搜档网
当前位置:搜档网 › 建筑英文期刊及中英文翻译

建筑英文期刊及中英文翻译

建筑英文期刊及中英文翻译
建筑英文期刊及中英文翻译

非线性有限元分析高层建筑物钢筋混凝土筒中筒结构

摘要

非线性有限元分析有可能作为一种容易使用的和可靠的分析手段用于土木结构的计算机技术。结构行为和模式的失败,在钢筋混凝土筒中筒高层建筑中通过计算机应用程序提出了宇宙/米。三维模型进行的方法用于这个研究是基于非线性材料,通过修改一个季度模型变形形状整体筒中筒高层建筑双曲率大大提高精度。钢筋混凝土结构的极限行为使筒中筒高层建筑的混凝土开裂、压碎。

1.简介

筒中筒的概念在高层建筑中着力于改善结构效率的横向阻力。其基本形式包括一个中央核心环绕,周边框架封闭间隔,周边柱并列,每层水平梁形成一个筒状结构。通常这些建筑物是对称的,其主要结构的变形发生在四个正交帧形成的周边筒和在这个中央核心(阿维格多鲁滕贝格和艾森伯格,1983)。水平荷载下,框架筒和中央核心像一个悬臂箱梁和二筒内的外筒。为了得到更准确的分析结果,中央核心设计可能不但承担重力负荷,还能抵御侧向荷载。除地板结构还有内部筒一起作为一个单一的单位用于他们的互动模式设计。在本研究中被认为没有扭转效应,因此地板是有效地枢接于水平力垂直结构的建筑。组合剪力墙和框架结构已被证明能够提供一个适当的加强横向建筑的高层结构。作为剪力墙剪力和弯矩的偏转,致使连接梁与板引起的轴向力,周边框架和中央墙作为一个复合结构和变形,如图1。横向力主要由框架在上层部分和核心的下层部分。轴向力作用于壁流附近的框架基础和框架抑制墙顶部。本研究的主要目的是预测钢筋混凝土筒中筒高层建筑最终失败的总体行为。因此,非线性分析使在这项研究中能更好地了解故障模式。非线性分析模型结构行为的最终状态时,线性分析是一种传统的分析(阿尔多cauvia,1990)。一个sysmetrical筒中筒钢筋混凝土高层建筑如图2所示,三个三维(三维)季度模型采用有限元分析方法并考虑材料非线性。

a b c

图1(a)变形形状的框架;(b)剪切变形形状墙;(c)变形形状结合框架-剪力墙

2.分析方法

2.1描述模型

该nlfea模型是一个16层钢筋混凝土筒中筒结构的高层建筑。楼层高度3.50m除底层搭高度。全筒模型对称,筒内7.50m×7.50m包围外围的框筒22.50m×22.50m。所有外围列被安排在4.5米中心到中心的大小,0.90m×0.90m从一楼到10级和0.75m×0.75m列10级之后。拱肩梁尺寸250 mm宽和750mm高与周边柱形成外围筒。板的厚度和规格推定作为一个水平隔板传递侧向荷载以及垂直荷载。内筒是由方形穿孔剪力墙的厚度的350 mm和耦合束保持类似的剪力墙厚度与深度1000 mm。宇宙/米2(64 K版)使用有限元软件生成模型并进行后续的非线性静态分析。模型的理想化和域离散活力,最后模型如图2(a)是作为一个在本研究中最终的结果。

图2(a)计划筒中筒式高层建筑(b)三维修改模型

2.2材料特性

所有的元素都是由一个元素组即8节点等参六面体固态元件与材料性质如表1。参数混凝土的抗压强度,屈服应力加固,混凝土的密度,弹性模量弹性和泊松比符合学士学位bs8110:1部分:1995、bs8110:2:1985。混凝土和reinforcementare分配作为一个复合材料anmodified 弹性模量的假设1%个加固的结构因素。

表1材料

2.3边界条件和加载

边界条件在基础上设计了所有的自由度(6自由度),边界条件在迪scontinuous边缘被分配风速负荷在水平屋面44.44米/秒和负载分布均匀沿表面从底部到顶部建筑(处长3:第五章:2部分:1972)。活荷载3千牛/米2(b6399 :1:1984)和永久荷载5.40千牛/米2板坯均匀分布的垂直荷载。

2.4混凝土在压缩和拉伸性能

图3材料模型

X=线性拉伸硬化曲线

?max=故障点的压缩

?tu =故障点紧张(0.1?cu)

εcr=0.1?cu/弹性模量,欧共体

εt =紧张僵硬

非线性应力应变关系采用的材料模型根据BC8110:部分2:1985如图3所示。峰值应力的0.8 fcu代表最大应力混凝土单轴应力状态。采用压缩应变最大应力为0.0022,极限应变为0.0035。破碎的条件定义是当εcu达到指定值的极限应变和假设材料失去其强度和刚度特性。

拉应力下混凝土,可以假定为线性,直到在其抗拉强度的0.1 fcu(marsono,2000)时发生破裂。在钢筋与混凝土相互作用的研究中,通过引入模拟张力将混凝土模型负荷通过钢筋转移在裂缝(m.r.chowdhury和j.c.ray,1995)。该应力值线性下降到零,然后发生开裂。张力增强明显影响钢筋混凝土结构的非线性行为。因此使用融合方法,紧张僵硬的一部分参数作为研究中的非线性分析。与参考这一材料模型见图3,拉伸硬化曲线参数可以在0.0002以上(即大于0.00018)。

2.5解决nlfea

弧长法与迭代修正牛顿(民革)是用于控制求解非线形分析。分析是需要解决达到令人满意的参数实现收敛。在本研究中参数的非直线解如表2。在负载进行分析中,可以通过终止控制最大负荷参数或最大位移值。本研究最大数量的弧步在表2被设置为50,因为实际弧步完成最终不知道最初的分析。初始负荷参数只适用在第一步的分析中,然后下一个负载参数将自动增加的修正牛顿算法。收敛公差必须被指定为分析步骤错误之间的解决方案。

3.结果

3.1nlfea产出和结果的解释

基本上在nlfea钢筋混凝土高层建筑结构,产出的主应力是导致目前失败的具体原因。混凝土破碎时达到最小主应力值,P3超过抗压强度(即0.8 fcu)而定义的数值时的最大主应力,小到抗拉强度(即0.1f cu)。张力裂缝方向被认为是垂直方向的主应力,小而破碎的方向是假定为下沉到主应力方向P3。

3.2横向位移

载荷-位移响应的是在图4。最大横向位移103毫米在2268节点,其中位于顶部的水平模型如图7(乙)。最大负荷59.17千牛在记录点A 。 负载与横向位移图

位移(米)

负荷系数=6.607千牛

图4负载与横向位移图节点2268

3.3主应力在剪力墙

轮廓的主应力小代表的最大张力(+我最大)和小三代表最高压缩(-我最大)。抗压强度采用这个模型是0.8fcu=0.8×35 =28牛顿/毫米2。图5(一)清楚地表明,剪切墙壁开始挤压转角处的剪力墙基础(2286节点)的压缩应力28.45牛顿/毫米2(即大于28牛顿/毫米2)。

第二十一步混凝土压碎1

压碎面积

图5最小主应力等值线图的部分剪

力墙基础混凝土破碎步骤21

3.4主应

力耦合

应力分布和变形形状耦光束在水平1如图6所示。混凝土裂缝发

生在角落的张力,节点3475元1489步15。主应力小的记录在4.106

牛顿/毫米2其中超过0.1?cu=3.5牛顿/毫米2。它是一个明显的迹象,张力的轮廓在对角的耦合梁跨中。另一种看法是压缩应力在两个

5.结论 该nlfea 最终阶段使用的宇宙是有限元软件对三

维模型地进行了成功修改。该系统能够捕获所有的非线性行为的负载进展。然而,一个完善的模型可

以进行有限元参数,从而验证结果与实验室试验结果尽可能相同。本研究结果可总结如下:

(一)季度模型具有非线性行为到极限状态。

(二)修改边界条件,通过分配约束在x 方向的所有板的边缘,完全约束在墙底端被认为是适当的,在创造一个双曲率剖面预计在筒中筒模型。

(三)nlfea 在筒中筒建筑表现良好,使用非线性混凝土应力-应变曲线多达32步的非线性和产量的最终行为高层建筑。 (四)模型其中包括全配置的剪力墙,发现是适当的建模的筒

中筒高层建筑作为四分之一部分。

因此,行为的耦合光束成功地提出了。 Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE TUBE IN TUBE OF

TALL BUILDINGS

Abstract: The non-linear finite element analysis (NLFEA) has

usable and reliable means for analyzing of civil structures with the availability of computer technology. The structural behaviors and mode of failure of reinforced concrete tube in tube tall building via application of computer program namely COSMOS/M are presented. Three dimensional quarter model was carried out and the method used for this study is based on non-linearity of material. A substantial improvement in accuracy is achieved by modifying a quarter model leading deformed shape of overall tube in tube tall building to double curvature. The ultimate structural behaviors of reinforced concrete tube in tube tall building were achieved by concrete failed in cracking and crushing. The model presented in this paper put an additional recommendation to practicing engineers in conducting NLFEA quarter model of tube in tube type of tall building structures.

INTRODUCTION

Tube in tube concept in tall building had led to significant improvement in structural efficiency to lateral resistance. In its basic form, the system comprising a central core surrounded by perimeter frames which consists of closed spaced perimeter column tied

at each floor level by spandrel beams to form a tubular structure. Usually these buildings are symmetrical in plan, and their dominant structural action take place in the four orthogonal frames forming the perimeter tube and in the central core (Avigdor Rutenberg and Moshe Eisenberger, 1983). Under the lateral load, a frame tube acts like

a cantilevered box beam to resist the overturning moment and the central core acting like second tube within the outside tube. In order to get the more accurate result of analysis, the central core may be designed not only for gravity loads but also to resist the lateral loads. The floor structure ties the exterior and interior tubes together to make then act as a single unit and their mode of interaction depending on the design of floor system. No torsion effect was considered in this study, thus the floor system is effectively pin jointed to allow horizontal forces transmission before primary vertical structural elements of the building.

Combining shear wall and frame structures has proven to provide an appropriate lateral stiffening of tall building. As the shear wall deflects, shear and moments are induced in connecting beam and slabs which later induced axial forces in walls. The perimeter frame and the central wall act as a composite structure and deformed as in Figure 1. The lateral force is mostly carried by the frame in the upper portion of the building and by the core in the lower portion. The deflected shape has a flexural profile in the lower part and shear profile in the upper part. The axial forces causing the wall to shed the frame near the base and the frames to restrain the wall at the top.

The main purpose of this study is to predict the ultimate failure behavior of overall reinforced concrete tube in tube tall building. Hence, non-linear analysis has to be carried out in this study for better understanding of failure mode. Non linear analysis is

a modelling of

structural behavior to the ultimate state while linear analysis is a conventional analysis that does not pretend to be accurate (Aldo Cauvia, 1990). A sysmetrical tube in tube

reinforced A-161

Proceedings of the 6th Asia-Pacific Structural Engineering and

Construction Conference (APSEC 2006), 5 ?6 September 2006, Kuala

Lumpur, Malaysia

concrete tall building as shown in Figure 2, three dimensional (3D) quater model was implemented with finite element analysis method and take into account material non linearity.

( a ) ( b ) ( c )

Figure 1 (a) Deform shape of frame; (b) Deform shape of

shear wall; (c)Deformshapeofcombineframe+shearwall

METHOD OF ANALYSIS

Description of Model

The NLFEA model is a 16 stories reinforced concrete tube in tube tall building with typical storey height of 3.50m except ground floor is 6.0m heights. The full tube model is symmetrical in both axes in plan. The internal tube 7.50m x 7.50m is surrounded by perimeter frame tube 22.50m x 22.50m. All perimeter columns were arrange closely spaced at 4.5m center to center with the size of 0.90m x 0.90m from ground floor up to level 10 and 0.75m x 0.75m column after level 10. The spandrel beams are dimensioned 250mm thick and 750mm depth and tied to the perimeter column to form a perimeter tube. The thickness for slab is 175mm and presumed to act as a horizontal diaphragm to transfer the lateral load as well as vertical loads. The internal tube is formed by square perforated shear wall with the thickness of 350mm and the coupling beam is kept similar as thickness of the shear wall with the depth of 1000mm. COSMOS/M 2.0 (64K Version) finite element software is used to generate the model and perform subsequent non linear static analysis. For modelling idealization and domain discretization viability, only a modified quarter of tube in tube tall building is modelled in view of symmetrical and to cater limitation of COSMOS/M. After several attempts of NLFEA Run were performed out, the final model as indicated in Figure 2(b) was adopted as a final result in this study.

A-162

Proceedings of the 6th Asia-Pacific Structural Engineering and Construction

Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

Frame system acting

22.5 m as outer tube

Shear wall acting

as inner tube

22.5 m

Quarter

model

2.75 m

2.0 m2.75 m

4..5 m 4..5 m 4..5 m 4..5 m 4..5 m

(a)(b)

Figure 2 (a) Plan view of full tube in tube type of tall building

(b) 3D modified quarter model

Material Properties

All elements are represented by one element group i.e. 8 Node Isoparametric Hexahedral Solid elements associated with the material properties as indicated in Table 1. The values for of compressive strength for concrete, yield stress of reinforcement, concrete density, modulus of elasticity and Poisson?s ratio conforms to BS BS8110: Part 1: 1995 and BS8110: Part 2: 1985.The concrete and reinforcementare assigned as one composite material with anmodified modulus of elasticity by assuming 1% of reinforcement for the structural element.

A-163

Proceedings of the 6th Asia-Pacific Structural Engineering and Construction

Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

Boundary Condition and Loading

The boundary conditions of the foundation were designed as all degree of freedom (all 6 DOF) while the boundary condition at the discontinuous edges of slab were assigning translation X. The velocity of wind load acting on the horizontal surface of the building is 44.44 m/s and the load is distributed uniformly along the surface from the bottom to the top of the building (CP 3: Chapter V: Part 2: 1972). The live loads of 3.0 kN/m2 (BS 6399: Part 1:

1984.and dead loads of 5.40 kN/m2 for slab distributed uniformly as vertical loads.

The nonlinear stress-strain relation adopted to represent the material model was according to BS 8110: Part 2:1985 as shown in Figure 3. The peak stress of 0.8f cu represents

the maximum stress in concrete in uniaxial stress condition. The adopted compressive strain at maximum stress is 0.0022 and ultimate strain is 0.0035. The crushing condition is defined cu reaches the value specified as the ultimate strain and that material was assumed to

when

lose its characteristics of strength and rigidity

Under tensile stress, concrete can be assumed as essentially linear until cracking occur at its tensile strength of 0.1 f cu (Marsono, 2000). The interaction of rebar and concrete are

simulated by introducing tension stiffening into the concrete model to simulate load transfer across cracks through the rebar (M.R.Chowdhury and J.C.Ray, 1995). The stress values were decreased linearly to zero after the cracking. Tension stiffening effect has significant influence on the nonlinear behavior of reinforced concrete structures. Thus using tried and converged

method, tension stiffening is a part of parametric study in non-linear analysis. With reference to this material model in Figure 3, tension stiffening curve parameter can be search at 0.0002 upwards (i.e. greater than 0.00018).

Solution of NLFEA

The arc length method with iteration Modified Newton-Raphson (MNR) is used for the solution control of non- linear analysis. The analysis is required to reach the satisfactory solution parameters to accomplish the convergence. The parameter of the non -linear solution for this study as indicated in Table 2. During the load progressing, the analysis can terminate by controlling the maximum load parameter or the maximum displacement values. The maximum number of arc step in Table 2 is set to 50 since the actual arc step to complete the analysis to ultimate is not known initially. The initial load parameter is applied only at the

A-164

Proceedings of the 6th Asia-Pacific Structural Engineering and Construction

Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

first step of analysis then the next load parameter will be increased automatically by Modified Newton-Raphson algorithm. The convergence tolerance must be specified for the analysis between steps as an error of solution.

RESULTS

NLFEA Output and Interpretation of Results

Basically in the NLFEA of reinforced concrete tall building structure, the outputs of principal stress are used to present the failure of concrete structures in compression and tension. Concrete crushing is achieved when the values of minimum principal stress, P3 exceed the compressive strength (i.e. 0.8f cu) while concrete cracking is defined when the values of

maximum principal stress, P1 reached the tensile strength (i.e. 0.1f cu). The tension cracking direction is assumed to be perpendicular to the direction of the principal stresses, P1 while the crushing direction is assumed to be perpendicular to the direction of principal stresses, P3. Lateral Displacement

The load displacement response is presented in Figure 4. The maximum lateral displacement is 103 mm at node 2268, which located at the top level of model as indicated in Figure 7(b). The maximum load recorded is 59.17 KN at point A.

Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference

(APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

Principal stress in shear walls

The contours of the principal stress P1 representing the maximum tension (+ve maximum) and P3 representing the maximum compression (-ve maximum). The crushing strength adopted in this model is 0.8 f cu = 0.8 x 35 =28 N/mm2. Figure 5(a) clearly indicates the shear

wall start to crush at the corner of shear wall base (node 2286) with the compression stress of 28.45 N/mm2 (i.e. greater than 28 N/mm2 ).

Concrete crushing at step 21

Crushing area

Element

922

Node 2286

P3= - 28.45 N/mm2

Figure 5 Minimum principal stress contour diagram at the part of shear wall

base during concrete crushing at step 21

Principal stress in coupling beam

The stress contour and the deformed shape of coupling beam at level 1 are presented in Figure 6. The concrete cracking occur at the tension corner, node 3475 of element 1489 since step 15. The principle stress P1 was recorded at 4.106 N/mm2 which exceed 0.1 cu = 3.5 N/mm2 . It is a clear indication of the tension contour was induced diagonally at the mid span of coupling beam. Another observation is the compression stress at both corners of coupling beam was increased by increment of steps until the analysis terminated at step 32, the maximum compression stress achieved is 19.38 N/mm2 which is lesser than the crushing stress, 28 N/mm2 .

Concrete cracking at node 3475, element of 1489 with P1=4.106 N/mm2 Step 15

Diagonal tension evident at the mid span of coupling

(a)

beam. Cracking failure reached.

( P1 > 3.5 N/mm2 )

Node 2419, P3=-19.38

N/mm2

Step 31 Maximum compression of

coupling beam at corner. (node 2419 & node 3443)

(b)

Node 3443, P3 = -18.91 N/mm2

Crushing failure was not occur in coupling beam. ( P3 < 28 N/mm2 )

Figure 6 (a) Maximum principal stress contour for coupling beam at level 1;

A-166

Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

DISCUSSION

Overall building behavior

The modified quarter model had improve the deform shape of overall tube in tube tall building as shown in Figure 7. The deformed shape yields double curvature deflections, which resemble a deformed shape of combine frame and shear wall.

Wind load

59.17KN

Wind load

A

Quarter model Overall building ode 2268 Max Displacement deflected as cantilever Modified quarter model

Overall building

deflected as double

curvature .

(a) (b)

Figure 7 (a) Deformation of quarter model (b) Deformation of modified quarter model

The presented failure modes of tube in tube tall building had proved that the overall model behavior is definitely control by compression failure rather than tension. With the evidence of the principal stress in the critical compression zone indicating crushing occur at the shear wall base, thus the overall mechanism of the structure had successfully leads the model to achieve its ultimate capacity at step 31. The stress contour by means of minimum principal stress for overall modified quarter model at step 31 is presented in Figure 8. Compression zone was located at the shear wall and perimeter column.

A-167

Conference (APSEC 2006), 5 ?6 September 2006, Kuala Lumpur, Malaysia

Wind load

Compression

at perimeter

column

Compression

zone at shear

wall

Figure 8 Minimum principal stress contour of the overall modified quarter model at step

Coupling beam and shear wall

The results indicate that the shear diagonal splitting mode of failure is happening for all coupling beams throughout the height. Even though there is a small flexural crack evident at the corner of coupling beam. The crushing of concrete at the shear wall base completes the final failure. It is showing that the total beam strength greater than wall strength. This may be due to oversize of coupling beam relative to the size of shear wall. The reduction in beam thickness may be lead to concrete crushing failure. Practically, the preferred mechanism of failure for perforated shear wall is that the coupling beams achieved the failure first before the shear wall. It is recommended that the beam should fail first followed by the wall; so that the load or vibration can be observed by the beams damaged section.

CONCLUSION

The NLFEA to ultimate stage using COSMOS/M Finite Element software on the 3D modified quarter model was successfully carried out. The analysis was able to capture all the nonlinear behavior as the load progressing. However, a refinement to the model may be carried out such as refining the FEA parameters and thus verifying the result with the lab experimental results wherever possible. The findings of this study can be summarizing as follow: -

(i) The quarter model is capable to perform non-linearity behavior up to ultimate limit state.

(ii)Modified boundary condition by assigning restraint at X-direction at all slab edges, fully restraint at wall bottom ends is considered appropriate in generating a double curvature profile as expected in tube in tube model.

(iii)NLFEA in tube in tube building perform well using non-linear concrete stress-strain curve up to 32 steps of non-linearity and yield the ultimate behavior of tall building. (iv)Modified quarter model, which include the full configuration of shear wall, is found to be appropriate in modeling the tube in tube tall building as a quarter section. Thus,

the behavior of coupling beams was successfully presented out.

A-168

Proceedings of the 6th Asia-Pacific Structural Engineering and

Construction Conference (APSEC 2006), 5 ?6 September 2006, Kuala

Lumpur, Malaysia

REFERENCES

Abdul Kadir Marsono (2000). Reinforced Concrete Shear Wall Structures With Regular and

Staggered Opening. University of Dundee: Ph.D. Thesis.

A.Fafitis, Member ASCE and Y.H.Won (1994). Nonlinear Finite Element Analysis Of

Concrete Deep Beams. Journal of Structural Engineering. 120(4):1202-1219.

A.K.H. Kwan (1996). Shear Lag In Shear/Core Walls. Journal of Structural Engineering.

122(9):1097-1104.

A.K.H. Kwan (1994). Simple Method For Approximate Analysis Of Frame Tube Structures.

Journal of Structural Engineering. 120(4):1221-1239.

A.K.H. Kwan (1993). Mixed Finite Element Method for Analysis of Coupled

Shear/Core

Walls. Journal of Structural Engineering. 119(5-6):1389-1479.

A.K.H. Kwan (1993). Improved Wide-Column-Frame Analogy For Shear/C ore Wall

Analysis. Journal of Structural Engineering. 119(2):421-437.

Avigdor Rutenberg and Moshe Eisenberger (1983). Torsion Of Tube Structures: Planar

Formulation. Journal of Computers & Structures . 17(2):257-260.

Bryan Staford Smith and Alex Coull (1991). Tall Building Structures:Analysis and Design.

Canada: John Wiley & Son Inc

British Standards Institution. British Standard Codes Of Practice For Dead And Imposed

Loads. London,BS 6399. 1984

British Standards Institution.British Standard Codes of Practice for Design and Construction. London, BS 8110. 1985

Ciria Report 102, Design of Shear Wall Building, 1984.

Charles E. Reynolds and James C. Steedman (1988). Reinforced Concrete Designer?s

Handbook. 10th . Ed. London: E&FN SPON.

H.Haji Kazemi and M. Company (2002).

Exact Method of Analysis of Shear Lag in Framed

Tube Structure. The Structural Design of Tall Building. 11: 375-388.

Kentarou Sotomura and Yasuyuki Murazumi (1986). “Nonlinear Analsis of

Shear Walls with Numerous Small Opening?Finite El ement Analysis of

Reinforced Concrete

Structures. Proceedings Of the Seminar Sponsor by the U.s National Science for the Promotion of Science and the U.S. National Science Foundation, May 21st-24th, 1985.

Tokyo, Japan. pg. 300-307.

M.R.Chowdhury, J.C. Ray and Member ASCE (1995). Furter Consideration for Nonlinear

Finite-Element Analysis. Journal of Structural Engineering. 121(9):1377-1379.

Nutan Kumar Subedi and Member ASCE (1991). RC Coupled Shear Wall Structure.I:

Analysis Of Coupling Beams. Journal of Structural Engineering. 117(3): 667-681. Nutan Kumar Subedi and Member ASCE (1993). RC Coupled Shear Wall Structure.II:

Ultimate Strength Calculations. Journal of Structural Engineering. 117(3):

681-697.

Peter C. Chang and Member ASCE (1985).Analytical Modeling of Tube in Tube Structure.

Journal of Structural Engineering. 111(6): 1326-1337.

Phillips, D.V. and Zienkiewicz, O.C. (1976). F inite Element Non-Linear Analysis of Concrete

Structures. Proc. Insitu. Civil Engineerings. 2(61): 59-88.

Robert H. Iding and M. ASCE (1986). Nonlinear Finite Element Analysis of Reinforced

Concrete in Engineering Practice. Finite Element Analysis of Reinforced

Concrete

Structures. Proceedings Of the Seminar Sponsor by the U.s National Science for the Promotion of Science and the U.S. National Science Foundation, May 21st-24th .

Tokyo

Japan: 1985. 545-556.

Sulata Kayal (1986). Nonlinear Interaction Of RC Frame-Wall Structures.

Journal of

Structural Engineering. 112(5): 1021-1035.

Y.Singh and K. Nagpal (1993). Secondary

Web-Flange Interaction in Framed-Tube

Building. The Structural Design of Tall Building. 2: 325-331.

Zhishen Wu, Hiromichi Yoshikawa and Tada-aki Tanabe (1991). Tension Stiffness Model for

Cracked Reinforcement Concrete. Journal of Structural Engineering. 117(3-4): 715-731.

A-169

建筑类外文文献及中文翻译

forced concrete structure reinforced with an overviewRein Since the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance. Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency. 1、steel mechanical link 1.1 radial squeeze link Will be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linked Characteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.

建筑类型和设计-外文翻译

南京理工大学 毕业设计(论文)外文资料翻译 学院(系):南京理工大学继续教育学院 专业:土木工程 姓名: 学号: 外文出处:学术论坛网 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 建筑类型和设计 厂房与人民息息相关,因为它提供必要的空间,工作和生活中。 由于其使用的分类,建筑主要有两种类型:工业建筑和民用建筑各工厂或工业生产中使用的工业大厦,而那些居住,就业,教育和其他社会活动的人使用的民用建筑。 工业楼宇厂房可用于加工和制造各类采矿业,冶金工业,机械制造,化学工业和纺织工业等领域。可分为两种类型的单层和多层的厂房,民用建筑,工业建筑是相同的。然而,工业与民用建筑中使用的材料,在使用它们的方式不同。 民用建筑分为两大类:住宅建筑和公共建筑,住宅建筑应满足家庭生活应包括至少有三个必要的房间:每个单位。一个客厅,一个厨房和厕所,公共建筑,可以在政治文化活动,管理工作和其他服务,如学校,写字楼,公园,医院,商店,车站,影剧院,体育场馆,宾馆,展览馆,洗浴池,等等,他们都有不同的功能,这在需要以及不同的设计类型。 房屋是人类居住。房屋的基本功能是提供遮风挡雨,但今天人们需要更他们的住房,一个家庭迁入一个新的居民区知道,如果现有住房符合其标准安全,健康和舒适。附近的房屋是如何粮店,粮食市场,学校,商店,图书馆,电影院,社区中心,家庭也会问。 在60年代中期最重要的住房价值足够空间的内部和外部。多数首选的一半左右1英亩的土地,这将提供业余活动空间单户住宅的家庭。在高度工业化的国家,许多家庭宁愿住尽量尽可能从一个大都市区的中心,“打工仔”,即使行驶一段距离,他们的工作。不少家庭的首选国家住房郊区住房的大量的,因为他们的主要目的是远离噪音,拥挤,混乱。无障碍公共交通已不再是决定性因素,在住房,因为大多数工人开着自己的车上班的人。我们主要感兴趣的安排和房间的大小和卧室数目。 在建筑设计中的一个重要的一点是,房间的布局,应提供有关它们目的,最大可能的便利,在住宅,布局可根据三类认为:“天”,“夜必须注意“和”服务“。支付提供这些地区之间容易沟通。”天“的房间,一般包括用餐室,起居室和厨房,但其他房间,如一项研究,可能会补充说,可能有一个大厅,客厅,通常是最大的,往往是作为一个餐厅,也或厨房,可有一个用餐凉亭。“夜”的房间,卧室组成。“服务”,包括厨房,卫生间,储藏室,厨房和储藏室的水厕。连接天与客房的服务。 这也是必须考虑的前景问题,从不同的房间,和那些在使用中最应该尽可能最好朝

中英文商标的命名与 翻译

目录 摘要 (1) 一、中英文商标的命名 (1) (一)来源 (1) (二)命名的原则 (2) 二、商标词的翻译特征 (3) 三、中文商标英译中存在的问题 (3) (一)译名不符合英语文化 (4) (二)译名不雅观 (4) (三)音译的译名是具有不良意义的英文词 (4) (四)译名平淡无奇 (4) (五)译名含有政治隐喻 (5) 四、常见的商标翻译法 (5) (一)音译法 (5) 1纯音译法 (5) 2谐音取意法 (5) (二)意译法 (6) 1直接意译法 (6) 2臆想法 (6) (三)音意结合法 (7) 五、结语 (7) 参考文献 (8)

中英文商标的命名与翻译 摘要:商标作为企业商品的一个重要组成部分,代表商品的符号,并随着商品交流的扩大而声名远扬。随着商品经济的高度发展和国际贸易的频繁往来,作为商品标志的商标的命名与翻译也就变得越来越重要和富于影响力。由于科技的进步,中英文商标作为一种文化现象,广泛地存在于社会生活中,对企业商品的宣传,推销,美化人们的生活,起着重要的作用。因此,本文从中西方文化差异的角度出发,先通过对中英文商标实例的分析,概述了商标词的来源及其命名的原则,介绍了商标词的翻译特征,再举例探讨了中英文商标英译中存在的几种问题,以强调产品的商标翻译的重要性,最后提出了几种常用的商标翻译法,使译者能从中受益。 关键词:商标;文化差异;翻译原则;翻译方法 一、中英文商标的命名 商标作为企业商品的一个重要组成部分,代表商品的符号,并随着商品交流的扩大而声名远扬。商标也是人类创造的一种语言符号,具有特定的标志意义,还有丰富深刻的象征性。[1]许多国际著名的商标已经成为企业的无形资产和巨大财富。一个好的商标,如Coca-cola(可口可乐商标)能够为企业创造上亿元的销售业绩,而一个译名很差的商标,即使它所代表的产品质量优良,也可能使企业的销售滑坡。因此,产品想要参与国际竞争,除了要保证质量外,还要拥有世界通行性的商标来宣传产品。[2]商标总是与企业创始人、产地相关联。不同地域赋予商品不同的文化内涵。结合商品命名理解商标词的来源,是正确翻译商标词的前提条件。 (一)来源 1、人名商标词 许多商标是人名商标词,如:Ford(福特)、Benz(奔驰)、Sassoon(沙宣)、LI-NING (李宁)、YUE-SAI(羽西)、Channel(夏奈儿)等。有时商标也选用神话传说中的人物或神灵名称,或文学、影视作品中的人名,如Nike(耐克)是希腊神话中胜利女神名,Angel (安吉尔)是保护神名。 2、地名商标词 如Cashmere(开司米毛线)是由产地Cashmere而得名;Nonie(诺基亚)是芬兰北部的一小镇名,最初的诺基亚公司建于此地;Longings(浪琴)是瑞士圣依梅尔附近的一小村庄,弗兰西龙和大卫在此创建了手表制造厂。诸如此类的还有:Champagne(香槟酒)由法国香槟酒产地而得名;青岛啤酒(Kingdom);上海羊毛衫(Shanghai)等。 3、外来词商标词

建筑学毕业专业外文翻译文献doc资料

本科毕业设计(外文翻译) 题目居住区交往空间规划与设计 院(系部)xxx学院 专业名称xx 年级班级xx 学生姓名xx 指导教师xx xx 年xx 月x 日 Planning and Design of Association Space of residential District

Xia dong liang 【Abstract】:The association space refers to the indoor and outdoor space for communication between residents.The article presents an overall discussion of the necessity,hierarchy and functionality of association space,with a wish to create positive and healthy association atmosphere and stimulate good communication among residents so that the residential area can become a homeland full of love and harmony. 【Keyword】:residential area;association space;necessity;hierarchy;Functionality 【Foreword】:As the housing system reform and the rapid development of real estate, urban residential areas large urban settlements have emerged on the layout of residential buildings, public buildings, public green space, life and living facilities such as roads, to provide urban residents live in the community and The establishment, is an integral part of the city. Exchanges between the living room area residents is to communicate and exchange of indoor and outdoor space. At this stage, people's living standards greatly improved the living environment of continuous improvement district. Developers should not only focus on residential construction and the reasonable comfort, paying greater attention to the construction of residential environment. However, the current environment in the construction of residential areas, they are often the natural ecology of greening the environment is much more to consider, and the promotion of exchanges between the residents of the space environment to consider less, environmental construction can not meet the occupants of the psychological characteristics and needs. From the basic physiological needs gradually to meet the psychological and cultural fields of promoting a higher level, the residential area is not only the function of living, but also people's thinking and feelings of the local exchange. Therefore, the strengthening of exchanges between the residential areas of space construction, increase residential neighbourhood affinity, should be developed in the planning and construction of residential areas should also consider the issue. How to conduct exchanges between the residential areas of space planning and design, improve people's quality of life, the author of his own real estate development

英文商标名称翻译与策略

英文商标名称地翻译与策略 1.前言 商标是商品地标志,是商品经济发展地产物,是商品生产者或经营者为使自己生产销售地商品区别于其他商品而使用地一种显著标志.它是商品显著特征地浓缩,是商品文化地核心部分.在国际市场上,商标常被企业家和消费者视为简化了地企业名称.商标一出现就成为企业地象征,是生产者和消费者直接对话地桥梁,是企业参与国际竞争地有力武器.中国地对外开放正在进一步深化,随之而来地国外企业在华地经济活动也在增加.这极大地丰富着中国人民地经济生活,并因此而衍生出了诸多对于国人而言全新地经济及商业活动.大量地国产商品正在出口到世界各地,而国外地商品也已蜂拥至国内市场.合法地商品都有一个自己地商标.因此,随着中外产品地交流,商品商标地翻译问题不可避免地出现了. 2.英文商标翻译地策略 2.1.音译 商标翻译过程中,音译是一种不可忽视地手段,具有极强地普遍性.音译是指在不背离“汉语语言规范和不引起错误联想或误解地条件下,按照原商标名称地发音,找到与之语音相近地汉语字词进行翻译.其优点是简单易行,译文有异国情调,可使产品具有一定吸引力.音译又分为:纯音译﹑谐音译和省音译. 2.1.1. 纯音译 纯音译即根据英文地读音逐字地用相近发音地汉字进行匹配地翻译.主要适用于专有名词,如:人名商标和地名商标.这种翻译法是商标在译为中文

时,因无法找到相应地汉语表达而不得不采用地翻译方法. 2.1.1.1人名商标 有些商标是姓氏构成地,如:Hoover(胡佛)真空吸尘器,是源于生产商William Henry Hoover地姓氏;Rael-Brook(雷尔-布鲁克)男装,是源于公司创始人H.Rael-Brook地姓氏.有些商标是人地全名,如:Walt Disney(沃尔特·迪斯尼)制片公司,是根据公司创始人Walt Disney地姓名而定;Pierre Cardin(皮尔·卡丹)时装,是根据该时装地制造者Pierre Cardin地姓名而定;“benz”品牌最早含义是卡尔本茨地姓,根据译音,在中国翻译成“奔驰”. 2.1.1.2地名商标 Santana(桑塔纳)轿车,San Tana原是美国加利福尼亚洲一座山谷地名称;Nokia(诺基亚)手机是根据芬兰北部一座名为Nokia地小镇命名地. 2.1.2谐音译 这种译法是以音为引子,经常是在纯音译地基础上改动个别字眼,这些字眼与原商标读音谐音,改动后地音译商标又结合产品特征.例如:为纪念航空公司创始人Willian Edward Boeing 人们以其姓氏确定地商标Boeing,译作“博音”,但作为商标,译者改用谐音“波音”,这就可以使人们对这类超音速飞机产生无尽地遐想. 2.1.3省音译 省音译是根据中国人地审美习惯,双音节和三音节地商标更能令人过目不忘,有些英文商标单词较长音节较多,如果逐字翻译,读起来拗口且不便记忆,可采用省音译来简化. 2.2意译

中英对照建筑学经典词汇

外立面:facade 跨度:Span 坡道:ramp 砍墙:Hom wall 墙面:Metope 铝合金:aluminium alloy 透明中空玻璃:transparent insulating glass 隔墙:partition 檩条;purlin 库板:panel, board 加气砼砌块: aerated concrete block 矿棉:mineral wool 水泥砂浆:cement mortar 抹灰/粉刷:plastering 轻钢龙骨:lightgage steel joist 石膏板:Plasterboard 托盘架: pallet rack 台阶坡道散水工程Steps ramp apron work 零星工程:Piecemetal works Drumming line 灌装站 Isotainer yard 标准槽灌堆场 Eurotint building 胶衣配色间 防火分区:fire compartment 石砌块墙体:masonry wall 内外:interior exterior 液压卸货平台:hydraulic dock leveler 地勘报告:geology survey 土层分布:soil layer distribution 预应力砼管桩:pre-stressed concrete tubular pile 岩土:geotechnical/rock soil 荷载:load 电缆桥架:Cable tray 沉降:sedimentation 密度:density 防爆荧光灯:anti-blast fluorescent lamp 插座:outlet 探测器:detector/sensor 配电盘,开关板; switch board 管架:pipe bridge 开工:commencement 开办费:Preliminary cost 维护:maintenance 建立:setup 主体:main body

《中国翻译》杂志

刊名:中国翻译 Chinese Translators Journal 主办:中国外文局对外传播研究中心;中国翻译协会 周期:双月 出版地:北京市 语种:中文; 开本:16开 ISSN:1000-873X CN:11-1354/H 邮发代号:2-471 复合影响因子:2.663 综合影响因子:1.649 历史沿革: 现用刊名:中国翻译 曾用刊名:翻译通讯 创刊时间:1979 该刊被以下数据库收录: CSSCI 中文社会科学引文索引(2014—2015)来源期刊(含扩展版) 核心期刊: 中文核心期刊(2011) 中文核心期刊(2008) 中文核心期刊(2004) 中文核心期刊(2000) 中文核心期刊(1996) 中文核心期刊(1992) 期刊荣誉: 社科双效期刊 《中国翻译》杂志期刊简介 《中国翻译》杂志是由国家新闻出版总署正式批准,由中国外文局对外传播研究中心和中国翻译协会主办、面向国内外公开发行的专业学术期刊,具有正规的双刊号,其国内统一刊号:CN11-1354/H,国际刊号:ISSN1000-873X。本刊自1979年创刊以来,始终坚持理论与实践并重的办刊宗旨,关注理论前沿,贴近翻译实践,反映国内、国际翻译学术界前沿发展水平与走向,开展翻译学理论研究,交流翻译经验,评介翻译作品,传播译事知识,促进外语教学,介绍新、老翻译工作者,报道国内外译界思潮和动态及行业发展态势,加强编读互动交流,以满足业界不同层次读者的需求。 《中国翻译》杂志期刊栏目设置

本刊主要栏目:译学研究、翻译理论与技巧、翻译评论、译著评析、翻译教学、科技翻译、经贸翻译、实用英语翻译、人物介绍、国外翻译界、当代国外翻译理论、翻译创作谈、翻译史话、译坛春秋、中外文化交流、国外翻译界动态、词汇翻译选登、读者论坛、争鸣与商榷、翻译自学之友等。 论文快速发表绿色通道—期刊之家网 发表流程:收稿---稿件初审---商定期刊---杂志社审稿---办理定金---修改定稿---确认---付余款---杂志社发采稿通知---发表见刊---接收期刊样册---知网收录 论文刊发时间:从收到论文版面费起3-4个月(特殊情况除外),针对需要快速发表的作者提供绿色通道服务。 本站声明:期刊之家网与多家医学期刊结成了学术联盟,如果您有发表中国科技论文统计源期刊(中国科技核心期刊)、中文核心期刊、SCI收录期刊的需求,以及对于需要论文发票的作者可以与我们联系 1、学术期刊论文发表时间安排等相关咨询联系刘编辑1269292199 2、不违反宪法和法律,不损害公共利益。 3、是作者本人取得的原创性、学术研究成果,不侵犯任何著作权和版权,不损害第三方的其他权利;来稿我方可提供“中国知网期刊学术不端文献检测系统”检测,提供修改建议,达到文字复制比符合用稿标准,引用部分文字的在参考文献中注明;署名和作者单位无误。 4、本站初审周期为2-5个工作日,请在投稿3天后查看您的邮箱,收阅我们的审稿回复或用稿通知;若20天内没有收到我们的回复,稿件可自行处理。 5、按用稿通知上的要求办理相关手续后,稿件将进入出版程序; 6、杂志出刊后,我们会按照您提供的地址免费奉寄样刊。 7、未曾以任何形式用任何文种在国内外公开发表过。 8、切勿一稿多投,稿件一律不退,请自留电子稿。 《中国翻译》杂志期刊常见论文发表范例 传教士《圣经》汉译的殖民语境顺应研究——以Logos从“言”向“道”转化的历时性诠释为例 “精加工”平行语料库在翻译教学中的应用 基于“翻转课堂”的口译教学行动研究 “习近平论文艺”要点翻译探究 以赛促学是提高教学质量和培养人才的有效途径 关于翻译实践与教学的一点思考 韩素音使我与翻译结缘 英汉互译的三种基本方法 翻译之本与翻译之为:在实践中演绎 论蕴含文化因子的地名英译原则和策略 从莫言英译作品译介效果看中国文学“走出去”

建筑学专业毕业设计方案外文翻译二44

毕业设计英文资料翻译 Tran slati on ofthe En glish Docume nts for Graduati on Desig n 课题名称_____________________________________ 院< 系)_____________________________________ 专业 _____________________________________ 姓名 _____________________________________ 学号 _____________________________________ 起讫日期 _____________________________________ 指导教师 _____________________________________ 2018 年2月25日 原文: Abstract:Gree n buildi ng refers to do its best to maximize con servati on of resources (en ergy, land, water, and wood> , protecti ng the environment and reduce polluti on in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. Idescribed more details of green building design ' notion, green building ' design, as well as the sig ni fica nee of the con

建筑类外文翻译范例-毕业设计外文翻译范例

土木工程概论 摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。整个世界每天都在改变,而建筑也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入建筑中。以前只求一间有瓦盖顶的房屋,现在追求舒适,不同的思想,不同的科学,推动了土木工程的发展,使其更加完美。 关键词:土木工程;建筑;力学;材料 土木工程是建造各种工程的统称。它的原意是与“军事工程”相对应的。在英语中,历史上土木工程、机械工程、电气工程、化工工程都属于Civil Engineering ,因为它们都具有民用性。后来,随着工程科学技术的发展,机械、电气、化工都已逐渐形成独立的科学,Civil Engineering 就成为土木工程的专门名词。至今,在英语中,Civil Engineering 还包括水利工程、港口工程;而在我国,水利工程和港口工程也成为与土木工程十分密切的相对独立分支。土木工程既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测,设计施工,保养,维修等专业技术。 土木工程是一种与人们的衣、食、住、行有着密切关系的工程。其中与“住”的关系是直接的。因为,要解决“住”的问题必须建造各种类型的建筑物。而解决“行、食衣”的问题既有直接的一面,也有间接的一面。要“行”,必须建造铁路、道路、桥梁;要“食”,必须打井取水、兴修水利、进行农田灌溉、城市供水排水等,这是直接关系。而间接关系则不论做什么,制造汽车、轮船也好,纺纱、织布、制衣也好,乃至生产钢铁、发射卫星、开展科学研究活动都离不开建造各种建筑物、构筑物和修建各种工程设施。 土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。 土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要

英文商标名称的翻译与策略.

英文商标名称的翻译与策略 ◆ 谈晓焱秦爱君刘彩霞 吴晓菲 商标是一种特殊的语言符号,是商品显著特征的浓缩,是商品文化的核心部分,是企业参与国际竞争的有力武器。它既是标识, 又是诱饵,最终是要招揽顾客,出售商品。商标翻译符合符号学的翻译观,是由解码到编码的过程,是两种文化的移植。好的商标翻译可以给企业带来巨大的财富;反之,糟糕的商标翻译可以让企业损失惨重,所以企业的生死存亡与商标翻译息息相关。同时商标翻译能够拓宽语言学研究空间,丰富语言学的内涵,促进语言理论研究与实际应用的有机结合。本文收集了一些典型商标,经过系统的分析,借鉴并吸收了一些翻译方法,重新总结归纳了一些商标翻译的策略,还针对不同策略的商标翻译提出了需要注意的事项 。 英文商标翻译策略 1.前言

商标是商品的标志,是商品经济发展的产物,是商品生产者或经营者 为使自己生产销售的商品区别于其他商品而使用的一种显著标志。它是商品显著特征的浓缩,是商品文化的核心部分。在国际市场上,商标常被企业家和消费者视为简化了的企业名称。商标一出现就成为企业的象征,是生产者和消费者直接对话的桥梁,是企业参与国际竞争的有力武器。中国的对外开放正在进一步深化,随之而来的国外企业在华的经济活动也在增加。这极大的丰富着中国人民的经济生活,并因此而衍生出了诸多对于 国人而言全新的经济及商业活动。大量的国产商品正在出口到世界各地,而国外的商品也已蜂拥至国内市场。合法的商品都有一个自己的商标。因此,随着中外产品的交流,商品商标的翻译问题不可避免地出现了。 2.英文商标翻译的策略 2.1.音译 商标翻译过程中,音译是一种不可忽视的手段,具有极强的普遍性。音译是指在不背离“汉语语言规范和不引起错误联想或误解的条件下,按照原商标名称的发音,找到与之语音相近的汉语字词进行翻译。其优点是简单易行,译文有异国情调,可使产品具有一定吸引力。音译又分为:纯音译谐音译和省音译。 2.1.1.纯音译 纯音译即根据英文的读音逐字地用相近发音的汉字进行匹配的翻译。主要适用于专有名词,如:人名商标和地名商标。这种翻译法是商标在译 为中文时,因无法找到相应的汉语表达而不得不采用的翻译方法。 2.1.1.1人名商标 有些商标是姓氏构成的,如:Hoover (胡佛真空吸尘器,是源于生产商

建筑专业词汇中英文对照

建筑专业词汇《中英文对照》~~ 建筑专业词汇 建设,建筑,修建to build, to con struct 建筑学architecture 修筑,建筑物building 房子house 摩天大楼skyscraper 公寓楼block of flats ( 美作:apartment block) 纪念碑monument 宫殿palace 庙宇temple 皇宫,教堂basilica 大教堂cathedral 教堂church 塔,塔楼tower 十层办公大楼ten-storey office block 柱colum n 柱列colonn ade 拱arch 市政town planning ( 美作:city planning) 营建许可证,建筑开工许可证building permission 绿地gree nbelt

建筑物的三面图elevati on 设计图plan 比例尺scale 预制to prefabricate 挖土,掘土excavation 基foun dati ons, base, subgrade 打地基to lay the foundations 砌好的砖歹U course of bricks 脚手架scaffold, scaffolding 质量合格证书certificatio n of fitn ess 原材料raw material 底板bottom plate 垫层cushi on 侧壁sidewall 中心线center line 条形基础strip footing 附件accessories 型辛钢profile steel 钢板steel plate 熔渣slag 飞溅weldi ng spatter 定位焊tacking 弓I弧gen erati ng of arc 熄弧que nching of arc 焊道weldi ng bead 坡口beveled edges 夕卜观检查visual inspection 重皮double-sk in 水平方向弧度radia n in horiz on tai direct ion 成型moldi ng 直线度straightness accuracy 焊缝角变形welding line angular distortion 水平度levelness 铅垂度verticality

建筑外文文献及翻译

外文原文 Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of Projects Lin Jingjing , Zhou Guohua SchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm. Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority . 1.INTRODUCTION More and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have

建筑类英文翻译

英语翻译1 外文原文出处: Geotechnical, Geological, and Earthquake Engineering, 1, Volume 10, Seismic Risk Assessment and Retrofitting, Pages 329-342 补充垂直支撑对建筑物抗震加固 摘要:大量的钢筋混凝土建筑物在整个世界地震活跃地区有共同的缺陷。弱柱,在一个或多个事故中,由于横向变形而失去垂直承载力。这篇文章提出一个策略关于补充安装垂直支撑来防止房子的倒塌。这个策略是使用在一个风险的角度上来研究最近实际可行的性能。混凝土柱、动力失稳的影响、 多样循环冗余的影响降低了建筑系统和 组件的强度。比如用建筑物来说明这个 策略的可行性。 1、背景的介绍: 建筑受地震震动,有可能达到一定程 度上的动力失稳,因为从理论上说侧面 上有无限的位移。许多建筑物,然而, 在较低的震动强度下就失去竖向荷载的支撑,这就是横向力不稳定的原因(见图。提出 了这策略的目的是为了确定建筑物很可 能马上在竖向荷载作用下而倒塌,通过 补充一些垂直支撑来提高建筑物的安 全。维护竖向荷载支撑的能力,来改变 水平力稳定临界失稳的机理,重视可能 出现微小的侧向位移(见图。 在过去的经验表明,世界各地的地 震最容易受到破坏的是一些无筋的混凝 土框架结构建筑物。这经常是由于一些

无关紧要的漏洞,引起的全部或一大块地方发生破坏,比如整根梁、柱子和板。去填实上表面来抑制框架的内力,易受影响的底层去吸收大部分的内力和冲力。 这有几种过去被用过的方法可供选择来实施: ) 1、加密上层结构,可以拆卸和更换一些硬度不够强的材料。 2、加密上层结构,可以隔离一些安装接头上的裂缝,从而阻止对框架结构的影响。 3、底楼,或者地板,可以增加结构新墙。这些措施(项目1、2和3)能有效降低自重,这韧性能满足于一层或多层。然而,所有这些都有困难和干扰。在美国,这些不寻常的代价换来的是超过一半更有价值的建筑。 4、在一些容易受到破坏的柱子裹上钢铁、混凝土、玻璃纤维、或碳纤维。 第四个选项可以增加柱子的强度和延性,这足以降低柱子受到破坏的风险在大多数的建筑物中。这个方案虽然成本比前面低,但是整体性能也会降低,对比较弱的地板破坏会更加集中。加强柱子的强度在美国很流行,但它的成本依旧是很高的。在发展中国家,这些先进的技术对某些种类的加料或加强,还不能够做到随心所欲。 这个程序的提出包含了另一个选择,美国已经运用这个选择用来降低房子倒塌的风险。这个方法是增加垂直支撑,来防止建筑在瞬间竖向荷载作用下就倒塌(见图。这是 为支撑转移做准备的,当柱子 被剪切破坏和剪切衰弱时。这 个补充支撑通常是钢结构、管 道支撑或木材支撑。他们通常 安装在单独的柱子上,但(图 钢柱也可以被放置在能承担 的水平框架上。这种技术能有 效的降低自重,从而降低了建 筑在瞬间竖向荷载下就遭到 破坏。在水平方向的强烈震 动,产生的不稳定大概很少被想到。补充的安装垂直技撑相对比较便宜。一些有用的空间可能通过安装支撑被影响,可是这是一些微不足道的比较。在美国为建筑安装一些补充支撑现在非常流行。

英汉商标名称翻译

英汉商标名称翻译 摘要:商标名称的英汉翻译是当今翻译界最为关注的话题之一。随着经济全球化得发展,各国已不再是独立经营,独立生产,商品销往国外进行优势互补称谓大势所趋。因此在商品名称翻译就成了最重要的部分。商标名称的翻译既要符合输出语的原语特色,又要满足输入语的语言风格。影响商标名称翻译的因素及翻译的方法显得尤为重要。 关键词:商标,英汉翻译,影响因素及方法。 近十几年来,世界经济一直处于变革的边缘阶段。变化了的经济形势产生了新的经济理论以及新的经济遵循理念。在新的经济理念的前提下,各国政府对根据自己的世界经济状况对当地经济进行了调整。这些调整时包括多方面的,例如:货币兑换,商品价格,以及商品进出口等等。经济危机又一次将全世界的货币贬值,面对经济形势,美国强列要求中国将货币增值。面对严峻的国内外的压力,中国政府以及中国各大企业应该怎样保护自身利益不受损坏呢?那么企业又该如何让自己在激烈的市场竞争中立于不败之地呢?一个有价值的品牌是一个必不可少的因素。因此品牌名称和商标的翻译就显得尤为重要。商标对于商品来说就像脸面与人的关系。商标名称的好坏直接影响着消费者对商品的购买情况。商标的价值也被看做是一种附加价值,就是指超越商品本身所提供的基本价值。换句话说,商标的价值大部分在于它给消费者提供的诚信价值,名称意识价值,超高的质量价值,强强商标联合价值,以及其他如:专利等价值。好的商标名称不仅能够让产品经久不衰,更能为商家赢得丰厚利润。不言而喻,盈利才是商家最终目标。而商标名称则是让商家达到盈利目的的首要环节。 商标就是产品的门面。在商标的英汉翻译过程中,有一些因素都在被潜移默化的遵循着。例如文化,风俗,语言、意识形态、政府规定等等。接下来我们就来了解一下

建筑专业词汇中英对照(精心整理版)

1DESIGN BASIS 设计依据 计划建议书planning proposals 设计任务书design order 标准规范standards and codes 条件图information drawing 设计基础资料basic data for design 工艺流程图process flowchart 工程地质资料engineering geological data 原始资料original data 设计进度schedule of design 2STAGE OF DESIGN 设计阶段 方案scheme, draft 草图sketch 会谈纪要summary of discussion 谈判negotiation 可行性研究feasibility study 初步设计preliminary design 基础设计basic design 详细设计detail design 询价图enquiry drawing 施工图working drawing, construction drawing 竣工图as built drawing 3CLIMATE CONDITION 气象条件 日照sunshine 风玫瑰wind rose 主导风向prevailing wind direction 最大(平均)风速maximum (mean) wind velocity 风荷载wind load 最大(平均)降雨量maximum (mean) rainfall 雷击及闪电thunder and lightning 飓风hurricane 台风typhoon 旋风cyclone 降雨强度rainfall intensity 年降雨量annual rainfall 湿球温度wet bulb temperature 干球温度dry bulb temperature 冰冻期frost period

相关主题