搜档网
当前位置:搜档网 › 超限高层建筑结构设计实例分析

超限高层建筑结构设计实例分析

超限高层建筑结构设计实例分析
超限高层建筑结构设计实例分析

超限高层建筑结构设计实例分析

摘要:本文结合某超限高层建筑结构设计实例,对其基础和地下室结构设计、上部结构设计、结构超限情况和采取的主要措施进行了分析。

关键词:超限高层建筑不规则建筑结构设计

1 工程概况

该工程地上6层建筑面积为21332m2,地下1层建筑面积为7843m2。采用钢筋混凝土框架-剪力墙结构。结构平面底部长约150m收至顶层50m,宽约50m,结构主体高度约32.25m,高宽比较小。该建筑体形较长,且平面较不规则,建筑上部存在长悬臂和大跨度结构,最大悬臂长度为12.7m,最大跨度为33.6m,若要通过设置抗震缝将建筑分割成规则的区块,布置上较为困难。故本建筑主要通过加强抗侧力构件的刚度,加强平面联系,减小结构的绝对和相对变形量,来保证结构具有较好的抗震性能。

2 基础和地下室结构设计

本工程±0.000相当于绝对标高90.300m,室外地面相对标高约-0.5m。地下水设防水位相对标高为-2.5m。设一层地下室,部分地下室上方没有上部结构,上部结构层数及荷载不均匀,存在一定差异,地基基础设计考虑了地基承载力、控制差异沉降和地下水浮力等因素。地下室主体结构与下地下室的车道结构上设缝断开,通过变形缝连接。根据本工程的特点,主体结构采用桩-筏板基础,桩基采用高强预应力管桩。为减小环境影响,采用静压法沉桩。部

分框架柱下存在抗压和抗浮两种工况,其中,部分抗浮为不利工况,按抗浮要求布置抗拔桩。桩采用500高强预应力管桩,主要桩型有效桩长14m,桩端进入第⑥层细砂层,单桩抗压承载力特征值为1400kn,单桩抗拔承载力特征值400kn。突出在整体结构外的下地下室的车道采用天然基础。

地下室桩基承台厚度主要为1400mm,除承台外的底板厚度为550mm,地下室顶板厚度为250mm(地下室按人防要求设计)。该建筑地下室的轮廓与地上下部楼层的轮廓基本相同,地下室利用地下室建筑隔墙和外墙位置,较地上楼层增加布置较多的剪力墙肢,地下一层的侧向刚度超过了底层的2倍,满足以地下室顶板作为结构底部嵌固端的条件,故上部结构采用地下室顶板作为结构底部嵌固端,柱、墙及顶板梁进行加强处理,地下一层柱配筋取对应上一层柱侧配筋的1.1倍,局部室外高差处通过加高梁截面、加强地下室顶板配筋来保证水平力的有效传递。

3 上部结构设计

3.1 主要设计参数

本工程结构设计使用年限50年,结构安全等级为二级,地基基础设计等级为甲级。工程抗震设防烈度为7度,设计基本地震加速度值为0.15g,设计地震分组为第一组,场地类别为ⅲ类,场地特征周期0.45s。按《建筑抗震设防分类标准》(gb50223—2008),本建筑的抗震设防重要性类别为丙类。本工程体形较为复杂,基本风压按100年一遇的基本风压取为0.50kn/m2,地面粗糙度类别为

c 类。

3.2 结构布置

本工程为高度约32.25m的6层结构层的高层办公楼,在结构体系的选择上,一般可供的选择有混凝土框架结构、混凝土框架-剪力墙结构、钢框架-混凝土剪力墙结构和钢框架结构(带支撑或不带支撑)。

本工程体形复杂,上部存在大跨度和长悬臂结构,该部分结构宜采用钢结构,大跨度和长悬臂结构宜布置剪力墙作为可靠支座。该结构局部楼层楼板缺失,造成凹凸和楼面开大洞情况,在这种情况下,为了避免竖向刚度突变,加强结构抗侧刚度,在进行结构布置时,需对上下贯通的竖向结构予以加强。整个结构楼梯间平面位置均匀、竖向连续,宜利用楼梯间周边布置剪力墙作为主抗侧力构件,一方面剪力墙平面布置均匀可使得各部分地震力主要由就近的剪力墙承担,减小各剪力墙在地震作用下的位移差,另一方面也可减小地震作用下位移的绝对量,减小由于楼板连接薄弱带来的不利影响。若整个结构采用钢框架-混凝土剪力墙结构,则造价较高,故本结构采用混凝土梁框架-剪力墙结构体系作为抗侧力体系,对于大跨度和长悬臂结构部分采用钢结构。图1为⑨轴结构立面布置图。

为加强结构刚度和便于与大跨度、长悬臂钢结构连接处埋置型钢梁,剪力墙厚取为500mm,剪力墙与钢结构连接处设置800mm ×800mm角柱,并埋置型钢。

3.3 结构超限情况和采取的主要措施

根据《超限高层建筑工程抗震设防专项审查技术要点》,该高层建筑规则性分析如下:

(1) 扭转不规则:计算中在地震作用下,部分楼层竖向构件的最大水平位移和层间位移比大于该楼层平均值的1.2倍(最大为1.32) ,属扭转不规则。

(2) 局部楼层楼板不连续:局部楼层楼板缺失,造成楼面开大洞情况,使有效楼板宽度与该层楼板典型宽度之比小于50%,但整个结构的结构主抗侧力构件剪力墙布置平面位置均匀、竖向连续。本建筑五层、六层结构平面部分为室空间,部分为室外屋面,两者存在高差,高差分别为1450mm和1250mm,大于600mm,为局部错层结构,也是属于楼板不连续的情况。

( 3) 尺寸突变: 五层、六层缩进大于下部结构尺寸的25%。六层外挑大于10%和4m,结构外挑长度约为8.4m。但结构的结构主抗侧力构件剪力墙布置竖向连续,主抗侧力构件无外挑。

(4) 承载力突变: 相邻楼层受剪承载力变化大于80%,五层、六层抗剪承载力之比为0.68。五层、六层作为主抗侧力构件的剪力墙,其抗剪承载力为保持连续,并无较大变化,因为顶层增加布置长悬臂和大跨度的钢结构桁架,钢桁架的杆件致其计算的顶层抗剪承载力增加较多,是抗剪承载力变化的一种特殊情况。

因此,本工程为高度较低的a级高度高层建筑,包含平面不规则和竖向不规则,属于特别不规则的超限高层结构,按要求进行了抗

震设防专项审查。

对于该超限高层建筑,主要采取了以下优化布置和加强措施: (1) 结构布置上尽量做到抗侧力构件分布均匀对称,使结构刚心和质心尽量一致,并满足刚度要求。现偶然偏心工况下水平位移比最大为1.32,以扭转为主的第一自振周期与以平动为主的第一自振周期之比不大于0.66。

(2) 针对该建筑局部楼层的楼板不连续的情况,对上下贯通的竖向结构予以加强,特别是加强布置作为主抗侧力构件的剪力墙,剪力墙上下贯通,剪力墙核心筒承担80%以上的倾覆弯矩和70%以上的楼层剪力,结构竖向刚度无突变。

针对楼板缺失、竖向构件越层的情况,在结构整体计算分析时建立弹性楼板模型,不考虑穿层处楼板对穿层柱、墙的约束,按真实情况建立柱、墙的计算长度系数和邻近楼层结构的相互关系。加强对楼板的应力分析,并双层双向配筋,连接薄弱处单层配筋率不小于0.6%,以提高平面刚度。连接薄弱的楼板进行中震分析,其满足“中震弹性”的要求,并根据分析结果对应力较大部位(主要集中在洞口角部) 采取集中配置斜向钢筋,根据大震下楼板应力计算,局部连接薄弱处通过进一步适当加厚和加强配筋,以保证大震下也不破坏。

(3) 本结构存在局部错层,通过加高梁截面(梁高涵盖板错开的差)、柱箍筋全高加密等措施,保证水平力的有效传递,按照错层建立模型进行计算,错层柱箍筋全高加密。

(4) 本结构五层、六层缩进大于下部结构尺寸的25%,结构六层外挑大于10%和4m,虽然结构主抗侧力构件剪力墙布置竖向连续,主抗侧力构件无外挑、无承载力突变,结构没有刚度突变,但六层由于布置钢桁架,存在承载力突变的特殊情况,故采取加强措施,将除顶层外的各楼层强制指定为薄弱层进行设计加强,地震剪力乘以1.15的增大系数,支撑顶部钢结构的结构中部四个核心筒剪力墙满足“中震不屈服”承载力要求。

(5) 按《高层建筑混凝土结构技术规程》(jgj3—2002),设防烈度7 度(0.15g),场地土类别为ⅲ类,结构的抗震构造措施宜按8度采用。考虑到本工程虽然总高度不高,且高宽比较小(<1),但存在不规则情况,故本工程框架和剪力墙除了抗震构造措施按照8度采用外,其力调整也按照8度采用,在结构计算中将抗震等级在原7度基础上提高1 度采用,剪力墙抗震等级由二级提高到一级,框架抗震等级由三级提高到二级。严格控制竖向构件轴压比,剪力墙轴压比不大于0.3,框架柱轴压比不大于0.75,加强延性和抗剪承载力。

(6) 根据建筑形体的需要,本建筑存在多处长悬臂和大跨度结构,此部分结构结合建筑布置采用钢桁架的形式,计算上补充采用etabs程序进行细部分析,考虑竖向地震作用,钢结构主要受力构件应力比一般控制在0.85以,严格按规要求控制变形。长悬臂和大跨度钢桁架等主要构件满足“中震不屈服”承载力要求,长悬臂

和大跨度钢桁架与核心筒剪力墙的连接节点满足“中震弹性”承载力要求。

(7) 计算方面,主要采用etabs进行分析。分析时采用cqc振型效应组合方式,考虑扭转耦联效应,同时考虑偶然偏心的影响。另外,在振型分解反应谱法计算的基础上进行了弹性时程分析,就计算所得结构薄弱部位进行加强。用push程序进行了静力弹塑性分析,结果满足规要求,且大震下位移角小于规限值较多(约

1/386),结构具有较好的抗震性能。考虑到结构局部存在钢结构,分别按照0.05和0.04的阻尼比进行结构计算,根据0.04阻尼比的计算结果对构件设计进行一定的加强。

3.4 主要计算结果

3.4.1 振型分解反应谱法

1) satwe 和pmsap计算结果采用cqc 振型效应组合方式,考虑扭转耦联效应,同时考虑偶然偏心的影响。多遇地震和风荷载作用下的计算结果显示是两种计算程序的结果基本规律一致,相互较符合,且符合规的有关规定。

2) etabs计算结果

为考察大台阶和错层对结构整体计算结果的影响,采用etabs 建立两个对比模型进行对比计算: 模型ea按照结构真实情况,建立大台阶斜梁和错层实际标高; 模型eb将大台阶和错层归并至相近楼层。

通过计算结果显示,由于两个模型作为主抗侧力构件的剪力墙布

置一致,承担了绝大部分的倾覆弯矩和基底剪力,两个eatbs模型的计算结果基本一致,与上述satwe 和pmsap 的计算结果也基本一致,且符合规有关规定。

虽然如前所述,两个模型整体信息计算结果基本一致,但由于大台阶和错层的存在,对大台阶处及邻近一跨局部构件的力影响较大,施工图设计时将两个模型对比,按照包络进行设计(图2)3.4.2 弹性时程分析

在振型分解反应谱法计算的基础上进行了弹性时程分析。弹性时程分析选用一条安评报告提供的人工地震波rh1-ap和ⅲ类场地上的实测地震波th1tg045波,th2tg045波。规要求设防烈度7度( 0.15g)时,多遇地震时程分析采用加速度时程曲线的最大值为

55cm/s2。时程分析法中步长取0.02s,阻尼比0.05。

结构位移基本连续,结果满足单条地震波计算的结构底部剪力不小于振型分解反应谱法计算值65%,以及多条时程曲线计算的结构底部剪力平均值不小于振型分解反应谱法计算值80%的规定。总体而言,时程分析计算结果与反应谱法计算结果基本吻合,满足规有关规定。

3.4.3 静力弹塑性分析

用静力弹塑性分析push验算了在罕遇地震作用下的楼层位移。侧推荷载类型为倒三角形,基底剪力与总重量的比值为1。经过计算分析,其罕遇地震下的层间位移角x向为1/386,y向为1/579,均小于框架-核心筒结构的限值1/100,满足规的有关要求,且数

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

某超限高层住宅结构设计

某超限高层住宅结构设计 摘要:本文针对广州某超限高层住宅结构设计进行研究,介绍了该工程超限情况及有针对性的构造加强措施。采用了satwe和midas两种软件进行结构整体分析,用pkpm进行静力弹塑性分析(pushover)及弹性时程分析。结果表明结构在罕遇地震下处于延性阶段,结构抗震性能满足规范要求。 关键词:超限高层;静力弹塑性分析;弹性时程分析;构造加强措施 abstract:in this paper,the research on some exceeding high-rise residential building,which locates in guangzhou,is discussed.the code exceeding status and the structural reinforcing measures are introduced.two types of software,satwe and midas,were used for the global analysis,and pkpm was used for pushover analysis and elastic time-history analysis.the results shows that the structure is in ductile stage under rare earthquake,the seismic performance of the structure can satisfy the code requirements. key words: code exceeding high-rise building;pushover analysis;elastic time-history analysis;structural reinforcing measures 中图分类号;tu2文献标识码:a 文章编号:

高层建筑结构设计简答题

(1.)框筒,筒中筒和束筒结构的布置? a框筒性能以正多边形为最佳,边数越多越好,剪力滞后越不明显,结构的空间作用越大 b筒中筒高宽比不应小于3,宜大于4,适用于高度不宜低于80米 c筒中筒的外框筒宜做成密柱深梁,柱距为1-3米,不宜大于4米,框筒的开洞率不宜大于60% d框筒结构的柱截面宜做成正方形,矩形或T形 e筒中筒的内筒居中,面积不宜太小内筒应贯通建筑物的全高,竖向刚度均匀变化。 f框筒当相邻层的柱不贯通时,应设置转换梁 g.框筒中楼盖高度不宜太大。可做成平板或密肋楼盖。 (3).框架核心筒的布置原则? a核心筒宜贯通建筑物全高,当宽度不宜小于筒体总高的二分之一. b框架核心筒结构的周边逐渐必须设置框架梁,结构平面布置尽可能规则,对称以减小扭转影响 c框架核心筒结构外框构建的界面不宜过小结构总高度不宜过大 d非地震区的抗风设计采用伸臂加强结构对增大侧向侧度是有利的e框架--核心筒的楼盖,选用结构高度小,整体性强,结构自重轻有利于施工楼盖,宜选用现浇梁板式楼板,密肋式楼板以及叠合楼板。 (4).高层建筑主要承受那些作用?

高层建筑结构主要承受竖向荷载,风荷载和地震作用等。竖向荷载包括结构构件自重,楼面活荷载,屋面雪荷载,施工荷载,与多层建筑结构有所不同,高层建筑结构的竖向荷载效应远大于多层建筑结构,水平荷载的影响显著增加,成为其设计的主要因素,同事对高层建筑结构应考虑竖向地震作用,高层建筑结构应考虑温度变化,材料收缩和徐变。地基不均匀沉降等间接作用在结构中产生的效应。 (5).结构承受的风荷载与哪些因素有关? 1基本风压 2风压高度变化系数 3风荷载体型系数 4群体风压体型,单体风压体系,局部风压体型系数 5风振系数。 (6)为什么水平荷载称成为设计的决定因素? 因为竖向荷载在结构的竖向构件中主要产生轴向压力其仅仅与结构高度的一次放成正比,而水平荷载对结构产生的倾覆力矩以及由此在竖向构件中所引起的轴力,数值与结构高度的二次方成正比。 (8)高层建筑结构平面布置基本原则? 尽量避免结构扭转和局部应力集中,平面简单规则对称,刚心与质心形心重合。

浅谈高层建筑结构设计的优化

浅谈高层建筑结构设计的优化 摘要:在社会经济快速发展的背景下,城市建筑用地资源日益紧张,高层乃至 超高层建筑项目不断兴起,在城市建筑领域中占据着相当重要的地位,并带动着 建筑行业的蓬勃发展。高层建筑项目建设中,结构设计的质量水平会对高层建筑 物的整体性能产生影响,如何对高层建筑结构进行优化设计是业内人士必须关注 的一项课题。本文即探讨在高层建筑结构优化设计中存在的不足之处,并提出了 高层建筑结构优化设计的解决措施与方法,望能够促进建筑结构设计方案的进一 步优化与发展。 关键词:高层建筑;结构;设计;优化 引言:高层建筑凭借着自身众多优势而成为当前城市建设中最重要的类型。 而结构设计的科学合理性对高层建筑的安全稳定性、适用性、耐久性及经济性等 有重大影响,因此优化高层建筑结构设计意义重大。高层建筑结构优化的主要目 的是在满足人们基本居住要求的前体下,实现对有限空间及资源的更合理分配, 以提升房屋的安全、舒适及美观性。建筑工程包含的内容众多,因此结构设计优 化的内容也是多方面的,在结构优化设计中,只有从多角度进行全面的优化设计,才能从整体上促进高层建筑结构优化设计水平的提高。 1、高层建筑历史与现状发展 在很早以前就有了结构化优化的思维,是在很多建筑设计者的实践中提炼出 来的,林同炎设计大师就是首次在国内提出结构化优化的方法。之后在我国高层 建筑迅速发展,目前发展已经十分惊人,各种优化方法也层出不穷。 在早前,手工画图时代,结构设计师都是依靠先把空间问题转换成平面问题。此时通过计算力学效应,逐步分析计算和考核,强度、整体受力情况都需要一一 验算核准,强调安全性,也要满足设计的基本要求。然后凭经验初取截面,再进 行强度验算校核、整体受力验算等步骤。由于受到当时条件制约,整体上要既要 实现经济,又要完全达到优化设计是很难达到的。随着计算机的普及,在建筑设 计上的应用,利用计算机来优化建筑设计结构,研究成果虽然取得了突破性的进展,但是应用上并不如人意。那是因为科研的结果与现实的运用在很大程度上有 一定的距离,现实中会考虑更多的约束条件,工程的复杂性在现实中得到体现。 不是科研中的简单函数关系就能处理完成,需要考虑实际情况。工程的复杂和不 可复制性,就决定了结构化优化的难度。 各种计算机语言和软件的出现,为建筑结构化设计提供了精准的计算,让设 计更有迅速。即便如此,科学研究的最优解和建筑实际的最优化还是有很大的区别,理论和实践区别在于实践的变化性。这就需要以实践为基础,更深入的去研究,从结构优化,到安全、美学、功能等方面进行优化。 2、设计高层建筑结构合理性所遵守的原则 2.1 高层建筑结构基础设计方案要合理 高层建筑场地的地址因素是决定高层建筑结构基础方案如何选择的参考依据。合理、有效的高层建筑结构基础方案的设计,必须结合相应的地址勘探条件,必 须切实、全面的考虑周边原有建筑群体、施工限制条件、地基荷载分布情况与高 层建筑结构类型等相互间的关联因素。 2.2 保证高层建筑结构设计方案的合理性

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

超限高层建筑工程界定标准

超限高层建筑工程界定标准 根据国家建设部《超限高层建筑工程抗震设防审查技术要点》确定的超限高层建筑工程界定标准,结合我省实际予以细化,归纳整理如下: 一、房屋高度超过以下规定的高层建筑属于超限高层建筑 (一)现浇钢筋混凝土房屋适用的最大高度(M) 结构类型烈度 6 7 8 9 框架60 55 45 25 框架-抗震墙130 120 100 50 抗震墙140 120 100 60 部分框支抗震墙120 100 80 不应采用 框架-核心筒150 130 100 70 筒中筒180 150 120 80 板柱-抗震墙4 0 35 30 不应采用 注:1、房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分); 2、框架-核心筒结构指周边稀柱框架与核心筒组成的结构; 3、部分框支抗震墙结构指首层或底部两层框支抗震墙结构; 4、乙类建筑可按本地区抗震设防烈度确定适用的最大高度; 5、超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施。 (以上摘自《建筑抗震设计规范》表6.1.1) 《建筑抗震设计规范》第6.1.1条还规定:平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低(规范条文说明规定“一般降低20%左右”)。 (二)钢结构房屋适用的最大高度(M) 结构类型6、7度8度9度 框架110 90 50 框架-支撑(抗震墙板)220 200 140 筒体(框筒、筒中筒、桁架筒、束筒)和 巨型框架300 260 180 注:1、房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分); 2、超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施。(以上摘自《建

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

华东院结构设计培训内部资料--超限高层抗震设计指南

编制依据 《建筑抗震设计规范》送审稿 《高层建筑混凝土结构技术规程》 (征求意见稿) 《超限高层建筑工程抗震设防管理规定》 (建设部令第111号) 《上海市超限高层建筑设防管理实施细则》 (沪健 【2003】702号) 广东省实施《高层建筑混凝土结构技术规程》 (jgj3‐2002)补充规定 江苏省《房屋建筑工程抗震设防审查细则》 《超限高层建筑工程抗震设防专项审查技术要点》(建质【2006】220号) 《关于加强超限高层建筑抗震设防审查工作的建议》 (2007年工作会议) 《关于加强超限高层建筑工程抗震设防审查技术把关的建议》 (2009年2月6号) 《超限高层建筑抗震工程抗震设计指南》 (第二版吕西林主编) 超限的认定 《超限高层建筑工程抗震设防专项审查技术要点》 建质【2006】220号 新抗震规范及高层混凝土结构规范推出后,其划分范围作相应调整 将大跨结构纳入审查 将市政工程纳入审查 CECS如与抗规及高规矛盾,以高规及抗规为主 上海工程还需满足《上海市超限高层建筑设防管理实施细则》 (沪建建【2003】702号) 计算分析总体要求 总体判断,根据受力特点建模 计算参数选取要合理 计算假定要符合实际受力 计算结果应进行分析判断 计算参数的选取 连梁的单元形式(杆单元或壳) 巨柱采用杆或壳单元 墙单元最大单元尺寸 楼板单元是否合理 阻尼比的选择 连梁刚度的折减 周期折减系数 最不利地震方向(正方形增加45°) 最不利风荷载方向 施工模拟的方式 嵌固端的选取 特殊构件的定义 足够的振型数量 是否考虑p‐△效应 考虑偶然偏心 混凝土柱的计算长度系数(地下室、悬臂梁)

高层建筑结构设计习题

一、简答题 1..试述高层建筑结构的受力特点。 2. .框架结构抗震延性设计的原则是什么? 3..剪力墙按受力特性的不同分为哪几类?各类的受力特点是什么? 4.对于剪力墙结构,平面及竖向结构布置有哪些基本要求? 5.在什么情况下,框架——剪力墙结构的计算简图应采用刚接体系? 二、选择题 1、计算框架结构梁截面惯性矩I时考虑楼板影响,对现浇楼盖,中框架取I= ()。 A.2 I B.05.1I C.02.1I D.0I 2、整体小开口剪力墙计算宜选用()分析方法。 A. 连续化方法 B. 材料力学分析法 C. 壁式框架方法 D. 有限元法 3、在下列地点建造相同高度的高层建筑,什么地点所受的风力最大?() A. 建在大城市郊区 B. 建在小城镇 C. 建在有密集建筑群的大城市市区 D. 建在海岸

4、对现浇框架支座处弯矩可以进行调幅,以下不正确的论述是( ) A.负弯矩调幅系数为0.8—0.9 B.只需对竖向荷载作用下的弯矩进行调幅 C.调幅必须在荷载效应组合之前完成 D.对水平和竖向荷载效应均需要调幅 5、关于框架结构的变形,哪个结论是正确的( ) A. 框架结构的整体变形主要呈现为弯曲型 B. 框架结构的层间变形一般为下大上下 C. 框架结构的层间变形一般为下小上大 D.框架结构的层间位移仅与柱的线刚度有关,而与梁的线刚度无关 6、在有地震作用组合设计表达式RE E E R S γ≤中,承载力抗震调整系数RE γ满足 ( ) A. 大于1 B. 小于1 C. 不一定 D. 1 7、剪力墙中,墙肢刚度不变时,如果增加连梁刚度,整体系数α将( ) A 、增加 B 、减小 C 、不减 D 、不增 8、结构在水平静荷载的作用下其内力计算方法为( ) A 、底部剪力法 B 、力矩分配法 C 、反弯点法 D 、时程分析法 9 ) A. 框架结构体系 B. 剪力墙结构体系 C. 筒体结构 D. 框架剪力墙结构

浅谈高层建筑结构设计_0

浅谈高层建筑结构设计 上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。 标签结构设计;高层建筑;控制参数;载荷;抗震 1 高层建筑的特点 《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m 的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。 高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。 高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。 2 高层结构设计体系特点 地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。不同的层数、高度应采用不同的结构体系。 2.1 筒体结构 单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。在层数很多或设防烈度要求很高时,可用筒体结构。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。但剪力墙结构体系平面布置不灵活,结构自重往

超限高层结构设计内容

超限高层建筑工程抗震设防专项审查技术要点 第一章总则 第一条为做好全国及各省、自治区、直辖市超限高层建筑工程抗震设防专家委员会的专项审查工作,根据《行政许可法》和《超限高层建筑工程抗震设防管理规定》(建设部令第111号),制定本技术要点。 第二条下列工程属于超限高层建筑工程: (一) 房屋高度超过规定,包括超过《建筑抗震设计规范》(以下简称《抗震规范》)第6章钢筋混凝土结构和第8章钢结构最大适用高度、超过《高层建筑混凝土结构技术规程》(以下简称《高层混凝土结构规程》)第7章中有较多短肢墙的剪力墙结构、第10章中错层结构和第11章混合结构最大适用高度的高层建筑工程。 (二) 房屋高度不超过规定,但建筑结构布臵属于《抗震规范》、《高层混凝土结构规程》规定的特别不规则的高层建筑工程。 (三) 房屋高度大于24米且屋盖结构超出《网架结构设计与施工规程》和《网壳结构技术规程》规定的常用形式的大型公共建筑工程(暂不含轻型的膜结构)。 超限高层建筑工程的主要范围参见附录一。 第三条在本技术要点第二条规定的超限高层建筑工程中,属于下列情况的,建议委托全国超限高层建筑工程抗震设防审查专家委员 —1—

会进行抗震设防专项审查: (一) 高度超过《高层混凝土结构规程》B级高度的混凝土结构,高度超过《高层混凝土结构规程》第11章最大适用高度的混合结构; (二) 高度超过规定的错层结构,塔体显著不同或跨度大于24m的连体结构,同时具有转换层、加强层、错层、连体四种类型中三种的复杂结构,高度超过《抗震规范》规定且转换层位臵超过《高层混凝土结构规程》规定层数的混凝土结构,高度超过《抗震规范》规定且水平和竖向均特别不规则的建筑结构; (三) 超过《抗震规范》第8章适用范围的钢结构; (四) 各地认为审查难度较大的其他超限高层建筑工程。 第四条对主体结构总高度超过350m的超限高层建筑工程的抗震设防专项审查,应满足以下要求: (一) 从严把握抗震设防的各项技术性指标; (二) 全国超限高层建筑工程抗震设防审查专家委员会进行的抗震设防专项审查,应会同工程所在地省级超限高层建筑工程抗震设防审查专家委员会共同开展,或在当地超限高层建筑工程抗震设防审查专家委员会工作的基础上开展; (三) 审查后及时将审查信息录入全国重要超限高层建筑数据库,审查信息包括超限高层建筑工程抗震设防专项审查申报表项目(附录二)和超限高层建筑工程抗震设防专项审查情况表(附录三)。 第五条建设单位申报抗震设防专项审查的申报材料应符合第二章的要求。专家组提出的专项审查意见应符合第六章的要求。 —2—

浅谈高层建筑结构设计的重点和难点

林业科技情报2014Vol.46No.1 浅谈高层建筑结构设计的重点和难点 梅雅莉 (黑龙江省林业设计研究院) [摘要]由于我国人口数量的增多,为解决住房等问题需要发展建筑行业,尤其是要发展高层建筑行业。随着建筑高度的不断增加,建筑的形式和结构功能也变得复杂多样,因此,高层建筑的结构设计工作便成为建筑工程师在设计过程中的重点和难点。本文着重对高层建筑结构设计过程中应注意的问题进行分析。 [关键词]高层建筑;结构设计;重点问题 Discussion On The Emphasis And Difficulty Of The Structure Design For High-Rise Building Mei Yali (Forest Designing AndResearch Institute Of Heilongjiang Province) Abstract:With the increasing for the population in our country,it is necessary to develop architecture industry,es-pecially the high-rise buildings,to solve the housing problem.Associated with the increasing number for the high -rise building,the type of the architecture and the structure function has got much more complex.As a result,the design for high-rise building becomes the emphasis and difficulty for the architecture engineering worker.The par-ticle mainly analyzes the problem emerging from the high-rise building design process. Key words:high-rise building;structure design;emphasis problem 1高层建筑结构设计的概况及意义 随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。与此同时,建筑高层的土地结构设计会为城市带来更充足的日照、更良好的采光和通风效果。在新加坡新建的居住区中,由于建造了很多的高层建筑群,得到了许多空闲的地面,使人们的休闲活动空间也得到了拓展。最后,一般情况下,高层建筑也可以使人们的内心得到舒展,所以说高层建筑对于城市人们的生活非常重要。因此,高层建筑的结构设计也非常重要,良好的建筑结构可以使人们生活得更加安全,更加舒心。也会使城市更加美观,拥有良好的生态环境。高层建筑结构设计师们要发挥自己的所学所能,设计出美观、经济、实用的高层建筑。 2高层建筑结构设计中应注意的问题 在高层建筑结构的设计中,我们需要注意一些问题,主要有以下几方面。 2.1剪力墙的设计 在高层建筑中,剪力墙对建筑有着重要的影响,所以,在剪力墙的设计过程中,要充分考虑剪力墙的结构体系。也就是以建筑物墙体作为承受水平、竖向荷载的结构,要求混凝土剪力墙具有较好的结构,较强的刚度,以满足其承载力的要求。在对剪力墙进行计算配筋时,切记要为墙肢一端配筋。在短肢剪力墙相对较多的结构中,将较短的墙段划为约束边缘的构件是不妥的,这会使墙肢中和轴附近的钢筋无法发挥作用。另外,剪力墙间距也不能过大,因为这会使得平面的布置显得死板,无法满足公共建筑功能需求。此外,一旦剪力墙自身的结构过大,高度超过标准就会引起悬臂墙变形, · 03 ·

相关主题