搜档网
当前位置:搜档网 › 专升本高数证明专题

专升本高数证明专题

专升本高数证明专题
专升本高数证明专题

证明专题

2016年专升本试卷真题及答案(数学)

2016年重庆市专升本数学试卷 一、单项选择题(每题4分,满分32分) 1. 设()f x 在0x x =处可导,则()() 000 2lim h f x h f x h →+-= A.()' 0f x - B.()'0f x C.()'02f x D.()'03f x 2.定积分 1 21 sin x xdx -=? A.-1 B.0 C.1 D.2 3.过OZ 轴及点()3,2,4-的平面方程是 A.320x y += B.20y z += C.20x z += D.230x y += 4.已知微分方程为 dy y dx =通解为 A.x y e = B.x y e C =+ C.y x C =+ D.x y Ce = 5.下列级数收敛的是 A.113n n ∞ =????∑ B.1 1 sin n n ∞=∑ 1.1n n C n ∞ =+∑ D.1! n n n n ∞ =∑ 6.3阶行列式314 89 5111 中元素321a =的代数余子式为 A.1 B.8 C.15 D.17 7、设1002A ??= ??? ,则3 A = A.1002?? ? ?? B.3006?? ??? C.1008?? ??? D.3008?? ???

8、在0,1,2,3,4五个数中任意取3个数,则这三个数中不含0的概率为() A.0.4 B.0.5 C.0.6 D.0.8 二、填空题(每小4分,共16分) 9、极限0sin 6lim tan 2x x x →= 10、设函数()3 20 cos x f x t dt = ? ,求() f x '= 11、设矩阵314035A -?? ??=?? ??-?? ,矩阵 1102B -??=????,则 AB = 12、已知()0.4P A =,()0.3P B =,()0.5P AB =,则() P A B ?= 三、计算题(每小题8分,,共64分) 13、求极限0cos lim tan 2x x e x x →- 14、讨论函数() 2 3()21x f x x =+ -的单调性、极值、凹凸性及拐点。 15、求不定积分2 cos x xdx ?

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

专升本高数考试试题库

全国教师教育网络联盟入学联考 (专科起点升本科) 高等数学备考试题库 2012 年 、选择题 1.设f (x)的定义域为0,1,则f(2x 1)的定义域为( 1 A: -,1 2 B: 1 , C: ,1 2 1 D: 1 2.函数f()x arcsin sinx的定义域为( ) A:, C: ,— 2 2 D: 1,1 3.下列说确的为( ) A:单调数列必收敛; B:有界数列必收敛; C:收敛数列必单调; D:收敛数列必有界? 4?函数f(X) A:有界 B:单调 C:周期 sinx不是(

D:奇 5?函数y sin 3e 2x 1的复合过程为( ) A: y 3 sin u v ,u e ,v 2x 1 B: y 3 u , u v sine ,v 2x 1 C: 3 2x 1 y u ,u sin v,v e D: y 3 u ,u sin v,v e w , w 2x 1 x 0 ,则下面说法不正确的为 ( ). X 0 A:函数f (X )在X 0有定义; B :极限1X 叫f (x )存在; C:函数f (X )在X 0连续; D:函数f (x )在x 0间断。 sin 4x 7.极限 lim =( ). x 0 x A: 1 B: 2 C: 3 D: 4 8. lim(1 n A: 1 B: e C: e 5 D: 9. 函数y x (1 cos 3 x )的图形对称于( A: ox 轴; B:直线y=x ; C:坐标原点; D: oy 轴 3 10. 函数 f (x ) x sinx 是( ). A:奇函数; B:偶函数; C:有界函数; sin4x 6.设 f (x) —X — 1

高等数学 专升本考试 模拟题及答案

高等数学(专升本)-学习指南 一、选择题1.函数2 2 2 2 ln 2 4z x y x y 的定义域为【 D 】A .2 2 2x y B .2 2 4x y C .2 2 2x y D .2 2 24 x y 解:z 的定义域为: 420 4 022 2 2 2 2 2 y x y x y x ,故而选D 。 2.设)(x f 在0x x 处间断,则有【D 】A .)(x f 在0x x 处一定没有意义;B .)0() 0(0 x f x f ; (即)(lim )(lim 0 x f x f x x x x ); C .)(lim 0 x f x x 不存在,或)(lim 0 x f x x ; D .若)(x f 在0x x 处有定义,则0x x 时,)()(0x f x f 不是无穷小 3.极限2 2 2 2 123lim n n n n n n 【B 】 A . 14 B . 12 C .1 D . 0 解:有题意,设通项为: 2 2 2 2 12112 12112 2n Sn n n n n n n n n n 原极限等价于:2 2 2 12111lim lim 2 22 n n n n n n n 4.设2 tan y x ,则dy 【A 】

A .22tan sec x xdx B .2 2sin cos x xdx C .2 2sec tan x xdx D .2 2cos sin x xdx 解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。2 2' tan tan 2tan 2tan sec y x d x x dx x x 所以, 2 2tan sec dy x x dx ,即2 2tan sec dy x xdx 5.函数2 (2)y x 在区间[0,4]上极小值是【 D 】 A .-1 B .1 C .2 D .0 解:对y 关于x 求一阶导,并令其为0,得到220x ; 解得x 有驻点:x=2,代入原方程验证0为其极小值点。6.对于函数,f x y 的每一个驻点00,x y ,令00,xx A f x y ,00,xy B f x y , 00,yy C f x y ,若2 0AC B ,则函数【C 】 A .有极大值 B .有极小值 C .没有极值 D .不定7.多元函数,f x y 在点00,x y 处关于y 的偏导数00,y f x y 【C 】A .0 00 ,,lim x f x x y f x y x B .0 00 ,,lim x f x x y y f x y x C .00 000 ,,lim y f x y y f x y y D .00 00 ,,lim y f x x y y f x y y 8.向量a 与向量b 平行,则条件:其向量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件9.向量a 、b 垂直,则条件:向量a 、b 的数量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件 10.已知向量a 、 b 、 c 两两相互垂直,且1a ,2b ,3c ,求a b a b 【C 】 A .1 B .2 C .4 D .8

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

普通专升本高等数学试题及答案

高等数学试题及答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设f(x)=lnx ,且函数?(x)的反函数1?-2(x+1) (x)=x-1 ,则 []?=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()0 2lim 1cos t t x x e e dt x -→+-=-?( ) A .0 B .1 C .-1 D .∞ 3.设00()()y f x x f x ?=+?-且函数()f x 在0x x =处可导,则必有( ) .lim 0.0.0.x A y B y C dy D y dy ?→?=?==?= 4.设函数,1 31,1 x x x ?≤?->?22x f(x)=,则f(x)在点x=1处( ) A.不连续 B.连续但左、右导数不存在 C.连续但 不可导 D. 可导 5.设C +?2 -x xf(x)dx=e ,则f(x)=( ) 2 2 2 2 -x -x -x -x A.xe B.-xe C.2e D.-2e 二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-1 4 )的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞ +++ +<= 8.arctan lim _________x x x →∞ = 9.已知某产品产量为g 时,总成本是2 g C(g)=9+800 ,则生产100 件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.

罗尔中值定理的一些新证法_英文_

R eceived d ate :2006207217 第24卷第4期 大 学 数 学Vol.24,№.42008年8月COLL EGE MA T H EMA TICS Aug.2008 So me New Ways to Prove Rolle ’s Theorem YA O J i n g 2s un (Dept.of Math.,Anhui Normal University ,Wuhu 241000,China ) Abstract :We give three new methods proving Rolle ’s Theorem.The second simple way is only dependent on the well 2known Heine 2Borel Covering Theorem.This implies that Rolle ’s Theorem is the direct consequence of completeness of real numbers. K ey w ords :Rolle ’s theorem ;completeness of real numbers ;f ull cover ;Heine Borel covering theorem ; δ2fine tagged partition C LC Number :O171 Document Code :C Article I D :167221454(2008)0420131203 The st udy on Rolle ’s Theorem as well as ot her mean value t heorems of differentials is a very att ractive issue and it was also involved in calculus reform in U SA.Many scholars have done a great deal of work during t he past decade [1-3].We know t hat if Rolle ’s Theorem is proved ,it can be used to p rove Lagrange Mean Value Theorem and Cauchy Mean Value Theorem so long as a corresponding auxiliary f unction is const ructed.Therefore ,it is better to say Rolle ’s Theorem is t he essence and basis of t he next two t heorems t han to say t he conclusions of t he next two t heorems seem to have wider applicability t han t hat of Rolle ’s Theorem.To make t hings simpler ,people lay emp hasis on discussing t he ways to p rove Rolle ’s Theorem.The articles of professor Xu Ji 2hong [4]and t he aut hor [5]respectively give a new way to p rove Rolle ’s Theorem.In t he paper ,we shall give some met hods p roving Rolle ’s Theorem by some forms of completeness of real numbers. Def inition 1 A collection C of clo sed subintervals of [a ,b]is a f ull cover of [a ,b]if to each x ∈[a ,b]t here corresponds a number δ(x )>0such t hat every closed subinterval of [a ,b ]t hat contains x and has lengt h less t hat δ(x )belongs to C [6]. Lemm a 1 If C is a f ull cover of [a ,b],t hen C contains a partition of [a ,b],i.e.,t here exist a =x 0,x 1,…,x n =b such t hat x k -1

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

专升本高数试题(卷)库

全国教师教育网络联盟入学联考 (专科起点升本科) 高等数学备考试题库 2012年 一、选择题 1. 设的定义域为,则)12 (-x f 的定义域为( ). A: ?? ? ???1,21 B: 1,12?? ??? C: 1,12?????? D: 1,12?? ? ? ? 2. 函数()()a r c s i n s i n f x x =的定义域为( ). A: (),-∞+∞ B: ,22ππ ??- ??? C: ,22ππ??-???? D: []1,1- 3.下列说法正确的为( ). A: 单调数列必收敛; B: 有界数列必收敛; C: 收敛数列必单调; D: 收敛数列必有界. 4.函数x x f sin )(=不是( )函数. A: 有界 B: 单调

C: 周期 D: 奇 5.函数1 23sin +=x e y 的复合过程为( ). A: 12,,sin 3+===x v e u u y v B: 12,sin ,3+===x v e u u y v C: 123,sin ,+===x e v v u u y D: 12,,sin ,3+====x w e v v u u y w 6.设??? ??=≠=0 1 4sin )(x x x x x f ,则下面说法不正确的为( ). A: 函数在有定义; B: 极限)(lim 0 x f x →存在; C: 函数在连续; D: 函数在间断。 7. 极限x x x 4sin lim 0→= ( ). A: 1 B: 2 C: 3 D: 4 8.5 1lim(1) n n n -→∞ +=( ). A: 1 B: e C: D: ∞ 9.函数)cos 1(3x x y +=的图形对称于( ). A: ox 轴; B: 直线y=x ; C: 坐标原点; D: oy 轴 10.函数x x x f sin )(3 =是( ). A: 奇函数; B: 偶函数; C: 有界函数; D: 周期函数.

最新专升本高数大纲.pdf

上海第二工业大学专升本考试大纲 《高等数学一》 《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力,考试时间2小时,满分150分。 考试内容 一、函数、极限与连续 (一)考试内容 函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的 概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。 (二)考试要求 1.理解函数的概念,了解函数的奇偶性、单调性、周期性、有界性。了解反函数的概念;理解复合函数的概念。理解初等函数的概念。会建立简单实际问题的函数关系。 2.理解数列极限、函数极限的概念(不要求做给出,求N或的习题);了解极限性质(唯一性、有界性、保号性)和极限的两个存在准则(夹逼准则和单调有界准则)。 3.掌握函数极限的运算法则;熟练掌握极限计算方法。掌握两个重要极限,并会用两个重要极限求极限。 4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。 5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类可去、跳跃 间断点与第二类间断点)。 6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。 二、导数与微分 (一)考试内容 导数概念及求导法则;隐函数与参数方程所确定函数的导数;高阶导数;微分的概念与 运算法则。 (二)考试要求 1.理解导数的概念及几何意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程;

2.掌握导数的四则运算法则和复合函数的求导法则;掌握基本初等函数的求导公式,会熟练 求函数的导数。 3.掌握隐函数与参数方程所确定函数的求导方法(一阶);掌握取对数求导法。 4.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。会求简单函数的n 阶导数。5.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。三、中值定理与导数应用(一)考试内容 罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。 (二)考试要求 1.理解罗尔中值定理、拉格朗日中值定理(对定理的分析证明不作要求);会用中值定理证 明一些简单的结论。2.掌握用洛必达法则求 0, ,0,,1, ,0等不定式极限的方法。 3.理解函数极值概念,掌握用导数判定函数的单调性和求函数极值的方法;会利用函数单调 性证明不等式;会求较简单的最大值和最小值的应用问题。4.会用导数判断曲线的凹凸性,会求曲线的拐点。四、不定积分(一)考试内容 原函数与不定积分概念,不定积分换元法,不定积分分部积分法。(二)考试要求 1.理解原函数与不定积分的概念和性质 。 2.掌握不定积分的基本公式、换元积分法和分部积分法(淡化特殊积分技巧的训练,对于有 理函数积分的一般方法不作要求,对于一些简单有理函数可作为两类积分法的例题作适当训练)。 五、定积分及其应用(一)考试内容 定积分的概念和性质,积分变上限函数,牛顿-莱布尼兹公式,定积分的换元积分法和分部积分法,无穷区间上的广义积分;定积分的应用——求平面图形的面积与旋转体体积。(二)考试要求

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

大一高数同济版期末考试题(精) - 副本

高等数学上(1) 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(l i m . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 8. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

成人高考专升本高等数学(一)试题及答案

普通高校专升本《高等数学》试卷 一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个小题,每一小题3分,共24分) 1. 曲线 在 处的切线方程 为 . 2. 已知 在 内连续 , , 设 , 则 = . 3. 设 为球面 ( ) 的外侧 , 则 = . 4. 幂级数 的收敛域为 . 5. 已知 阶方阵 满足 , 其中 是 阶单位阵, 为任意实数 , 则 = . 6. 已知矩阵 相似于矩阵 , 则 . 7. 已知 , 则 = . 8. 设 是随机变量 的概率密度函数 , 则随机变量 的概率密度函数 = . 二.选择题. (本题共有8个小题,每一小题3分,共24分,每个小题给出的选项中,只有一项符合要求) 得分 阅卷人 得分 阅卷人

1. = ( ). () () () () 2. 微分方程的通解为( ). (C 为任意常数) () () () () 3. = ( ) . () () () () 4. 曲面,与面所围成的立体体积为( ). () () () () 5. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为; 若第一次未投中, 第二次投中的概率为; 若第一, 第二次均未投中, 第三次投中的概率为,则该投手未获奖的概率为( ). () () () () 6.设是个维向量,则命题“线性无关” 与命题()不等价。 (A)对,则必有; (B)在中没有零向量;

(C)对任意一组不全为零的数,必有; (D)向量组中任意向量都不可由其余向量线性表出。 7. 已知二维随机变量在三角形区域上服从均匀分 布, 则其条件概率密度函数是( ). ().时, ().时, () 时, () 时, 8. 已知二维随机变量的概率分布为: , 则下面正确的结论是( ). () 是不相关的 () () 是相互独立的 () 存在,使得 得分阅卷人三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本 题共9个小题,每小题7分,共63分) 1. 计算, (,).

山东省高等数学专升本考试大纲

附件 5 山东省2018年普通高等教育专升本 高等数学(公共课)考试要求 一、总体要求 考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算的能力;能综合运用所学知识分析并解决简单的实际问题。 二、内容范围和要求 (一)函数、极限和连续 1.函数 (1)理解函数的概念:函数的定义,函数的表示法,分段函数。 (2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。 (3)了解反函数:反函数的定义,反函数的图象。 (4)掌握函数的四则运算与复合运算。

(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。 (6)了解初等函数的概念。 2.极限 (1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。 (3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。 (4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。 (5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。 (6)熟练掌握用两个重要极限求极限的方法。 3.连续

相关主题