搜档网
当前位置:搜档网 › 【精品】解析几何空间直角坐标系

【精品】解析几何空间直角坐标系

【精品】解析几何空间直角坐标系
【精品】解析几何空间直角坐标系

第5讲空间直角坐标系

★知识梳理★

1。右手直角坐标系

①右手直角坐标系的建立规则:x 轴、y 轴、z 轴互相垂直,分别指向右手的拇指、食指、中指;

②已知点的坐标),,(z y x P 作点的方法与步骤(路径法):

沿x 轴正方向(0>x 时)或负方向(0y 时)或负方向(0z 时)或负方向(0

③已知点的位置求坐标的方法:

过P 作三个平面分别与x 轴、y 轴、z 轴垂直于C B A ,,,点C B A ,,在x 轴、y 轴、z 轴的坐标分别是c b a ,,,则),,(c b a 就是点P 的坐标

2、在x 轴上的点分别可以表示为,

在坐标平面xOy ,xOz ,yOz 内的点分别可以表示为;

3、点),,(c b a P 关于x 轴的对称点的坐标为

点),,(c b a P 关于y 轴的对称点的坐标为;

点),,(c b a P 关于z 轴的对称点的坐标为;

点),,(c b a P 关于坐标平面xOy 的对称点为;

点),,(c b a P 关于坐标平面xOz 的对称点为;

点),,(c b a P 关于坐标平面yOz 的对称点为;

点),,(c b a P 关于原点的对称点为。

4。已知空间两点),,(),,(222111z y x Q z y x P ,则线段PQ 的中点坐标为

5.空间两点间的距离公式

已知空间两点),,(),,(222111z y x Q z y x P ,

则两点的距离为,

特殊地,点),,(z y x A 到原点O 的距离为;

5.以),,(000z y x C 为球心,r 为半径的球面方程为

特殊地,以原点为球心,r 为半径的球面方程为

★重难点突破★

重点:了解空间直角坐标系,会用空间直角坐标系表示点的位置,会推导和使用空间两点间的距离公式

难点:借助空间想象和通过与平面直角坐标系的类比,认识空间点的对称及坐标间的关系 重难点:在空间直角坐标系中,点的位置关系及空间两点间的距离公式的使用

1.借助空间几何模型进行想象,理解空间点的位置关系及坐标关系

问题1:点),,(c b a P 到y 轴的距离为

2.将平面直角坐标系类比到空间直角坐标系

问题2:对于任意实数,,x y z ,

3.利用空间两点间的距离公式,可以解决的几类问题

(1)判断两条相交直线是否垂直

(2)判断空间三点是否共线

(3)得到一些简单的空间轨迹方程

★热点考点题型探析★

考点1:空间直角坐标系

题型1:认识空间直角坐标系

[例1](1)在空间直角坐标系中,y a =表示()

A .y 轴上的点

B .过y 轴的平面

C .垂直于y 轴的平面

D .平行于y 轴的直线

(2)在空间直角坐标系中,方程x y =表示

A .在坐标平面xOy 中,1,3象限的平分线

B .平行于z 轴的一条直线

C .经过z 轴的一个平面

D .平行于z 轴的一个平面

题型2:空间中点坐标公式与点的对称问题

[例2]点),,(c b a P 关于z 轴的对称点为1P ,点1P 关于平面xOy 的对称点为2P ,则2P 的坐标为

【名师指引】解决空间点的对称问题,一要借助空间想象,二要从它们在坐标平面的射影找关系,如借助空间想象,在例2中可以直接得出点2P 为点),,(c b a P 关于原点的对称点,故坐标为),,(c b a ---

【新题导练】

1.已知正四棱柱1111ABCD A B C D -的顶点坐标分别为(0,0,0),(2,0,0),(0,2,0)A B D ,1(0,0,5)A ,则1C 的坐标为.

2.平行四边形ABCD 的两个顶点的的坐标为)3,2,3(),3,1,1(--B A ,对角线的交点为)4,0,1(M ,则顶点C 的坐标为,顶点D 的坐标为

3.已知(4,3,1)M -,记M 到x 轴的距离为a ,M 到y 轴的距离为b ,M 到z 轴的距离为c ,则()

A .a b c >>

B .c b a >>

C .c a b >>

D .b c a >>

考点2:空间两点间的距离公式

题型:利用空间两点间的距离公式解决有关问题

[例3]如图:已知点(1,1,0)A ,对于Oz 轴正半轴上任意一点P ,在

B ,使得PA AB ⊥恒成立?若存在,求出B

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

知识讲解空间直角坐标系基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .

2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 ||d AB == 特别地,点(),,A x y z 与原点间的距离公式为OA = 2.空间线段中点坐标 空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++?? ???. 【典型例题】 类型一:空间坐标系 例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。 【答案】11,0,2E ? ? ???,11,,122F ?? ??? 【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

(完整版)高中数学必修二空间直角坐标系

2.3空间直角坐标系 考纲要求:①了解空间直角坐标系,会用空间直角坐标系表示点的位置. ②会推导空间两点间的距离公式. 2.3.1-2空间直角坐标系、空间两点间的距离 重难点:了解空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两点间的距离公式. 经典例题:在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问 (1)在y轴上是否存在点M,满足? (2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标. 当堂练习: 1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为() A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3) 2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为() A.(-3,4,5) B.(-3,- 4,5) C.(3,-4,-5) D.(-3,4,-5) 3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为() A.B.6 C.D.2 4.点P( 1,0, -2)关于原点的对称点P/的坐标为() A.(-1, 0, 2) B.(-1,0, 2) C.(1 , 0 ,2) D.(-2,0,1) 5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是() A.( 4, 2, 2) B.(2, -1, 2) C.(2, 1 , 1) D.4, -1, 2) 6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是() A.xOy平面B.xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是() A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对 8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为() A.B.C.D. 9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于()A.B.C.D.

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

立体几何空间直角坐标系

空间直角坐标系080617 好题选析: 例1、在空间直角坐标系中,给定点)3,2,1(-M 。求它分别关于坐标平面、坐标轴和原点的对称点的坐标。 例2、已知两点)1,0,1(P 与)1,3,4(-Q 。(1)求Q P ,两点的距离;(2)求z 轴上点M ,使||||MQ MP =。 例3、如图,在河的一侧有一塔m CD 5=,河宽m BC 3=,另 一侧有点A ,BC AB m AB ⊥=,4。求点A 与塔顶D 的距离AD 。 好题精练: (一)选择题: 1、关于空间直角坐标系,叙述正确的是( ) A 、),,(z y x P 中z y x ,,的位置可以互换; B 、空间直角坐标系中的点与一个三元有序数组是一种一一对应关系; C 、空间直角坐标系中的三条坐标轴把空间分为八个部分; D 、某点在不同的空间直角坐标系中的坐标位置可以相同。 2、已知点)4,1,3(--A ,则点A 关于原点的对称点的坐标为( ) A 、)4,3,1(-- B 、)3,1,4(-- C 、)4,1,3(- D 、)3,1,4(- 3、已知点)2,1,0(),1,2,1(B A -,则向量坐标为( ) A 、)3,1,1(- B 、)3,1,1(-- C 、)1,1,1(-- D 、)0,1,0( 4、设点B 是点)5,3,2(-A 关于面xoy 的对称点,则||AB 等于( ) A 、10 B 、10 C 、38 D 、38 (二)填空题: 5、已知ABC D 为平行四边形,且)5,7,3(),1,5,2(),3,1,4(--C B A ,则顶点D 的坐标为 。 (三)解答题: 6、在坐标面yoz 内求与三个已知点)1,5,0(),2,2,4(),2,1,3(C B A --等距离的点D 的坐标。 7、已知ABC ?的顶点)1,3,1(),2,6,5(),2,1,1(---C B A 。试求AC 边上的高BD 的长。

空间向量之建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 . 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos 17 BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1 (0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,.

设302E a ?? ? ???,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ????--= ? ???? ?, 即12a =或32a =(舍去).故3102E ?? ? ??? ,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角. 因11(002)B A BA ==,,,31222EA ? ?=-- ? ??,, 故11112cos 3 EA B A EA B A θ= =,即2tan 2θ= 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ; (2)求面VAD 与面VDB 所成的二面角的余弦值. 解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、 V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3). 由(020)(103)0AB VA =-=, ,,,,得

空间向量之建立空间直角坐标系的方法及技巧

空间向量之建立空间直角坐标系的方法及技巧 、禾U用共顶点的互相垂直的三条棱构建直角坐标系 例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB// CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值. 解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角 1 , 2)、B(2, 4, 0), ?- BC =(-2,3,2) , CD =(0, -1,0). 坐标系,则C (0, 设BC i与CD所成的角为v CD 3 '17 17 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点, EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值. 3 解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系. 由于BC= 1, BB= 2, AB= -/2,/ BCG=—, 3 ???在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0, C 1 第3 / —,—,0 . I2 2丿輛〕〔3设E — , a, 0 且一丄

BA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角. 訳=BA = (0,0八 2) , EA 二 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCD AB 丄 VA 又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则 J-1显1 I 2 2丿 即「2,一皿] X ,2—aJ < 2 丿 +a (a —2)=a 2—2a+3=0,「. 'a —丄 | 4 I 2丿 3 4 即-2或a =| (舍去).故 E 佇,,0 . ■ 3i 3 去(3,0,_Q ,时,2, -纠 辽 2丿 I 2 2丿 ,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V = 灵晁^,即ta —子 EA'B 1A 1 (1)证明 AE 丄平面VAD (2)求面 VAD 与面VDB^成的二面角的余弦值. 解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、 V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ). 由 ABVA = (0,2,0壯1,0, - . 3) = 0,得 AB 丄平面VAD

空间直角坐标系(人教A版)

空间直角坐标系(人教A版) 一、单选题(共10道,每道10分) 1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则点Q的坐标为( ) A. B. C. D. 2.在空间直角坐标系中,点A(1,-1,1)与点B(-1,-1,-1)关于( )对称. A.x轴 B.y轴 C.z轴 D.原点 3.如图,在空间直角坐标系中,正方体的棱长为1,,则点E的坐标为( ) A. B. C. D. 4.设点P(a,b,c)关于原点的对称点为,则=( ) A. B.

C. D. 5.设点P在x轴上,它到的距离为到点的距离的2倍,则点P的坐标为( ) A.(0,1,0)或(0,0,1) B.(0,-1,0)或(0,0,1) C.(1,0,0)或(0,-1,0) D.(1,0,0)或(-1,0,0) 6.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为( ) A.19 B. C. D. 7.如图所示,在空间直角坐标系中,有一棱长为a的正方体,的中点E与AB的中点F的距离为( ) A. B. C.a D. 8.如图,△PAB是正三角形,四边形ABCD是正方形,|AB|=4,O是AB的中点,平面PAB⊥平面ABCD,以直线AB为x轴、以过点O且平行于AD的直线为y轴、以直线OP为z轴建立如图所示的空间直角坐标系Oxyz,E为线段PD的中点,则点E的坐标是( )

A. B. C. D. 9.点P(x,y,z)满足,则点P在( ) A.以点(1,1,-1)为圆心,以2为半径的圆上 B.以点(1,1,-1)为中心,以2为棱长的正方体上 C.以点(1,1,-1)为球心,以2为半径的球面上 D.无法确定 10.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A. B. C. D.

高中数学人教A版必修2《空间直角坐标系》讲义

(同步复习精讲辅导)北京市-高中数学空间直角坐标系讲义新 人教A版必修2 重难点易错点解析 题一 题面:有下列叙述 ① 在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是() A、1 B、2 C、3 D、4 题二 题面:已知点A(-3,1,4),则点A关于原点的对称点的坐标为() A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,-4) D、(4,-1,3) 金题精讲 题一 题面:已知点A(-3,1,-4),点A关于x轴的对称点的坐标为() A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 题二

题面:点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 题三 题面:点P (a ,b ,c )到坐标平面xOy 的距离是( ) A 、22a b + B 、|a| C 、|b| D 、|c| 题四 题面:在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作yOz 平面的垂线PQ , 则垂足Q 的坐标是______________。 题五 题面:A (1,-2,11),B (4,2,3),C (6,-1,4)为三角形的三个顶点,则ABC ?是( ) A 、直角三角形 B 、钝角三角形 C 、锐角三角形 D 、等腰三角形 题六 题面:若点A (2,1,4)与点P (x ,y ,z )的距离为5,则x ,y ,z 满足的关系式是_______________. 题七 题面:已知点A 在x 轴上,点B (1,2,0),且|AB 则点A 的坐标是_________________. 题八

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =-- , ,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ, 则11cos 17BC CD BC CD θ== . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1 .已知AB =BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB ,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, )、B 1(0,2,0) 、102c ?-???? ,、1302C ???? ?,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

空间立体几何建立直角坐标系资料

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点。 (1)证明:A1D⊥平面A1BC; (2)求二面角A1-BD-B1的平面角的余弦值。 解析:(1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E ⊥平面ABC,所以A1E⊥AE。 因为AB=AC,所以AE⊥BC。 故AE⊥平面A1BC。 由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE ∥A1A且DE=A1A,所以A1AED为平行四边形。 故A1D∥AE。 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC。 (2)方法一:作A1F⊥BD且A1F∩BD=F,连接B1F。

由AE=EB=2,∠A1EA=∠A1EB=90°, 得A1B=A1A=4。 由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等。 由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角。 由A1D=2,A1B=4,∠DA1B=90°,得 BD=32,A1F=B1F=4 3, 由余弦定理得cos∠A1FB1=-1 8。 方法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正

半轴,建立空间直角坐标系E -xyz ,如图所示。 由题意知各点坐标如下: A 1(0,0,14), B (0,2,0),D (-2,0,14),B 1(-2, 2,14)。 因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0)。 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2)。 由??? m ·A 1B →=0,m ·BD →=0, 即????? 2y 1-14z 1=0,-2x 1-2y 1+14z 1=0, 可取m =(0,7,1)。 由??? n ·DB 1→=0,n ·BD →=0,即????? 2y 2=0,-2x 2-2y 2+14z 2=0, 可取n =(7,0,1)。 于是|cos 〈m ,n 〉|=|m·n ||m |·|n |=18 。 由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD -B 1的平 面角的余弦值为-18。

空间直角坐标系中点的坐标

第二章 解析几何初步 第3.2节 空间直角坐标系中点的坐标 1. 在空间直角坐标系中, 点)3,2,1(P 关于x 轴对称的点的坐标为 ( ) A .(-1,2,3) B .(1,-2,-3) C .(-1, -2, 3) D .(-1 ,2, -3) 2.在空间直角坐标系中, 点)1,0,1(A 与点)1,1,2(-B 之间的距离为 ( ) A .6 B . 6 C .3 D . 2 3.在空间直角坐标系中, 点)5,4,3(P 关于yoz 平面对称的点的坐标为____________. 4.在空间直角坐标系中,点)2,3,1(-P 在xoz 平面上的射影为'P ,'P 则关于原点的对称点P /的坐标为_____________. 5.点)3,4,1(-P 与点)5,2,3(-Q 的中点坐标是______________. 6.在长方体1111D C B A ABCD -中,若)3,0,5(),0,4,5(),0,0,5(),0,0,0(1A B A D ,则对角线1AC 的长为______________. 7.以)3,4,2(),9,1,4(),6,1,10(C B A -为顶点的三角形的面积为______________. 8.已知点),,21,1(x x x A -- 点),2,1(x x B -, 则A 与B 两点间距离的最小值为____________. 9.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是______________. 10. 在四棱锥ABCD P -中,底面ABCD 为正方形,且边长为a 2,棱PD ⊥底面ABCD ,b PD 2=,取各侧棱PD PC PB PA ,,,的中点H G F E ,,,,试建立空间直角坐标系,并写出点H G F E ,,,的坐标.

空间直角坐标系的建立

第二章解析几何初步 第3.1节空间直角坐标系的建立 本节教材分析 (1)三维目标 ①知识与技能:掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面 问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力. ②过程与方法:建立空间直角坐标系的方法与空间点的坐标表示。 ③情感、态度与价值观:解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一 思想的教育;培养学生积极参与,大胆探索的精神. (2)教学重点 在空间直角坐标系中确定点的坐标. (3)教学难点 通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。 (4)教学建议 学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空 间思维与数形结合方面存在困惑. 本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望,使学生主动参与教学实践活动.创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题. 新课导入设计 导入一 思路1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非 常快,有很多飞机时速都在 1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度

空间直角坐标系测习题

空间直角坐标系练习一 班级姓名 一、基础知识、 1、将空间直角坐标系画在纸上时,x轴与y轴、x轴与z轴均成,而z轴垂直于y 轴,,y轴和z轴的长度单位,x轴上的单位长度为y轴(或z轴)的长度的, 2、坐标轴上的点与坐标平面上的点的坐标的特点: x轴上的点P的坐标的特点:P(,,),纵坐标和竖坐标都为零. y轴上的点的坐标的特点:P(,,),横坐标和竖坐标都为零. z轴上的点的坐标的特点:P(,,),横坐标和纵坐标都为零. xOy坐标平面内的点的特点:P(,,),竖坐标为零. xOz坐标平面内的点的特点:P(,,),纵坐标为零. yOz坐标平面内的点的特点:P(,,),横坐标为零. 3、已知空间两点A( x,1y,1z),B(2x,2y2z),则AB中点的坐标为(,,). 1 4、一个点关于坐标轴和坐标平面的对称点的坐标: 点P(x,y,z)关于坐标原点的对称点为 P(,,); 1 点P(x,y,z)关于坐标横轴(x轴)的对称点为 P(,,); 2 点P(x,y,z)关于坐标纵轴(y轴)的对称点为 P(,,); 3 点P(x,y,z)关于坐标竖轴(z轴)的对称点为 P(,,); 4 点P(x,y,z)关于xOy坐标平面的对称点为 P(,,); 5 点P(x,y,z)关于yOz坐标平面的对称点为 P(,,) 6 点P(x,y,z)关于zOx坐标平面的对称点为 P(,,). 7 二、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是() A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为() A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,-4) D、(4,-1,3)

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

高中数学空间直角坐标系

空间直角坐标系 知识梳理 要点一:空间直角坐标系 1、点M对应着唯一确定的有序实数组(x,y,z) , X、y、Z分别是P、Q、R在X、y、z轴上的坐标 2、有序实数组(x, y, z),对应着空间直角坐标系中的一点 3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标, 记M(x, y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标 要点二:空间两点间的距离公式 1、空间中任意一点R(X i,y i,zJ到点P2(X2,y2,Z2)之间的距离公式 PP2 低—X2)2 (y i—y2P—(z1—z2F 三 - 典型例题(例题+变式) 考点1:空间直角坐标系 题型1:认识空间直角坐标系 例1(1 )在空间直角坐标系中,y a表示( ) A. ,y轴上的点 B.过y轴的平面 C. ,垂直于y轴的平面 D ?平行于y轴的直线 (2) 在空间直角坐标系中,方程y X表示 A. ,在坐标平面xOy中,1,3象限的平分线 B.平行于z轴的一条直线

C .经过z 轴的一个平面 D .平行于Z 轴的一个平面 考点2 :空间两点间的距离公式 题型2 :利用空间两点间的距离公式解决有关问题 例2如图:已知点 A(1,1,0),对于Oz 轴正半轴上任意一点 P ,在Oy 轴上是否存在一点 B ,使得PA AB 恒成 变式 1?已知A(x,5 x,2x 1),B(1,x 2,2 x),当 代B 两点间距离取得最小值时, x 的值为 () 2 ?设点B 是点A(2,-3,5)关于平面xOy 的对称点,贝U |AB|等于() 四?归纳总结 立?若存在,求出 B 点的坐标;若不存在,说明理由 8 8 A . 19 B . — C . 7 7 19 14 A . 10 C . 38 D . 38

空间直角坐标系与空间两点的距离公式

空间直角坐标系与空间两点的距离公式 空间直角坐标系 为了确定空间点的位置,我们在空间中取一点0作为原点,过0点作三条两两垂 直的数轴,通常用x、y、z 表示. 轴的方向通常这样选择:从z 轴的正方向看,x 轴的半轴沿逆时针方向转90 能与y轴的半轴重合.这时,我们在空间建立了一个直角坐标系O —xyz, 0叫做坐标原点. 如何理解空间直角坐标系?1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2. 在空间直角 坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3. 如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的 正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4. 在平面上画空间直角坐标系O —xyZ时,一般情况下使/ xOy=135°, / yOz=90°. 空间点的坐标 1. 点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴, 这个平面与X轴的交点记为P x,它在X轴上的坐标为X,这个数X就叫做点P的x坐标; 2. 点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴, 这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标; 3. 点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴, 这个平面与Z轴的交点记为P z,它在Z轴上的坐标为Z,这个数Z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P (x, y, z),其中x, y, z也可称为点P的坐标分量. 已知数组(x, y, z),如何作出该点?对于任意三个实数的有序数组(x, y, z):(1)在坐标轴上分别作出点P x, P y, P z,使它们在x轴、y轴、z轴上的坐标分别是x、y、z; (2)再分别通过这些点作平面平行于平面yOz、xOz、xOy,这三个平面的交点就是 所求的点. 空间点的坐标 1. 在空间直角坐标系中,每两条轴分别确定的平面xOy、yOz、xOz叫做坐标平面; 2. 坐标平面上点的坐标的特征:

知识要点-空间直角坐标系

空间直角坐标系 ★知识梳理★ 1.右手直角坐标系 ①右手直角坐标系的建立规则:轴、轴、轴互相垂直,分别指向右手的拇指、食指、中指; ②已知点的坐标作点的方法与步骤(路径法): 沿轴正方向(时)或负方向(时)移动个单位,再沿轴正方向(时)或负方向(时)移动个单位,最后沿轴正方向(时)或负方向(时)移动个单位,即可作出点 ③已知点的位置求坐标的方法: 过作三个平面分别与轴、轴、轴垂直于,点在轴、轴、轴的坐标分别是,则就是点的坐标 2、在轴上的点分别可以表示为, 在坐标平面,,内的点分别可以表示为; 3、点关于轴的对称点的坐标为 点关于轴的对称点的坐标为; 点关于轴的对称点的坐标为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于原点的对称点。 4. 已知空间两点,则线段的中点坐标为 5.空间两点间的距离公式 已知空间两点, 则两点的距离为, 特殊地,点到原点的距离为; 5.以为球心,为半径的球面方程为 特殊地,以原点为球心,为半径的球面方程为

★重难点突破★ 重点:了解空间直角坐标系,会用空间直角坐标系表示点的位置,会推导和使用空间两点间的距离公式 难点:借助空间想象和通过与平面直角坐标系的类比,认识空间点的对称及坐标间的关系 重难点: 在空间直角坐标系中,点的位置关系及空间两点间的距离公式的使用 1.借助空间几何模型进行想象,理解空间点的位置关系及坐标关系 问题1:点到轴的距离为 [解析]借助长方体来思考,以点为长方体对角线的两个顶点,点到轴的距离为长方体一条面对角线的长度,其值为 2.将平面直角坐标系类比到空间直角坐标系 问题2:对于任意实数,求的最小值 [解析]在空间直角坐标系中,表示空间点到点的距离与到点的距离之和,它的最小值就是点与点之间的线段长,所以的最小值为。 3.利用空间两点间的距离公式,可以解决的几类问题 (1)判断两条相交直线是否垂直 (2)判断空间三点是否共线 (3)得到一些简单的空间轨迹方程 ★热点考点题型探析★ 考点1: 空间直角坐标系 题型1:认识空间直角坐标系 [例1 ](1)在空间直角坐标系中,表示() A.轴上的点 B.过轴的平面 C.垂直于轴的平面 D.平行于轴的直线 (2)在空间直角坐标系中,方程表示 A.在坐标平面中,1,3象限的平分线 B.平行于轴的一条直线

相关主题