搜档网
当前位置:搜档网 › 固体物理概念答案

固体物理概念答案

固体物理概念答案
固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。

基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元;

点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵;

原胞:只考虑点阵周期性的最小重复性单元;

晶胞:同时计及周期性与对称性的尽可能小的重复单元;

布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格

点到邻近三个不共面格点的矢量;

简单格子:每个基元中只有一个原子或离子的晶体;

复式格子:每个基元中包含一个以上的原子或离子的晶体;

2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。

宏观基本对称操作:1、2、3、4、6、i 、m 、4,

点群:元素为宏观对称操作的群

螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n

=的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半

的复合操作

空间群:保持晶体不变的所有对称操作

3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。

晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取

一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示;

晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基

失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表

示;

密勒指数:晶胞基失的坐标系下的晶面指数;

配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数;

面间距:晶面族中相邻平面的间距;

密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构;

4. 倒易点阵,倒格子原胞,布里渊区。

倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格

子基矢表示,倒格子基矢由…确定

倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点

布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,

可得到倒格子的魏格纳塞茨原胞,即第一布里渊区

5. 布拉格方程,劳厄方程,几何结构因子。

劳厄方程0(s s )m m R S λ?-=

布拉格方程2sin hkl d m θλ=

几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动

幅度与一个电子的散射波的幅度之比

6. 晶体的结合能,内聚能,内能,弹性模量。

内聚能:与分离成各个孤立原子的情况相比,各个原子聚合起来形成晶体后,系统的能量将下降c U ,常把c U 称为晶体的内聚能

结合能:是把一个粒子从粒子系统中分离出来或者是将粒子系统全部分离开来所需

要的能量

内能:是晶体内部一切微观粒子的一切运动形式所具有的能量总和 弹性模量:m T

P B V V ???=- ???? 7. 晶格振动的简谐近似,波恩-卡门边界条件。

波恩-卡门边界条件:N 个原子连成一个环的周期性边界条件;

8. 格波,晶格振动的色散关系,频隙,声学波,光学波,频谱分布函数。

格波:晶体中的原子的运动以平面波的形式在晶体中传播,故把晶格振动的波

色散关系:即频率-波失关系

频隙:布里渊区边界上声学支和光学支之间的频率间隙;

声学波:声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格

波。

光学波:光学波是复式晶格振动中频率比较高的、而且频率随波矢变化较小的那一

支格波。

()g ω:()g d ωω等于频率ω至d ωω+之间简正模式数目除以体积V

9. 声子,声子热平衡分布,声子碰撞的正常过程和倒逆过程,非简谐近似。

声子:格波能量量子的形象化概念

声子是波色子,服从波色统计分布。在温度T 处于热平衡晶格中,声子ωh 的平均数目为:()/1

1q B k T n q e ω=-h

声子的碰撞必须满足能量守恒和准动量守恒:

123h q q q K +=+h h h h ,对于0h K =的情形,碰撞过程中声子动量没有变化,称之

为正常过程,否则,称为导逆过程

10. 晶格振动的比热,德拜模型,爱因斯坦模型,热膨胀,热传导。

晶格振动的比热:高温时为常量,低温时与3

T 成正比

爱因斯坦模型:晶体中每个原子都已相同的频率独立的做简谐运动

德拜模型:对于简单晶格结构的晶体,只有三支声频波,其中两支纵波,一支横波。

在低温下热能只能激发长波声子。在长波极限下,晶体可以看作是各向同性的连续

介质,格波就是弹性波。

热膨胀:在压力为零的条件下,晶体体积随温度的变化。 热传导:晶体内能流密度与温度梯度成正比

11. 费米分布,费米能,电子态密度,自由电子的比热。

费米分布:费米子所遵循的统计分布(E )/1()1B k T f E e μ-=+ 费米能:基态中电子具有的最高能量。

电子态密度:晶体每单位体积在单位能量间隔内的状态数目。

自由电子的比热:2

2B e B F

k T c nk E π= 12. 布洛赫波, 布洛赫定理,自由电子近似,近自由电子近似,紧束缚近似。

布洛赫波:周期性势场中电子的波函数

布洛赫定理:电子的波函数具有周期性调幅的平面波形式。

自由电子近似:假设正电荷背景是均匀分布的,则电子可视为自由电子

近自由电子近似:势场随空间位置的变化不太强烈,以至势场的空间起伏可看作是对自

由电子情形的微扰。

紧束缚近似:用原子轨道电子波函数作为试探波函数,只考虑最近邻原子轨道间的交叠

积分

13. 电子能带论的三个前提,能带,能隙,价带,导带。

三个前提:绝热近似,单电子近似,周期场近似

能带:当原子处于孤立状态时,其电子能级可以用一根线来表示;当若干原子相互靠近时,能级组成一束线;当大量原子共存于内部结构规律的晶体中时,密集的能级就变成了带状,即能带。

能隙:不存在能级的能量范围就叫做禁带,禁带的宽度叫做能隙

价带:价电子所处的能带

导带:以填充但未填满电子的能带。

14.电子运动的准经典近似,电子的准动量,有效质量。

准经典近似:固体中电子对外加电磁场的相应有如一质量为有效质量的经典自由电子 电子的准动量:p k =h

有效质量:质量为m 的电子对外加场的响应;在准经典近似中,晶体电子在外力F 作用下具有加速度a ,所以参照牛顿第二定律定义的m=F/a 称作有效质量

1. 为什么晶体没有五次旋转轴?

因为它们不符合空间格子的规律,根据晶体的对称定律,正五边形是不可能无缝凭借的.因此,晶体中不可能出现与格子构造不相容的五次及以上的对称轴.

2. 7大晶系是根据什么来划分的?

基矢取向和长度

3. 为什么布拉菲格子里没有底心四角或面心四角?

底心四角少反应对称性;面心四角不多反应对称性且,体积大

4. 在面心立方和体心立方结构中,面原子密度最大的晶面是哪族晶面?线原子密度最大

的方向是什么晶向?

线密度:fcc110,bcc111;面密度:fcc111,bcc110

5.为什么不能用可见光来分析晶体的结构?

可见光波长太长,不能形成明显衍射现象

6.根据结合力的不同,可将晶体分成哪五个结合类型?它们的基本特性怎样?

离子晶体:硬而脆,有较高的溶沸点,强健

分子晶体:弱键分子间作用力的大小决定了晶体的物理性质。分子的相对分子质量越大,分子间作用力越大,晶体熔沸点越高,硬度越大。配位数越大,原子排的越密,则分子晶体的内均数值越大,分子晶体越稳定

共价晶体:强健主要由共价键结合形成的晶体。共价键的饱和性决定了共价晶体的配位数,它只能等于原子的共价键数,而具体的晶体结构有决定于共价键的方向性。

金属晶体:配位数大,导电,有良好的延展性

氢键晶体:氢键晶体,氢键晶体的结合能一般比较低、氢键具有饱和性。

7.金刚石,氯化钠,氢晶体分别是那种结合?

分子晶体,离子晶体,共价晶体

8.晶体中排斥力的主要来源是什么?

原子核之间的库伦排斥力,泡利不相容原创产生的排斥力

9.固体宏观弹性的微观本质是什么?

原子间存在着相互作用力

10.简述固体经典比热理论,爱因斯坦模型,德拜模型的优缺点。低温时,一维,二维,

11.求晶格振动谱时,为什么要用周期性边界条件?

与实验吻合好;方便求解原子运动方程;晶格的对称性要求

12.声子碰撞中的动量守恒和能量守恒分别表示什么含义?

动量守恒:周期性要求

能量守恒:能量守恒定律

13.为什么说热膨胀由非简谐效应产生?热膨胀系数与哪些量有关?

在简谐作用近似范围,温度上升原子位移幅度增大,但其平衡位置始终不变,就不会出现热膨胀。

格林爱森常数,体变模量,单位体积定容比热

14.晶格的热传导系数在高温和低温时与温度的依赖关系怎样?

平均自由程与平均声子数成反比,高温下Cv不变,故而热膨胀系数与温度成反比。

低温下平均自由程由于缺陷等的存在,不可能无限增长,达到定值后,热膨胀系数与Cv成正比,故而正比于T的三次方

15.体积为V,晶格常数为a的金刚石,其晶格振动的波矢的数目,格波的数目,声学支与光学支的数目分别是多少?

一个原胞含2个原子,原胞体积a^3/4,原胞数4*V/a^3,共6只格波频谱,其中3只光学支,三支声学支,波失总数6*4*V/a^3

16.温度一定时,一个光学波的声子数多呢,还是声学波的声子数多?

由于光学支格波频率高于声学支,所以声学波的声子数多(波色分布)

17.

黄昆方程的物理意义是什么?

是描述长光频波与电磁波相互耦合的基本方程

18.长光学纵波和长声学纵波能否导致离子晶体的宏观极化?为什么长声学格波

等效于连续介质弹性波?

长光学波能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移,长声学格波的特点是,原胞内原子没有相对位移。因此,长声学格波不能导致离子晶体的宏观极化。

长声学波频率和波矢呈线性关系

19.为什么说长光学横波的能量量子为电磁耦合子?

因为长光学横波能与电磁波耦合

20.LST关系的物理意义是什么?ωT→0会发生什么?

由于静电介电常数一般总是大于高频介电常数,所以,长光学纵波的频率总是大于长光学横波的频率

静电介电常数无穷大,即晶体内部出现自极化

21.自由电子的费米能与哪些因素有关?

电子气体的数密度

22.一维,二维,三维自由电子的态密度与温度关系是怎样的?

23.低温下固体的比热与温度关系是怎样的?为什么只有费米面附近的电子对比热有贡献?

24.近自由电子近似和紧束缚近似的适用范围有何不同?其波函数有什么不同?其能隙产生的原因有何不同?

25.近自由电子近似中什么情况用简并微扰?

26.周期场中运动的电子,在布里渊区边界, 其波矢和速度分别满足什么方程?

1

00

2h h h

k K K v K

??

+=?=

?

??

v v v v

v

g;

27.为什么周期场中电子的能量是波矢的偶函数和周期函数?

28. 一个能带可填充多少个电子? 2N

29. 为什么要引进电子有效质量这个物理量?

进有效质量的意义在于它概括了晶体内部势场的作用,使得在解决晶体中电子在外力作用下的运动规律时,可以不涉及内部势场的作用。

30. 有效质量为负的物理意义是什么?有有效质量与能带的宽窄有关系吗?

因为波矢为Brilouin 区边缘处的k 的电子波满足布拉格反射条件,则电子波将要受到晶格原子的强烈反射,使得电子速度下降,从而随着外力的作用,电子的动量不断增大,但是速度却是不断地减小,这就意味着具有负的有效质量

一般而言能带宽有效质量小,能带窄有效质量大

31. 周期场中电子的动量和准动量是一回事吗? 在什么情况下它们相同?

32. 在准经典近似下电子的准动量遵循什么方程?

d d dt dt

?=p E v 33. 用能带论定性解释硅为半导体,而二价碱土金属是导体。

碱土金属为立方晶体,每个碱土金属原子有两个价电子,因此,总的价电子数为2N ,而碱土金属允许的状态数为N ·2=2N ,如果电子全部填充第一布里渊区的状态,形成满带,是绝缘体。然而对于碱土金属实际上能带是各向异性的,如图所示:

因而第一布里渊区存在未满的状态,而第二布里渊区也有电子占据态,在外场作用下,形成电流,因而,由于能带的各向异性,碱土金属为导体。

34. 紧束缚近似中的能带和孤立原子中电子的能级有对应关系吗?

紧束缚近似中的能带由孤立原子中的电子能级受邻近原子的相互作用展宽而成

35. 在布里渊区边界, 费米面为什么要钝化?

费米面与布里渊区垂直;因为上边界电子速度总是垂直于边界

36. 什么是价带,空带,导带,禁带?空穴的物理量与电子的物理量有什么对应关系?

价带:价电子所处的能带;空带:没有填充电子的能带

导带:已填但未填满电子,对导电有贡献的能带

禁带:介于能带之间不能被电子填充的区域

空穴带正电荷e ,速度等于该电子速度,有效质量为正,数值上等于该电子有效质量的绝对值

37. 金属的电导率与什么因素有关?其电阻与温度关系怎样?

0L ρρρ=+ 第一项由杂质和缺陷对电子的散射引起,与温度无关,后者由晶格振动或声子对电子散射引起,与温度有关

38. 什么是朗道能级?

晶体在外磁场作用下晶体电子磁场量子化所形成的能级

39. 能带论解释金属、半导体和绝缘体。

能带论中,固体的能带由准连续分布的能力状态组成,每个状态可填充两

个电子,各能带的电子状态为2N,电子对能带的填充遵循能量最低原理以及泡利不相容原理。

电子对能带的填充可分为两种情况。

1)电子恰好填充满能量最低的一系列能带,再高的能带全部是空的。由于满带电子不导电,所有尽管有很多电子,不显示导电性,成为非导体。

2)除去完全填满的一系列较低的能带外,还有只是部分填满的能带,由于部分填充的能带中的电子导电,成为导体。该部分填充的能带成为导带。

对于一种情形,当最高填满的能带与更高空带之间的禁带宽度较小时,满带中的电子可通过热激发到空带中,从而空带中有电子,而下面的能带未满,均可导电,这种情形称为半导体。

当禁带宽度较宽是,热激发的电子不足以使电子跃迁到导带,这种称为绝缘体。

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

(完整版)固体物理概念(自己整理)

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。 2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。 倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。 5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。 9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为。 12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。 13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。 14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理基础课后1到10题答案

一.本章习题 P272习题 1.试证理想六方密堆结构中c/a=. 一. 说明: C 是上下底面距离,a 是六边形边长。 二. 分析: 首先看是怎样密堆的。 如图(书图(a),P8),六方密堆结构每个格点有12个近邻。 (同一面上有6个,上下各有3个) 上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。 中间层的三个球相切,又分别与上下底面的各七个球相切。球心之间距离为a 。 所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。 三. 证明: 如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点 3 3 'a AB AO = = ∴ (由余弦定理 ) 330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οο ο 633.13 22384132)2()2()3 ()2(2 22 222 22 2 2' '≈===∴+=+=+ =a c c a a c a a c OA AO OO

2.若晶胞基矢c b a ρ ρρ,,互相垂直,试求晶面族(hkl )的面间距。 一、分析: 我们想到倒格矢与面间距的关系G d ρπ 2=。 倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ ++= 写出)(321b b b ρρρ与正格子基矢 )(c b a ρ ρρ的关系。即可得与晶面族(hkl ) 垂直的倒格矢G ρ。进而求 得此面间距d 。 二、解: c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ ===,, 晶胞体积abc c b a v =??=)(ρ ρρ 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π ρ

固体物理概念

第一章 1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体结构——晶体结构即晶体的微观结构,就是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构就是决定固态金属的物理、化学与力学性能的基本因素之一。 2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性与各向异性、对称性、解理性等。 3、单晶体与多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 4、基元、格点与空间点阵------基元就是晶体结构的基本单元,格点就是基元的代表点,空间点阵就是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。 倒易点阵——就是由被称为倒易点或倒易点的点所构成的一种点阵,它也就是描述晶体结构的一种几何方法,它与空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。 5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,就是一种对称性原胞。 6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 7、原胞基矢与轴矢----原胞基矢就是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢就是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 8、布喇菲格子(单式格子)与复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。 9、简单格子与复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)与所有面的中心(面心格子)。 10、密堆积与配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)与2(一维)。11、晶列、晶向(指数)与等效晶列-----晶列就是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数就是晶列的方向余旋的互质整数比,表为[uvw];等效晶列就是晶体结构中由对称性相联系的一组晶列,表为。 12、晶面、晶面指数与等效晶面----晶面就是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗; 晶面指数就是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面就是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。 13、晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期与X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。 14、劳厄方程与布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射瞧作就是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线瞧作就是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程与布拉格公式,两者其实

固体物理基础解答吴代鸣

固体物理基础解答吴代鸣

————————————————————————————————作者: ————————————————————————————————日期:

1.试证理想六方密堆结构中c/a =1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (h kl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π

3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积 ()222232 322)2 2( )2(22 1 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积2 22a a a =? 所以(110)面原子面密度22 )110(2 22a a ==σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππππππ 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b - 次近邻;2,2,,2211b b b b -- 再次近邻;,,,12122121b b b b b b b b ---+- 再再次近邻;3,322b b - 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

(完整版)固体物理学基础概念

第一章晶体结构 晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ,, 晶胞体积abc c b a v )( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b 2)(2)(22)(2)(22)(2)(2321 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立

方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613 个原子。 (111)面面积 222232 322)2 2( )2(22 1 a a a a a a 所以原子面密度2 2)111(34 2 32a a (110)面 平均每个(110)面有22 1 2414 个原子。 (110)面面积2 22a a a 所以(110)面原子面密度22 )110(2 22a a 5.设二维矩形格子的基矢为j a a i a a 2,21 ,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b 次近邻;2,2,,2211b b b b 再次近邻;,,,12122121b b b b b b b b 再再次近邻;3,322b b 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。 6.六方密堆结构的原胞基矢为:

固体物理概念(自己)

固体物理概念(自己整理)

————————————————————————————————作者:————————————————————————————————日期:

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。 2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。 倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。 5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。 9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为。 12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。 13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。 14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案 第一章 微观粒子的状态 1-一维运动的粒子处在下面状态 (0,0)() (0) x Axe x x x λλψ-?≥>=? =??==?

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

(完整版)固体物理答案2

固体物理部分题目答案 注:这些题目可能与课本上有出入,大家抄题时以课本为主。还有其它题目请大家自己解决。 (本题可能与5.3题有关)6.3若将银看成具有球形费米面的单价金属,计算以下各量 1)费密能量和费密温度 2)费米球半径 3)费米速度 4) 费米球面的横截面积 5) 在室温以及低温时电子的平均自由程 解 1)费密能量2 022/3(3)2F E n m π=h 210/3(3)F k n π= 6293 313410.5100.58610/107.87 9.11101.0510A n N m m kg J s --=??=?=?=??h 0198.8210 5.5F E J eV -=?= 费密温度046.410F F B E T K k ==? 2) 费密球半径 020()2F F k E m =h 0F k =0198.8210F E J -=? 01011.210F k m -=? 3) 费密速度0F F k v m =h 61.3810F v m s =? 4) 费密球面的横截面积02022(sin )sin F F S k k πθπθ== ――θ是F k u u r 与z 轴间夹角 21/3(3)F k n π= 2223 (3)sin S n ππθ= 5) 在室温以及低温时电子的平均自由程 电导率1σρ = 20()1 F nq E m τρ= 驰豫时间02()F m E nq τρ=平均自由程0()F F l v E τ= 2F mv l nq ρ=2F k nq ρ =h 0 K 到室温之间的费密半径变化很小01011.210F F k k m -==? 平均自由程02F k l nq ρ=h 将 19293 34010162956201.6100.58610/1.05101.2101.61100.03810F T K T K q C n m J s k m cm cm ρρ----=-==?=?=??=?=?Ω?=?Ω?h 代入 8295 5.241052.4T K l m nm -==?= 6320 2.210 2.210T K l m nm -==?=? 6.2已知一维晶体的电子能带可写成)2cos cos ()(818722 ka ka ma k E +-=η式中a 为晶格常数, 试求:(i)能带宽度 )2cos cos ()(818722 ka ka ma k E +-=η (ii)电子在波矢k 时的速度 (iii)能带底和顶的有效质量 解:(i) 0=dk dE 可解得:

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

相关主题