运动。 2.知道物体做曲线运动的条件是所受的合外力的方向与它的速度方向不在一条直线上。 过程与方法 1、通过视频,向学生展现与日常生活紧密联系的运动事例,引入了曲线运动的概念,激发学生学习的兴趣。 2、学会分析物理现象,体验磨刀具时火花四溅,使学生的思维在结论得出之前经过大胆猜想,实验验证,最后归纳总结得出速度的方向。 3、开放性实验过程,让学生亲临科学探究的实验过程,在实践中提高学生的物理素养。 情感态度与价值观 1.能领略曲线运动的奇妙与和谐,增强对科学的好奇心与求知欲。 2.通过学生的动脑、动手、观察,培养学生观察事物、分析问题的能力,激发学生学习、科学探索的兴趣和积极性,并体会到科学来源于生活。 五、教学的重点和难点: 重点:1.什么是曲线运动。 2.物体做曲线运动的方向。 3.物体做曲线运动的条件。 难点:1.理解曲线运动的速度方向。

《万有引力定律》教学设计【高中物理必修2(人教版)教案】

《6.3万有引力定律》教学设计 ● 教学模式介绍 “传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。该模式以传授系统知识、培养基本技能为目标。其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。 “传递-接受”教学模式的课程环节: 复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习 ● 设计思路说明 一、新课程标准倡导学生自主学习,重视学生科学探究,在“科学探究”中学生自己不断发现问题、解决问题、体会科学方法、学会交流合作及通过集体的智慧解决问题。我将发现万有引力定律的过程设计为教师引导和学生探究先后结合的方法。“地球对月球的力、地球对地面上物体的力、太阳对行星的力,真是同一种力吗?”这个过程中所涉及到的逻辑思维和数学推导给学生带来的困难则由教师适时引导。当学生亲自动手,计算出月球轨道上物体运动的加速度就是地面物体下落加速度的2601 倍时,学生一定会由衷地感叹自然界的和 谐统一和科学的无穷魅力。 二、万有引力定律既是一个独立的科学定律,又是牛顿经典力学体系的重要组成部分。是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,是自然界的物体间的基本相互作用之一.对人类认识和探索未知世界有着重要的意义。教学中要让学生知道学习万有引力定律不只是用来做几道题,而是一个人科学素养的具体体现。 三、我让学生查找关于卡文迪许的资料、做成ppt 并让两到三组同学在课堂展示。增加学生的学习兴趣,同时锻炼学生的语言组织能力和表达能力。四、将不易测量的微小量转化为可测量的物理量的方法是物理学中重要且常用的研究方法。通过卡文迪许扭秤实验对学生进行的物理思想和科学方法的渗透。同时也能说明科学实验是发现科学真理的基础,也是检验科学真理的唯一标准。 ● 教材分析 万有引力定律是本章的重点知识,,本节内容是对上两节教学内容的进一步延伸,是下

人教版物理必修一试题第二章单元测试卷

高中物理学习材料 (灿若寒星**整理制作) 衡阳县一中高一物理第二章《匀变速直线运动的研究》测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(本大题共14小题,每题4分,满分56分.在每小题给出的选项中,第1题和第10题有多个选项正确.全部选对的得4分,选不全的得2分,有错选或不选的得0分,其余的题只有一个选项正确。) 1.在物理学的重大发现中,科学家总结出了许多物理学方法,如理想实验法、控制变量法、极限思维法、类比法、科学假说法和建立物理模型法等,以下关于物理学研究方法的叙述中正确 ..的是() A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫建立物理模型法 B.根据速度的定义式,当Δt非常小时,就可以表示物体在t时刻的瞬时速度,该定义运用了极限思维法 C.伽利略为了探究自由落体的规律,将落体实验转化为著名的“斜面实验”,这运用了类比法D.在推导匀变速直线运动位移公式时,把整个运动过程等分成很多小段,每小段近似看作匀速直线运动,然后把各小段的位移相加,这里运用了微元法 2.某同学在实验室做了如图所示的实验,铁质小球被电磁铁吸附,断开电磁 铁的电源,小球自由下落,已知小球的直径为0.5 cm,该同学从计时器上读出小 球通过光电门的时间为1.00×10-3 s,g取10 m/s2,则小球开始下落的位置距光电 门的距离为() A.1 m B.1.25 m C.0.4 m D.1.5 m 3.一物体以初速度v0=20 m/s沿光滑斜面匀减速向上滑动,当上滑距离x0 =30 m时,速度减为10 m/s,物体恰滑到斜面顶部停下,则斜面长度为()A.40 m B.50 m C.32 m D.60 m 4.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,则在此过程中() A.速度逐渐减小,当加速度减小到零时,速度达到最小值 B.速度逐渐增大,当加速度减小到零时,速度达到最大值 C.位移逐渐增大,当加速度减小到零时,位移将不再增大 D.位移逐渐减小,当加速度减小到零时,位移达到最小值 5.一物体从静止开始运动,其速度—时间图象如图所示,那么物体在0~t0和 t0~2t0两段时间内() A.加速度大小之比为1∶1 B.位移大小之比为1∶1

32万有引力定律(无答案)-江苏省扬州市教科版高中物理必修二复习学案

万有引力定律 单元复习 学案 一、知识网络构建 Z&X&X&K] 来源学科网ZXXK] 二、典型问题分析 1.掌握两种基本思路解决天体运动问题 例1: (多选)由于阻力,人造卫星绕地球做匀速圆周运动的半径逐渐减小,则下列说法正确的是( ) A .运动速度变大 B .运动周期减小 C .需要的向心力变大 D .向心加速度减小来源学科网ZXXK] 练习1:已知地球和月球的半径之比为R/R 0=4,表面重力加速度之比为g/g 0=6,试求地球和月球的密度之比. 万 有 引 力 与 航 天

例2: (多选)地球半径为R 0,地面重力加速度为g ,若卫星在距地面R 0处做匀速圆周运动,则( ) A .卫星速度为 220g R B .卫星的角速度为0 8R g C .卫星的加速度为2g D .卫星周期为g R 022 练习2:如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤 道平面内,离地球表面的高度为h ,已知地球半径为R ,地球自转角速度 为ω0,地球表面的重力加速度为g ,O 为地球中心。 (1)求卫星B 的运行周期。 (2)如果卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距 最近(O 、A 、B 在同一直线上),则至少经过多长时间,它们再一次相距最 近? 2.赤道物体、同步卫星和近地卫星 转动量的比较 例3 如图所示,地球赤道上的山丘e 、近地资源卫星p 和同步卫星q 均 在赤道平面上绕地心做匀速圆周运动.设e 、p 、q 的圆周运动速率分别为 v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则( ) A .v 1>v 2>v 3 B .v 1<v 2<v 3来源学科网 C .a 1>a 2>a 3 D .a 1<a 3<a 2 练习3:(多选)地球同步卫星的轨道半径为r ,运行速度为v1,加速度为a1,地球赤道上的物体随地球自转的加速度为a2,第一宇宙速度为v2,地球半径为R ,则以下正确的是( ) A. B. C. D.学。科。网Z 。X 。X 。K] 12a r a R =12r R =v v 1 22a R a r =()12R r =v v

高一物理必修一第一章《运动的描述》单元测试题(含详细解答)[1]

《运动的描述》单元测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟. 第Ⅰ卷(选择题共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下列关于质点的说法正确的是() A.研究和观察日食时,可以把太阳看成质点 B.研究地球的公转时,可以把地球看成质点 C.研究地球的自转时,可以把地球看成质点 D.原子核很小,必须把它看成质点 2.(广东惠阳08-09学年高一上学期期中)2008年9月25日晚21点10分,我国在九泉卫星发射中心将我国自行研制的“神舟7号”宇宙飞船成功地送上太空,飞船绕地球飞行一圈时间为90分钟.则() A.“21点10分”和“90分钟”前者表示“时刻”后者表示“时间” B.卫星绕地球飞行一圈,它的位移和路程都为0 C.卫星绕地球飞行一圈平均速度为0,但它在每一时刻的瞬时速度都不为0 D.地面卫星控制中心在对飞船进行飞行姿态调整时可以将飞船看作质点 3.甲物体以乙物体为参考系是静止的,甲物体以丙物体为参考系又是运动的,那么,以乙物体为参考系,丙物体的运动情况是() A.一定是静止的 B.运动或静止都有可能 C.一定是运动的 D.条件不足,无法判断 . 4.(福建厦门一中09-10学年高一上学期期中)两个人以相同的速率同时从圆形轨道的A点出发,分别沿ABC和ADC行走,如图所示,当他们相遇时不相同的物理量是() A.速度B.位移 C.路程D.速率

5.两个质点甲和乙,同时由同一地点向同一方向做直线运动,它们的v -t 图象如图所示,则下列说法中正确的是( ) A .质点乙静止,质点甲的初速度为零 B .质点乙运动的速度大小、方向不变 C .第2s 末质点甲、乙速度相同 D .第2s 末质点甲、乙相遇 6.某人爬山,从山脚爬上山顶,然后又从原路返回到山脚,上山的平均速率为v 1,下山的平均速率为v 2,则往返的平均速度的大小和平均速率是( ) A.v 1+v 22,v 1+v 22 B.v 1-v 22,v 1-v 2 2 C .0,v 1-v 2 v 1+v 2 D .0,2v 1v 2 v 1+v 2 7.(银川一中09-10学年高一上学期期中)下列关于物体运动的说法,正确的是( ) A .物体速度不为零,其加速度也一定不为零 B .物体具有加速度时,它的速度可能不会改变 C .物体的加速度变大时,速度也一定随之变大 D .物体加速度方向改变时,速度方向可以保持不变 8.下表是四种交通工具的速度改变情况,下列说法正确的是( ) 初始速度(m/s) 经过时间(s) 末速度(m/s) ① 2 3 11 ② 0 3 6 ③ 0 20 6 ④ 100 20 A.①的速度变化最大,加速度最大 B .②的速度变化最慢 C .③的速度变化最快 D .④的末速度最大,但加速度最小

高一物理必修一第二章公式

高一物理必修一第二章公式 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加 速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F= (F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力 的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直 线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与 合外力方向一致} 3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、 F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一 个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物 或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方 向相同)

相关主题