搜档网
当前位置:搜档网 › 锚杆参数设计

锚杆参数设计

锚杆参数设计
锚杆参数设计

锚杆支护参数设计

1、锚杆长度

锚杆长度计算:L = KH + L1 + L2

式中:

L——锚杆长度,m;

H——冒落拱高度,m;

H=B/2f=3.4/(2×4)= 0.425m;

其中:

B——巷道掘进宽度,3.4m;

f——岩石坚固性系数,泥岩砂质取4;

K——安全系数,一般取

K=2;

L1——锚杆锚入稳定岩层的深度,一般按经验取0.4m;L2——锚杆在巷道中的外露长度,一般取0.05m。

则L=2×0.525+0.4+0.05=1.5m,施工时取

L=1.8m,可以满足要求。

2、锚杆间排距计算:α=(Q/KHγ)/2

式中:

α——锚杆间排距,m;

Q —锚杆设计锚固力,80KN;

H——冒落拱高度,0.5m;

K——安全系数,一般取K=2;

γ——被悬吊泥质砂岩的密度,取2600Kg/m3=2.6t/m3则

α=(Q/KH)/2=[8/(2×0.5×2.6)]/2=1.53m,施工时取

α=800mm可以满足要求。

高强螺纹钢锚杆:

Ф18×1800mm,配普通瓦型托盘及扭矩螺母、减阻增压垫片;

锚杆间排距为800mm×800mm。

顶锚使用1卷MSk2335型锚固剂,顶锚杆的锚固力必须达到50KN 以上。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

锚杆参数计算

铁迈煤矿锚杆(索)支护参数计算 一、锚杆长度: 按照加固拱原理确定锚杆参数: L≥L1+L2+L3 其中:L -------锚杆全长,m; L1-------锚杆外露长度,一般取0.05-0.2m,包括垫板、螺母;为了进行拉拔试验通常取0.2M. L2-------锚杆有效长度(顶锚杆免压拱高与帮锚杆破碎深度较大值)m; L3-------锚杆锚固长度,一般为0.3-0.5m; L2= [B/2+Htan(45°-W/2)]/f 其中:L2-------锚杆有效长度,m; B-------巷道掘进跨度,取3.8m; H-------巷道掘进高度,取3.5m; W-------围岩(煤体)内摩擦角,取45°; f-------岩石普世系数,取2.5;则 L2=[3.8/2+3.5*tan(45°-45°/2)]/2.5=1.34 所以锚杆长度L≥L1+L2+L3=0.2+1.34+0.5=2.0m,因此采用长度 为2.0m的锚杆;

结论1:锚杆长度确定为2.0m 二、锚杆间排距 B=√---Q/-(khr)------ 式中: B:锚杆间排距; Q:锚杆锚固力;取80KN K:安全系数,取2; h:巷道掘进宽度;3.8m r:上覆岩层平均体积重量取25 KN/m3 则:B=√---Q/-(khr)-----= √-80/(2*3。8*25--=0.649m,取0.6m. 结论2:锚杆间排距确定为0.6m. 三、锚索长度: 为了加强锚固体的强度,减少煤岩顶板冒落,采用锚索的长度为: L=L1+L2+L3+L4 其中:L---------锚索长度,m; L1 --------锚索深入稳定岩层锚固长度,m; L2 --------需要悬吊不稳定岩层(煤体厚度),取 2.5m; L3 --------上托盘及锚具厚度,0.15m; L4 --------需要外露张拉的长度,取0.25m。

锚杆(锚索)支护设计公式

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ15.24mm 时230kN ,钢绞线直径为φ17.8mm 时320kN ,钢绞线直径为φ21.6mm 时454kN 。 二、锚索设计破断力 钢绞线直径为φ15.24mm 时260kN ,钢绞线直径为φ17.8mm 时355kN ,钢绞线直径为φ21.6mm 时504kN 。 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b=顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。 ? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ;

G ——锚杆设计锚固力,kN/根; k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10)? b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ; 4、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度, m ; H---巷道最大帽落高度, m ;(最大取锚杆长度) γ---岩体容重,kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, m, F 1---锚杆锚固力, kN;70

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); fst ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

巷道锚杆支护技术参数的合理选择与设计(孙巧龙)

巷道锚杆支护技术参数的合理选择与设计 孙巧龙 (淮北朔里矿业有限责任公司,安徽淮北235052) 【摘要】本文浅析煤矿巷道锚杆支护高应力巷道影响锚杆支护的因素、煤巷锚杆支护的关键问题和煤巷锚杆支护的合理设计。 【关键词】锚杆支护;合理设计;选择;巷道 1引言 在煤矿巷道的锚杆支护中,由于其对破碎岩体的加固效果好,又优于U型钢被动支护,加上劳动强度低、经济效益显著的特点,因而在煤矿中得到了广泛的应用。煤矿软岩地层分布十分广泛,75%以上的采准巷道还要经受采动的频繁影响,所以在设计服务年限内的大部分巷道围岩变形量都比较大,严重的冒落无法再利用。因此,煤矿巷道锚杆支护技术研究的重点应是有效控制高应力、软岩和采动等大变形量围岩特性,以保障煤矿在安全、经济的良好环境下持续生产。 2高应力巷道影响锚杆支护的因素 2.1巷道断面 巷道锚杆支护过程中,对于深部高应力的地点,在进行断面选择时,必须根据顶底板岩性和巷道服务年限原则考虑选择。①对服务年限较长的开拓、准备巷道,应尽量选用承压效果好的圆弧拱断面。②对回采、顶板完整性较好的巷道,可采用梯形断面;复合顶板或破碎顶板的巷道,应采用承压性效果较好的斜切圆拱形断面。 就斜切圆拱形断面来说,斜切圆弧拱高一般应为巷道宽度的2/5—1/4,上肩窝部高度达到煤层顶板,下帮墙高根据设计要求进行设计。拱高控制可在掘进过程中通过控制中部高度实现。根据众多的实验证明,其断面承压效果要比梯形断面好。但是,岩石掘进工作量大是其缺点,并在一定程度上会影响掘进速度。 2.2锚杆性能 在锚杆的种类选择上,主要考虑锚杆的材质、粗度、延伸性、让压性能和预紧力等参数特性比较选择,其次是考虑锚固剂的选择。随着各种锚杆的不断出

锚杆支护参数计算

1 地质条件 岱庄煤矿综掘煤巷位于313采区中部,沿3上煤层顶板掘进,巷道底板标高在-203~-208m ,地表松散层厚度平均36m ;煤层厚度为3~3.83m ,平均3.4m ;煤层直接顶为砂质泥岩,厚度在0.60~.95m 之间,平均0.8m ;老顶为细砂岩,厚度15m 左右;底板为粉砂岩,厚度在1.158~.58m ,平均为4.9m 。 煤巷两侧及底板为煤体,粘聚力0.45MPa 、内摩擦角26°、容重1.33kg /m 3、单向抗压强度6.35MPa ;煤巷顶板为砂质泥岩,粘聚力2MPa 、内摩擦角28°、容重 2.76kg/m 3单向抗压强度20MPa ;原岩应力6.48MPa ;围岩稳定性系数为1.7,巷道围岩为Ⅳ类,属较稳定围岩。 2 锚杆及托盘材料 目前顶板锚杆采用Φ16mm 螺纹钢,设计强度240MPa ,托盘为铸钢托盘;两侧采用压缩木锚杆,设计强度17.6MPa 。 3 锚杆支护参数计算 3.1锚杆长度计算 21l l l += (1) 式中:1l 为锚杆外露长度,一般为0.1m ;2l 为被锚固围岩的厚度, 2/2h R l p -= (2) Ccon rH rH R R p +=sin 0 (3) 式中:p R 巷道围岩塑性区半径;o R 为矩形断面的等效圆掘进半径(见图1),其值为 2.18m ;h 为巷道宽度或高度,两者之间取小值,即h =2.6m 。 将上述巷道围岩参数代入式(3)得: ①巷道顶板岩层: m con R p 53.228228sin 48.648.618.2=?+?= ②卷道侧壁(煤体): m con R p 08.32645.026sin 48.648.618.2=?+?= 由式(2),得锚杆锚固区围岩厚度: 煤巷顶板岩层:m l 23.12=

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1 为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策, 确保正确地进行锚杆支护设计和施工质量,促进煤巷锚杆支护技术的健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计。锚杆支护设计要注重现场调查研究,吸取国内 外锚杆支护设计、施工和监测方面的先进经验,积极采用新技术、新工艺、 新材料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护试验工作,锚 杆支护设计要组织有关单位会审,并报集团公司备案。 3 对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必 须进行技术培训。 4 在应用锚杆支护的巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测。 第二章巷道围岩的稳定性分类 5 采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、 施工与管理提供依据。 6 巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执 行。 7 煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分

类指标。其它条件下的煤巷(如煤层上山)稳定性分类指标,可根据具体情况对分类指标进行相应替代,详见表1和表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标 表1 煤层上、下山分类指标 表2

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估—初始设计—监测与信息反馈—修改设计等四 个步骤。 锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法,结合锚杆支 护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理 论或锚杆楔固理论进行设计计算;亦可采用工程类比法进行设计。无论采用 哪种设计方法,都必须对支护状况进行监测,包括锚杆受力、巷道围岩表面 与深部位移及弱化范围、顶板离层等内容。根据监测信息反馈结果对设计进 行验证或修改。 第9条为进行科学的锚杆支护设计,必须具备表3所要求的原始资料。巷道施工后,根据实际揭露的围岩及地质构造等情况,对有关数据进行校核,为修改和完 善锚杆支护设计提供依据。

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

煤矿锚杆支护技术参数

煤层集中皮带机道锚杆锚索支护 参数设计及计算方法 煤层平均厚度3.5m,煤层结构简单,夹石层数1~2层,夹石岩性为炭质泥岩、泥岩、粉砂岩,厚度一般为0.20~0.40m,煤层顶板岩性为砂砾岩、粉砂岩、细砂岩及泥岩;煤层底板岩性有炭质泥岩、粉砂岩、砂砾岩。 煤层集中皮带巷断面设计为矩形,巷道宽度4.0m,高度3.2m,采用锚网梁索联合支护方式支护顶板,锚网支护方式支护巷帮。 一、巷道锚杆支护参数设计 (一)顶板锚杆支护参数确定 1、锚杆支护参数确定采用悬吊作用理论进行。 1)锚杆长度的确定 LLLL =++312L——锚杆长度,m;式中 L——锚杆外露长度,m;1L——锚杆有效长度,m;2L——锚杆锚固长度,m。3L的确定)锚杆外露长度(11LL=0.05m ,一般)0.02~0.03m(螺母厚度垫板厚度= ++11(2)锚杆有效长度L 的确定2. L的确定:采用解释法中普式自然平衡拱巷道顶锚杆有效长度2L。理论确定2L=1.8B/f 3时,f≥f——普氏系数,取4.5;式中B——巷道跨度,取4m;

L= 1.8B/f =1.6m,取1.65m L = 0.3~0.4m,取0.3m。3LLLL= 2L的确定(3)锚杆锚固长度3 0.05+1.6+0.3=1.95m,结合矿井实际,=++取因此,321L=2.0m。 2)锚杆间排距的确定 对锚杆支护巷道,考虑施工工艺通常取间排距相等,锚杆间排D按下式计算:距 DL=0.5*2=1m≤0.5 3)锚杆直径的确定 d可按下式计算:锚杆直径d=L/110=2000/110=18.2mm,锚杆直径取20mm>18.2mm 4)锚杆锚固力计算 锚杆锚固力可按下式计算: Q——锚杆锚固力,t;式中 2rDQ?KL2 K——锚杆安全系数,取2~3; L;m——锚杆有效长度,2. 3r。——视密度,t/m2rD?KLQ=3*1.60*1*1.45=69.6KN,采用直径20mm 的等强螺纹钢2锚杆通过树脂药卷锚固后,锚固力约70KN≥Q=69.6 KN,符合要求。 锚杆锚固采用树脂药卷。当顶部煤体较好时,锚杆锚固方式可端部锚固;当顶板煤体松软破碎时,采用全长锚固。 (一)煤帮锚杆支护参数确定 1)煤帮锚杆长度

锚索支护计算

锚索支护设计技术参数 1、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; M MM f f d K L c a a 27.13059.127010 431.14278.17241≥≥???≥?≥ 其中: K ——安全系数,一般取2; 1d ——锚索直径,17.8mm ; a f ——锚索抗拉强度,1427.31N/㎜2; c f ——锚索与锚固剂的粘合强度,10N/㎜2; b L ——需要悬吊的不稳定岩层厚度,3.7m ; c L ——托板及锚具的厚度,0.15m ; d L ——外露张拉长度,0.25m ; M L L L L L d c b a 37.525.015.07.327.1=+++=+++= 设计取锚索长度为8.3m 2、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度,4.2 m ; H---巷道最大帽落高度,2m ;(最大取锚杆长度) γ---岩体容重,39.42kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, 0.8m, F 1---锚杆锚固力,70 kN; F 2---锚索极限承载力, 320kN; θ---角锚杆与巷道顶板的夹角,75°;

n---锚索排数,取1。 L ≤nF 2/[BH γ-(2F 1sin θ)/L 1]=1×320÷[4.2×2×39.42-(2 ×70×sin75°)÷0.8]=1.974m 3、加强锚索数目的校核,应满足 断P W K N ?≥ 式中N ——锚索数目; K ——安全系数;2 断P ——锚索最低破断力,360kN ; W ——被悬吊岩石的自重,kN ; ∑∑???=D h B W γ 其中:B ——巷道掘进荒宽,4.2m ; D ——锚索间排距,取不大于锚索长度的1/2,取4.15m ; ∑h ——悬吊岩石厚度,3.7m ; ∑γ——悬吊岩石平均容重,24.13kN/m 3。 KN D h B W 17.155615.413.247.32.4=???=???=∑∑γ 6.836017.15562=?=?≥断P W K N 根

锚杆支护参数设计

煤巷锚杆支护参数设计方法 煤巷的突出特点就是承受采动支承压力,围岩破碎,变形量大。巷道锚杆支护设计,首先要对巷道所经受采动影响过程及影响程度进行准确的评估,对巷道使用要求和设计目标要予以准确定位。比如,是按采动影响时的支护难度设计支护,还是按照采动影响前的使用要求设计,不同的设计思想,结果大不相同。 目前,我国煤巷支护设计方法大致分为三类,即工程类比法、理论计算法及实例法。 1)工程类比法 工程类比法是当前应用较广的方法。它是根据已经支护的类似工程的经验,通过工程类比,直接提出支护参数。它与设计者的实践经验有很大关系。然而,要求每一个设计人员都具有丰富的实践经验是不切实际的。为了将特定岩体条件下的设计与个别的工程相应条件下的实践经验联系起来进行工程类比,做出比较合理的设计方案,正确的围岩分类是非常必要的。进行围岩分类后,就可根据不同类别的岩层,确定不同的支护形式和参数。 (1)巷道围岩分类方法 围岩分类方法的研究工作历史悠久,早在18世纪,在采矿及各地下工程已开始用分类的方法研究围岩的稳定性。随着采矿和人们对岩石物理力学性质认识的不断深入,国内外围岩分类研究得到了迅速发展,据不完全统计,有影响的围岩分类有五六十种之多。 a. 普氏岩石分级法 该法用岩石坚固性系数f(普氏系数)来对围岩分类,f值等于岩石的单向抗压强度除以10。坚固性系数是岩石间相对的坚固性在数量上的表现,它最重要的性质在于不论是何种抗力,以及这种抗力是如何引起的,而给予岩石相互之间进行比较的可能性。普氏岩石分级法来自实践,并且有抽象概括的程序可取,所提出的岩石坚固性系数值简单明确,到目前仍有一定的使用价值。 b. 煤矿锚喷支护围岩分类 为了适应巷道锚杆支护的需要,原煤炭工业部颁布的《煤炭井巷工程锚喷支护设计试行规范》制定了煤矿锚杆支护围岩分类,见表1。该分类综合考虑了岩石的单向抗压强度、岩体结构和结构面发育状况、岩体完整性系数、围岩稳定时间等多种因素,是一种典型的多指标分类方法。 c. 围岩松动圈分类 围岩松动圈是一个定量的综合指标,它是建立在对巷道围岩实测的基础上,几乎不作任何假设,用现场实测和模拟试验,研究围岩状态,找出围岩松动圈这一综合指标,用来作为围岩分类的依据。这一分类方法简单、直观性强、易于掌握,受到众多煤矿巷道设计与施工人员的欢迎。 经过大量的现场松动圈测试及其与巷道支护难易程度相关关系的调研之后,依据围岩松动圈的大小将围岩分成小松动圈,中松动圈、大松动圈三大类六小类,如表2所示。

锚杆和锚索支护参数的计算

一、锚杆支护参数的计算 1)锚杆长度的确定: 顶锚杆 根据悬吊理论计算: 本矿的煤层顶板属中等稳定形,锚杆须锚入稳定岩石0.35米,锚杆外露0.05米,,则锚杆的长度L=l 1+l 2+l 3=1.3+0.35+0.05=1.7 (m) 其中 L 1------顶板最大松动圈的厚度,根据已掘巷道离层分析 得1.3米 L 2------锚杆须锚入稳定岩石长度,取0.35m L 3------锚杆外露长度,0.05m 结合锚杆支护技术规范要求及我矿生产实际选定锚杆长度1.8m 2)锚杆间排距的确定: L= h K Q =1.02米,考虑巷道宽度间距取0.8米,排距取1.0米。 锚杆的抗拉力为 5.0吨,经矿技术科和安全科做锚杆拉拔力实验,锚杆的抗拉力均在5.0吨以上。 其中 Q----抗拉力,取5.0 k-----安全系数,取1.5 γ---岩石容重,取2.5T/m 3 h----顶板最大松动圈的厚度,根据已掘巷道离层分析得1.3米 考虑巷道宽度,间距取0.8米,排间取1.0米,符合理论计算要求。 二、锚索间排距的确定: L=nF 2/[BH γ-(2F 1sin θ)/L 1]

式中: L—锚索排距,m; B—巷道最大冒落宽度,3.1m; H—巷道冒落高度,按最严重冒落高度取3.6米; γ—岩体容重,取25KN/m3; L1—锚杆排距,1.0米; F1—锚杆锚固力,取50KN; F2—单根锚索的极限破断力,取210KN; θ—角锚杆与巷道顶板的夹角,85o; n—锚索排数,取2; L =2×210/[3.1×3.6×23-(2×50×sin85o)/1]=2.5m 考虑巷道宽度,间距取1.6米,排距取2.0米,符合理论计算要求。

锚杆(锚索)长度、间排距、全参数地确定

1锚杆支护参数的确定 (1) 两帮破坏范围C 的确定 222 1.5 [-]() cos(/2)2 cot (45)1 12 t c c t t y k k l k l h C u k u σσσσα?+-= +--- 式中,k ——应力集中系数; kt ——巷道维护时间影响系数; k c ——煤层稳定影响系数; σc ——煤帮煤层单轴抗压强度(MPa ); σy ——垂直自重应力(MPa ); α——煤层倾角(°); h c ——被巷道切割的煤层厚度(m ); l t ——巷道切割煤层(岩层)的最大宽度 u ——煤层的泊松比; φ——煤层的内摩擦角(°) 。 (2) 巷道顶板破坏范围的确定 1sin 2sin (cot )(1sin )[] cot o p o C R R C φ φ ρφφφ -+-= 式中,R p ——为围岩松动范围(m ); R o ——巷道外接圆半径(m ); ρo ——原岩自重应力(MPa ); C ——顶板岩石粘结力(MPa ); φ——为顶板岩石内摩擦角(°)。 (3) 锚杆直径 0.018m φ== 式中,

s mm a Q 1.1320mm σΦ—锚杆直径(); —螺纹钢抗拉强度(MP ); —锚杆锚固力; 考虑富余系数,锚杆直径确定为。 (4) 锚杆长度 tan 1.8tan 450.50.10.1 2.4()tan tan 45b a l m ?++=+=+=?o o 式中, b m a m ?。 —组合拱厚度(); —锚杆对岩层的控制角()—锚杆间排距()。 2锚索支护参数的确定 1锚索长度的确定 123a a a a L L L L =++ 式中: L a ——锚索长度(m ); L a1——锚索外露长度(m ); L a1——锚索有效长度(m ); L a2——锚索锚固长度(m )。 (1)静压软岩巷道 在锚杆失效的情况下,其潜在的冒落高度为1.5倍的巷道宽度。同时为保证巷道的稳定性,锚索应保证锚固到稳定的岩层内,锚索有效长度: 21max 1.5,n a i i L a h =?? =???? ∑ 式中,a ——巷道宽度(m ); h i ——稳定岩层下各层厚度(m ); i ——稳定岩层下岩层层数。 (2)动压软岩巷道

岩巷支护设计理论计算及参数确定方法

岩巷支护设计理论计算及参数确定方法 1、按自然平衡拱理论计算 Ⅰ、两帮煤体受挤压深度C C=((KrHB/1000fcKc)Cos(a/2)-1)h×tg(45-ψ/2) =((2.5×24×510×1/1000×2×1.0)Cos(23°/2)-1)×2.65×tg(45°-63°/2)=8.9m 式中: K——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8 r ——上覆岩层平均容重,取24KN/ m3 H——巷道埋深m B——固定支撑力压力系数,按实体煤取1 fc——煤层普氏系数, Kc——煤体完整性系数,0.9-1.0 a——煤层倾角 h——巷道掘进高度m ψ——煤体内摩擦角,可按fc反算 Ⅱ、潜在冒落高度b b=(a+c)Cosa/Kyfr =(2.1+8.9)×0.92/0.45×4=5.62m 式中:a——顶板有效跨度之半 m Ky——直接顶煤岩类型性系数。当岩石f=3-4时,取0.45 ;f=4-6 时,取0.6; f=6-9时,取0.75。

Fr——直接顶普氏系数 Ⅲ、两煤帮侧压值Qs Qs=KnCr煤[h×sina+b×cos(a/2)×tg(45-a/2) =2.5×2×8.9×1.48[2.65×0.39+5.62×0.98×0.24=155kN/m 式中:n——采动影响系数,取2-5 r煤——煤体容重,KN/m3 (1)顶锚杆长度L L=L1+b+L2 =0.05+5.62+0.35=6.02 式中:L1——锚杆外露长度 m L2——锚固端长度 m b——潜在冒落拱高度 m 锚杆间距D≤1/2L 锚杆排距LO=Nn/2K〃rab =105×12/2×2×24×2.1×5.62= 式中:n——顶板每排锚杆根数 N——每根锚杆锚固力,KN K——安全系数,取2-3 r ——上覆岩层平均容重,取24KN/ m3 a——1/2巷道掘进跨度,m (2)煤帮锚杆

巷道锚杆支护计算公式概要

50 a=b= 2 0.43 26 .44 =1.48m 根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度 1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进, 采取锚网 支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强 度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定 1552 回风巷、1552回风巷皮带机头硐室,采用锚杆一钢筋网一钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据 15#煤层邻近巷道的支护经验,1552 回风巷巷道顶锚杆选用? 16mM 1800mn 的圆钢锚杆,间距1000mm 排卡距900mm 选用1x7丝? 15.24mm 锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支 护。 ㈡采用计算法校核支护参数 1、 锚杆长度计算 L = KH+L 1+L 2 式中:L ――锚杆长度,m H ――冒落拱高度,m K---- 安全系数,取2 L 1――锚杆锚入稳定岩层深度,取 0.5m L 2――锚杆在巷道中的外露长度,取 0.05m 其中:H=B/2f=3.4/(2 X 4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2X 0.43+0.5+0.05=1.41m 施工时取 L=1.8m 2、 锚杆间距、排距a 、b 式中:a 、b ---- 锚杆间、排距m Q ――锚杆设计锚固力,50kN/根; H 冒落拱高度,取0.58m ; K ――安全系数,取2; r ――被悬吊粘土岩的重力密度,26.44kN/m 3

锚杆支护技术规范(试行)

第一章总则 第1条为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策,确保正确地进行锚杆支护设计和施工质量, 促进煤巷锚杆支护技术的健康发展,特制定本规范。 第2条锚杆支护巷道施工必须进行设计。锚杆支护设计要注重现场调查研究,吸取国内外锚杆支护设计、施工和监测方面的先进经 验,积极采用新技术、新工艺、新材料,做到技术先进、经济 合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护 试验工作,锚杆支护设计要组织有关单位会审,并报集团公司 备案。 第3条对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必须进行技术培训。 第4条在应用锚杆支护的巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置矿压及安全监测装置,并有专人负责监测。 第二章巷道围岩稳定性分类 第5条采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、施工与管理提供依据。 第6条巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执行。

第7条煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分类指标。其它条件下的煤巷(如煤层上山) 稳定性分类指标,可根据具体情况对分类指标进行相应替代, 详见表1和表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标 表1

煤层上、下山分类指标 表2 第三章锚杆支护设计 第8条锚杆支护设计应贯彻地质力学评估—初始设计—监测与信息反馈—修改设计等四个步骤。 锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法, 结合锚杆支护实践,可根据直接顶稳定情况,按悬吊理论、自 然平衡拱理论、组合梁理论或锚杆楔固理论进行设计计算;亦 可采用工程类比法进行设计。无论采用哪种设计方法,都必须 对支护状况进行监测,包括锚杆受力、巷道围岩表面与深部位 移及弱化范围、顶板离层等内容。根据监测信息反馈结果对设

锚杆支护计算

2.3 支护参数计算 根据锚杆加固作用原理,确定如下参数: 2.3.1锚杆长度 123L L L L =++=0.15+1.5+0.4=2.05m 式中, 1L —锚杆外露长度,其值主要取决于锚杆类型及锚固方式,一般取0.15m , 对于端锚锚杆,L 1=垫板厚度+螺母厚度+(0.03~0.05),对于全长锚固锚杆,还 有加上穹形球体的厚度; 2L —锚杆的有效长度,即围岩松动圈的范围,通过查规范知一般取1.5m; 3L —锚杆锚固段长度亦即锚杆锚入坚硬岩石的长度,一般L3=0.3~0.4,由拉 拔实验确定,当围岩松软时,L 3还要加大,取L 3为0.4m 。 为安全施工,取锚杆长度L=2100mm 长满足要求。 围岩内外围层结构的稳定性分析 巷道围岩范围内各部分岩体,由于其距巷道周边的距离和岩性的不同,对巷 道稳定性的影响作用是有显著差别的。根据这种作用的大小以及一般巷道支护控 制作用的范围,可将巷道围岩分为内层围岩和外层围岩两部分,然后研究内外层 围岩的结构类型及其与围岩稳定性之间的关系,并提出相应的围岩控制原则。 (1)内层围岩。内层围岩是指距巷道周边较近的那部分岩体,其范围与通常 意义上的松动圈范围相当。如图所示,内层围岩的结构与性质对巷道稳定性影响 最大。这部分岩体受开挖及风化等影响严重,最易出现破坏和冒落,围岩变形的

绝大部分是由这部分岩体产生的,锚杆支护、注浆加固及人为卸压等措施大致上 也是在该范围岩体中进行的。可见,内层围岩既是影响巷道稳定性的最关键部分, 也是人为控制措施的主要的和直接的作用对象。 (2)外层围岩。外层围岩是围岩中距巷道周边较远的那部分岩体。与内层围 岩相比,外层围岩受开挖及风化等影响较小,受支护控制作用的影响也较小;总 的围岩变形中,外层围岩所占比例很小,对巷道稳定性的影响也较小。 (3)内外层围岩之间的关系。根据上述定义可知.内层围岩的结构与性质是 影响巷道稳定性的决定因索,外层围岩的结构与性质对巷道稳定性的影响要通过 内层围岩来实现;支护控制的主要对象是内层围岩。内层围岩往往与支护形成整 体承裁结构,外层围岩则是上覆岩层压力向内层围岩和支护传递的中介。 巷道围岩内外层结构 2.3.2 锚杆直径: 锚杆采用20MnSi Ⅱ级建筑用螺纹钢系列,锚杆的直径根据杆体承载力与锚 固力等强度原则确定,即 11435.5235.5220.5340 t Q d mm σ===

煤矿锚杆支护技术规范

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

锚杆支护规范

矿区锚杆支护技术规范 .1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。 指导思想是:解放思想,实事求是,因地制宜,积极推广应用。 工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括: (1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等); (2) 采区集中巷; (3) 煤层大巷; (4) 各类煤巷交岔点和峒室。 1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。 1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。 1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。 1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容 (1) 巷道围岩岩性与强度 煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。 (2) 围岩结构与地质构造 巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力

巷道支护参数计算

巷道支护参数计算 The manuscript was revised on the evening of 2021

40119运顺宽度,高度,全煤层中掘进,煤厚。根据工程经验,顶部锚杆规格为φ20mm ×2300mm ,间排距700×800mm 。运顺顶板锚索间排距为1400×800mm ,每排4根。运顺帮部采用螺纹钢锚杆配以金属网、锚索进行支护;帮部锚杆规格均为φ18×2000mm,间排距均为800×800mm 。 用极限平衡下塑性区计算法、悬吊理论、组合梁理论、自然平衡拱理论验算。 1、极限平衡塑性区法 ①极限平衡下的塑性区半径 ()? φ φφγφsin 2sin 1)K (sin 1-?? ??????+?-=ctg C ctg C H R R o s 式中:s R —巷道塑性区半径,m ; o R —巷道外接圆半径,通过几何法算出外接圆半径; γ—上覆岩石平均容重,取m 3; H —巷道埋深,最大埋深560m ; C —围岩粘结力,; φ—围岩内摩擦角,30°。 经计算得: ()m 51.730)303(30sin 139.330 sin 230sin 1=?? ? ? ????+??-=-ctg C ctg C H R s γ ②计算维持极限平衡区岩石不冒落所需要的支护力 顶部岩石荷载的厚度为: h d =Rs-b/2 式中:s R —巷道塑性区半径,m ; b —巷道高度 经计算得: h d =为了维持极限平衡区岩石不冒落所需要的最小支护力为: 顶部:P 顶==∑i i h γ×m3=m2 ③锚索提供的支护抗力为:

D B q n s ?=s P 式中: q s --锚索破断力,钢绞线取q s =400kN ,; B —巷道宽度,; D —锚索排距,; n —每排锚索根数,4; 计算得:㎡8.3440.8 8.5400 4KN P s =?? =。 ②锚杆提供的支护抗力 锚杆加固后所形成的均匀压缩带提供的支护抗力为: 2 m m m D q P ?= η 式中:q m --锚杆锚固力,100KN ; D m 2--锚杆间、排距,*㎡; η--锚杆支护系数,取η=。 计算得:P m =m 2 ③支护总抗力 P 总=P s +P m =+=(kN/m 2) ④支护安全系数 K== 安全系数不小于,满足工程要求。 悬吊法参数验算 1、按单体锚杆悬吊作用计算锚杆长度,应满足: L ≥L 1+L 2+L 3 式中:L —锚杆总长度; L 1—锚杆外露长度(钢带厚度+锚杆牌厚度+螺母厚度;+~,顶锚杆取,帮锚杆取),m ; L 2-有效长度(顶板锚杆取免压拱高b ,帮锚杆取煤帮破碎深度c ),m ;

相关主题