搜档网
当前位置:搜档网 › 汽车车桥轮毂制动鼓总成动平衡加工新工艺初探..

汽车车桥轮毂制动鼓总成动平衡加工新工艺初探..

汽车车桥轮毂制动鼓总成动平衡加工新工艺初探..
汽车车桥轮毂制动鼓总成动平衡加工新工艺初探..

汽车车桥轮毂制动鼓总成动平衡加工新工艺初探

主题词:轮毂制动鼓动平衡新工艺

摘要:本文主要探讨了轮毂、制动鼓动平衡加工过程中的一种新的工艺,解决了目前国内中重型汽车车桥因轮毂、制动鼓失衡引起的摆抖现象。

前言

随着我国道路交通状况的不断改善,汽车行驶速度不断提高,国家2006年新法规规定:重型卡车的标准时速为≥105Km/h,大中型客车的标准时速为

≥110Km/h,国外的同类车型均高于我国的标准。为了与国外接轨、与同行的竞争,所有整车主机厂在提高整车性能、增加发动机功率的同时均无一例外对其配套的前后桥总成性能及质量提出了更高的要求。

汽车的车桥是由轮胎、轮毂制动鼓等回转件组成的一个整体。轮毂制动鼓总成的动不平衡量大小对整车质量的影响将会越来越突出。为此,车桥轮毂制动鼓总成的动不平衡量问题便成了提高车桥质量水平的一个重点课题。由于制造上的原因,使这个整体各部分的质量分布不可能非常均匀。当汽车车轮高速旋转起来后,就会形成动不平衡状态,造成车辆在行驶中车轮抖动、方向盘震动的现象。为了避免或消除这种现象,就要使车轮在动态情况下通过增加配重或去重的方法,使车轮校正各边缘部分的平衡。这个校正的过程就是人们常说的动平衡。

所谓车桥轮毂制动鼓总成的动平衡,就是不仅要求使轮毂制动鼓总成在转动时各偏心重量产生的惯性力之和为零,而且要使这些惯性力所构成的惯性力偶矩之和也等于零的一种平衡措施。目前利用平衡试验装置测定应去重量的方法,不可避免的会有误差存在,因而经过平衡去重的轮毂总成还会有残余的不平衡。欲减小这种残余的不平衡就需使用更精密的平衡试验装置、更先进的测试设备。

动平衡的好处:对轮毂制动鼓总成进行动不平衡试验并去重,对汽车高速行驶的稳定性起着非常重要的作用。前后桥轮毂制动鼓总成的动不平衡量的大小及验收规范是引起整车多项质量故障的重要原因。随着汽车行驶速度越来越快,轮毂制动鼓总成的动不平衡量的大小对整车质量的影响将会越来越突出。如果车轮动平衡不好会造成轮胎的异常磨损,也会影响车辆的稳定。特别是前轮,震动会通过转向系统传到方向盘,不但影响驾驶,严重的还会导致转向系统的松旷,以至威胁到汽车的行驶安全。

动平衡的方法:在现有动平衡设备精度不变的情况下,为保证轮毂制动鼓总成合件的动不平衡量达标,可首先要求轮毂和制动鼓配套厂家分别对轮毂和制动鼓零件进行动平衡试验,允许最大动不平衡量按国家法规由我公司自定,单件动平衡达标后,各配套厂家必须在剩余不平衡方向做标记。把轮毂和制动鼓相错180o后对准标记后进行合件装配,装配后再对轮毂和制动鼓合件进行动平衡检测(按国标GB2828抽样)。

根据目前我国汽车工业现有状况,国内各汽车车桥生产厂家(东风车桥、青岛海通车桥、山西汤荣、江淮、湖桥、山汽改、一汽车桥)对轮毂制动鼓总成均是采用规定其最大允许动不平衡余量的方法来控制轮毂制动鼓总成的动平衡。为此,我公司根据具体情况,结合主机厂的需求,制定出我公司的按单件零件控制轮毂和制动鼓的动平衡量的方案,以解决我公司车桥轮毂制动鼓总成的动平衡控制现状,与同类行业厂生产工艺水平靠齐。

一、轮毂、制动鼓总成动平衡及加工工艺改造方案的目的与指导思想

1、在保证轮毂、制动鼓加工质量的前提下,实现轮毂制动鼓组装后直接装配桥总成的工艺路线。

2、保证轮毂、制动鼓合件动平衡余量满足要求。

3、本着投入经济、保证质量、提高产量与适应多品种生产,转产快的原则特制定了此方案。

二、轮毂、制动鼓总成动平衡及加工工艺改造方案的主体思路

1、在轮毂、制动鼓总成其它尺寸满足要求前提下,保证组装后的制动鼓摩擦副表面全跳动小于0.15mm。

2、在现有动平衡设备精度不变的情况下,为保证轮毂制动鼓总成合件的动不平衡量达标:

① 轮毂和制动鼓配套厂家分别对轮毂和制动鼓零件按公司新发放的图纸要求进行动平衡去重加工处理和检验,其允许最大动不平衡量按公司图纸规定。

② 轮毂和制动鼓单件动平衡达标后,要求各配套厂家必须在剩余不平衡方向按公司规定的标识做出标记,以便于后续工序的工作。

③ 我公司只须把经过动平衡去重加工处理和检验后的轮毂和制动鼓按标识对正后进行合件装配;

④ 装配后再对轮毂和制动鼓合件进行动平衡检验与去重处理,并在剩余不平衡方向按公司规定的标识做出标记。

三、轮毂和制动鼓动平衡工艺的技术与质量要求

1、公司轮毂和制动鼓允许最大动不平衡余量(以EQ153为例)

2、钻孔直径及深度见各零部件图纸;

3、钻孔方向在测试出的最大动不平衡方向左右30°扇形范围内;

4、孔与孔之间的间隔不小于20mm(选用Φ16钻头);

5、钻孔后无法达到允许最大动不平衡余量要求的制动鼓,可以采用车削外圆加以保证。外圆带加强筋的制动鼓,由于无法车削外圆,采用在相邻加强筋圆弧面上铣削去重的方法加以保证;

四、轮毂、制动鼓总成动平衡及加工工艺修改方案

以我公司加工EQ153型前轮毂、前制动鼓加工为例(公司其它轮毂、制动鼓产品工艺状况与此相同):

1、轮毂加工线工艺流程为:

①车削外端面外圆、外平面、小轴承位、精车轮辋止口、螺栓槽→②车削内端面、装配止口、轴承位、油封位、总高→③精车内端面轴承位、外端轴承位、油封位、装配止口、R弧→④钻铰螺栓孔→⑤钻、攻轮毂盖孔→⑥清洗→⑦测失衡量,去除失衡部分→⑧再次测量失衡量(达到规定值),并对最重点作明显标识

2、制动鼓加工线工艺流程为:

①粗车外端面,粗车装配止口→②车削摩擦孔外圆、加强筋外圆、总高、倒角→③精车摩擦孔、装配止口、内外端面(一次装夹)→④钻螺栓孔、倒角→⑤清洗→⑥测失衡量→⑦钻除失衡部分→⑧再次测量失衡量(达到规定值),并对最重点作明显标识。

3、轮毂制动鼓总成装配及加工线工艺流程为:

①清洗→②压装轴承外圈→③压装油封总成及车轮螺栓总成→④轮毂、制动鼓装配→⑤测失衡量→⑥去除失衡部分(达到规定值),并对最重点作明显标识。

五、轮毂、制动鼓总成动平衡加工路线、要求及设备

1、前后、轮毂加工:

2、前、后制动鼓加工

3、轮鼓制动鼓总成装配及加工

六、轮毂、制动鼓总成动平衡及加工工艺改造工艺试验

本次试验以EQ153前轮毂、制动鼓加工为例进行。

第一、二轮:共计试验6台轮毂止口¢240-0.05 -0.096、制动鼓止口¢240+0.046 0检查情况见下表:

试装后检查总成内圆跳动,一件在0.20mm,基本合格,其余均大于0.20mm,不合格,经检查发现附件制动鼓螺栓孔位置度超差,装配时,轮毂与制动鼓止口存在一边接触现象,导致跳动量超差。

针对以上情况,要求严格控制制动鼓钻孔工艺。

第三、四轮:共计试验20台轮毂止口¢240-0.05 -0.096、制动鼓止口¢240+0.046 0检查情况见下表:

从上表中可以看出,20件轮毂制动鼓总成中跳动量大于轮毂、制动鼓单件止口公差和的极限值有4只,这表明仍有制动鼓单件内圆的圆跳动量超差。

原因分析:

①加工误差:由于以前的工艺是轮毂、制动鼓组装后再精加工内圆,制动鼓零件加工时,内圆尺寸及其形位公差要求偏低。本工艺方案要求制动鼓所有尺寸机加工到位,与轮毂组装后直接装配使用,所以对内圆与底面的垂直度,内圆与止口的同轴度,止口公差等尺寸及形位公差要求有显著提高,应针对以上因素检验数控立车的加工工艺及精度。

②制动鼓搬运中碰撞造成:制动鼓搬运中造成底面及止口变形、毛刺,直接导致制动鼓与轮毂装配后内圆圆跳动超差;

③制动鼓时效处理工艺不过关:制动鼓搬运中磕碰及储存时如果较易变形,就会影响轮毂制动鼓总成装配后的质量。

原因验证:

A)针对问题①:

现场抽查4件刚加工好的制动鼓,待冷却后检查失圆度均在0.06mm以下,合格;说明数控立车的加工精度可以满足本工艺方案要求;

B)针对问题②:

现场测出4件制动鼓后,标明圆跳动最大点,对圆跳动最大点进行人为碰撞。

按工件与地面距离70--80cm丢落后碰撞实验,与地面相碰撞后制动鼓圆跳动增大0.10mm,与刚性物体碰撞后圆跳动增大0.20mm。

解决方法:

① 采用配备并严格要求使用轮毂、制动鼓工位器具,

② 简化轮毂、制动鼓运输过程等手段,努力避免轮毂、制动鼓磕碰造成组装后尺寸超差。

③ 要求制动鼓生产厂家对所有制动鼓必须采用时效处理。

按上述解决方法再次验证150件后,轮毂制动鼓总成跳动量达到图纸规定要求。

效果分析

对轮毂、制动鼓零件分别进行动平衡后,可有效地提高车桥总成质量,可满足主机厂日益提高的质量要求,提高整车质量,减小售后服务费用。

汽车轮毂加工工艺分析

汽车轮毂加工工艺分析 摘要:文章通过对商用车轮毂零件的机加工工艺及路线设计等内容的分析,详细讨论了汽车轮毂从毛坯到成品的机械加工工艺过程,并制定了相应的机械加工工艺规程,对轮毂的加工工艺进行了探讨与分析,以供各位参考。 关键词:汽车轮毂;零件;机加工工艺 近几年来,随着经济的发展,我国的商用车越来越得到更广泛的应用,轮毂作为汽车底盘的一个关键件,汽车在行驶过程中轮毂作旋转运动,内孔装有轴承起到了支撑车辆的作用。轮毂的材质、加工尺寸、形位公关的控制是车辆在使用中所要关注的问题。通过对轮毂的加工工艺进行分析,了解轮毂在尺寸控制方面的关键特性,对我们了解轮毂及使用上具有重要意义。 1零件分析 1.1零件的结构分析 汽车轮毂属盘套类零件(如图1所示),零件的外表面为阶梯带凹槽、加强筋,内表面为阶梯孔,这个属于典型的盘套类零件,同时又具有轴类零件的特征,是以轮毂及上下端为主要加工表面,且有较高的尺寸公差和形位公差要求。 1.2零件的生产纲领及零件的生产类型 在设计制造工艺路线时要考虑汽车轮毂是具有大批量生产的特点,所以要制定合格的工艺路线和合适的设备、刀具、量具、检具,来提高生产效率,降低生产成本,提高经济效益。 2工艺规程设计 2.1制定加工工艺路线 加工工序名称见表1。 本工艺路线的优点在于第3序,轮毂的内外轴承位、油封位、制动鼓安装止口位四者同轴度要求很高,技术要求为:↗0.05,本工艺路线,以工序集中的方式,将四者的形位公差要求在同一次装夹后,一次加工成型,有效减少多次定位引起形位公差误差。其余孔口倒角部份不在此工艺路线中列出。 2.2定位基准的选择 确定加工工艺路线后,选择基准是工艺规程设计中的重要工作,选择正确与合理的基准,可以保证加工质量的一致性,提升加工效率,减少对工人技能水平的依赖。选择合适的基准必须从零件的加工精度、特别是加工表面的相互位置精

动平衡实验报告

硬支承动平衡实验报告 实验目的: 1.了解硬支承动平衡机的结构、控制面板、性能及操作方法。 2.验证、巩固和加深对基本理论的理解,培养实验动手能力。 3.掌握基本的机械实验方法、测量技能及用实验法以及培养学生踏实细致、严肃认真的科学作风。 实验设备: 1、硬支承动平衡机 2、台式钻孔机、钳工工作台 3、线切割滚丝筒 4、标定加重螺栓。 实验原理: 根据《机械原理》所述的回转体动平衡原理知:一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡重和(它们的质心位置分别为和;半径大小可根据数值、的不同变化)所产生的离心力。动平衡的任务就是在这两个任选的平面(称ω为平衡基面)内的适当位置(和)加上两个适当大小的平衡重和,使它们产生的平衡力与当量不平衡重产生的不平衡力大小相等,而方向相反,即:

2 b 2b 22 222b 1b 1211ω r ωr ωr ωr G G G G =-=- 半径 越大,则所需的就越小。 通过平衡补偿回转体达到力和矩平衡,从而达到动平衡。 硬支承动平衡机工作原理简图如下所示: 实验步骤: 1)将两平衡平面处于原始位置,系统处于静平衡但动不平衡状态,在两支承处加润滑油。 2)按D 参数键,选定转子号,回车; 3)进入D1页,输入平衡转速540转,平衡配重的半径R ,回车; 4)进入D2页,输入A,B,C 参数,可测量,A 为第一平衡面距第一支承中心的距离,B 为两平衡面间距离,C 为第二平衡面和第二支承点的距离;输入支承方式HE-1,按存储键; 5)进入显示,测量页面;

《汽车制动盘》编制说明

《汽车用制动盘》(征求意见稿) 编制说明 1 工作简况(包括任务来源、主要工作过程、主要参加单位和工作组成员及其所做的工作等) 1.1 任务来源 国家标准化管理委员会下达的2012年第2批国家标准制修订计划,项目编号为20121243-T-339。 1.2 主要工作过程 2012年10月,接到国家标准化管理委员会任务后,立即成立了以国家机动车配件产品质量监督检验中心(烟台)为牵头的标准起草小组,并编制了标准制定计划。在收集了相关的国际、国内标准以及与本标准相关的国内外的法规、大型企业的技术材料等相关资料后,于2013年3月在烟台召开了首次讨论会议,并初步形成了本标准制定的统一意见,即:本标准以ECE法规、国外先进国家的标准为基础,结合我国的实际情况,且适应国内相关标准进行编制。 在反复研究和初步调查的基础上,于2013年6月第二次召开标准讨论会,完成初稿的编写工作。2013年11月,工作组在行业内召开意见听取会议,邀请中国铸协、一汽集团等国内相关技术专家对《汽车用制动盘》的标准初稿提出意见及建议,通过工作组全体成员和相关专家对标准初稿的认真讨论,并结合国内具有一定规模的生产厂家的生产、控制经验,对部分技术参数指标进行相应的改动,完成对初稿的第二次修改。会后由国家机动车配件产品质量监督检验中心对标准初稿第二次修改版中所涉及的全部项目参数进行检验验证。 2014年6月,工作组组织进行了第三次标准讨论会议,由国家机动车配件产品质量监督检验中心完成了产品台架试验的验证,通报全体工作组成员后,确定了更合理的技术指标。 根据项目计划,起草小组于2014年9月完成标准征求意见稿报全国汽车标准化技术委员会制动分技术委员会秘书处,根据汽标委制动分委会秘书处审查意见,对标准征求意见稿又进行了修改完善,于2014年10月15日再次上报汽标委制动分委会秘书处。 1.3 主要起草单位和工作组成员 主要起草单位:国家机动车配件产品质量监督检验中心、胜地汽车零部件有限公司、莱州三力机械制造公司、烟台美丰机械有限公司、龙口裕东机械制造厂、山东隆基机械股份有限公司。 工作组成员:李洪、周洪涛、崔兰芳、郑云霞、张宝芝、王平、杨伟尧、王松、孙振林。 2 标准编制原则 制动盘机械性能和材料要求以我国相关的材料国家标准为基础,并通过理论验证、结合国内主要制动盘生产厂的实际经验进行确定。几何尺寸及几何特征参数要求主要参照GB/T 7216和国外的相关标准,如SAE J431、DIN 1561等。台架性能试验方法和要求主要参照ECE R90相关内容。 标准的编排格式按照 GB/T 1.1-2009的规定进行编制。 3 标准主要内容(包括技术指标、参数、公式、性能要求、试验方法、检验规则等论据,解决的主要问题等。) 本标准主要由范围、术语和定义、分类、技术要求和检验方法等组成。 3.1 范围

制动系知识常用的制动装置(鼓式制动器篇)

汽车制动器中有两种形式,鼓式制动器和盘式制动器,盘式制动器本网早已做过介绍。现介绍一下轿车等轻型汽车上常见的鼓式制动器。 鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。 典型的鼓式制动器主要由底板、制动鼓、制动蹄、轮缸(制动分泵)、回位弹簧、定位销等零部件组成。底板安装在车轴的固定位置上,它是固定不动的,上面装有制动蹄、轮缸、回位弹簧、定位销,承受制动时的旋转扭力。每一个鼓有一对制动蹄,制动蹄上有摩擦衬片。制动鼓则是安装在轮毂上,是随车轮一起旋转的部件,它是由一定份量的铸铁做成,形状似园鼓状。当制动时,轮缸活塞推动制动蹄压迫制动鼓,制动鼓受到摩擦减速,迫使车轮停止转动。 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。 轿车鼓式制动器一般用于后轮(前轮用盘式制动器)。鼓式制动器除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿车,其驻车制动器也组合在后轮制动器上。这是一个机械系统,它完全与车上制动液压系统是分

轮毂毕业设计

轮毂毕业设计 篇一:毕业设计——汽车轮毂的数控加工工艺及程序分析汽车轮毂的数控加工工艺及 程序分析 系部:精密制造系 学生姓名:吴斌 专业班级:数控11C1 学号:111021133 指导教师: 20XX年4月25日 声明 本人所呈交的汽车轮毂的数控加工工艺及程序分析,是我在指导教师的指导和查阅相关著作下独立进行分析研究所取得的成果。除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 20XX年4月25日 【摘要】 随着中国GDP的快速增长,人们对汽车的需求量也与日俱增,汽车轮毂作为汽车的一个重要组成部分,它的大小、材料、质量决定了汽车行驶的安全性和可靠性,伴随着中国

汽车零部件工业的成长,轮毂行业逐渐发展壮大起来。本文以汽车轮毂作为研究对象,首先介绍汽车轮毂的应用场合;其次介绍汽车轮毂的数控加工工艺,包括机床介绍、工件材料、刀具及夹具的选用、切削用量选择及加工路线确定;最后分析了汽车轮毂的部分数控加工程序,总结了常见的几个问题以及解决方法。 【关键词】:汽车轮毂;工艺分析;加工程序。 目录 引言 ................................................ .. (1) 一、汽车轮毂零件介绍 (2) (一)汽车轮毂零件 (2) (二)应用场合................................................. .. (4) (三)结构形状分析 (4)

二、汽车轮毂的加工工艺分析 (5) (一)工件材料选用 (5) (二)加工设备的选用 (5) (三)夹具的选用................................................. (9) (四)刀具的分析与选用 (10) 三、汽车轮毂的加工过程 (12) (一)压铸................................................. .. (12) (二)数控加工................................................. . (12) (三)数控加工程序.................................................

汽车制动鼓的失效分析.

汽车制动鼓的失效分析 汽车制动鼓是汽车的重要保安件,也是汽车日常检修中首要检查部件,根据公司三包件的反馈信息,制动鼓失效主要有五种形式:开裂、龟裂、掉底、磨损过大、非正常磨损。 铸件失效主要从两个方面考虑,一是铸件的材料成分和自身的强度,另一个是在一定工况条件下,材料组织的改变而引起的机械性能的改变。一般来说,铸件的机械性能主要取决于化学成分,又受外部环境(温度、冷却速度等)的影响。 制动鼓在工作时主要受两个方向的力,一个是来自蹄铁的法向压力,一个是因旋转和蹄铁离合片产生的切向力。当去掉法向压力,制动鼓和蹄铁离合片之间的切向力也就不存在了;制动鼓和离合片摩擦产生大量的热,导致制动鼓温度升高,而离合片和制动鼓的摩擦实际多是斑状接触,接触面因受摩擦产生的热使该处组织发生相变,产生相变应力,降低了该处的抗热疲劳能力;同时,由于受热的不均匀,温度高的部位发生了相变,温度低的部位没有变化,而有的部位甚至尚未受到热的影响;相变产生应力,受热的不均匀也会产生应力,这些残余应力的存在,使得力学性能不均匀,在频繁的制动载荷作用下,产生有一定规则的裂纹(见图一、二),裂纹多呈轴向分布,断续或连续状,从裂纹分布情况分析,裂纹主要是受切向力产生的。切向力作用在制动面上,对基体有撕裂的作用,对基体造成内应力,降低了材料的热疲劳强度,便产生连续或不连续的裂纹,严重的造成断裂。

图片一 图片二 另一方面,制动鼓产生的相变情况。内部组织相变主要受温度影响,制动鼓工作时产生的温度最高可达850°C--900°C,这个温度 足以造成组织相变,主要发生的相变有:1. 在800℃附近或略低于

800℃,共晶碳化物分解为石墨和铁素体;2. 珠光体和铁素体在800℃以上转变为奥氏体;3. 奥氏体在快速冷却时转变为马氏体。 关于制动鼓开裂的问题,这个应从两个方面分析,一是在制动状态下,因材料自身强度差而受力破裂;二是在龟裂出现后,制动鼓在热应力和相变应力的相互作用下,再由于组织相变局部强度的降低,在制动外力频繁作用下,最终造成制动鼓破裂。 对于掉底和没有出现龟裂就形成的开裂,也从两个方面分析,一是制动鼓材料自身强度差;一是在不合理的非正常外力作用下造成制动鼓开裂。 图片三

翻砂铸造生产工艺

翻砂铸造生产工艺 翻砂是用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用范围最广的工艺方法。说起历史悠久,可追溯到几千年以前;论其应用范围,则可说世界各地无一处不用。 值得注意的是,在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其适用范围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。 “砂型铸造”时先将下半型放在平板上,放砂箱填型砂紧实刮平,下型造完,翻砂铸造将造好的砂型翻转180度,放上半型,撒分型剂,放上砂箱,填型砂并紧实、刮平,将上砂箱翻转180度,分别取出上、下半型,再将上型翻转180度和下型合好,砂型造完,等待浇注。这套工艺俗称--“翻砂”。 翻砂是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量的60%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了使砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。翻砂铸造制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在1250―1350度,熔炼时温度更高。然后还要经过除砂、修复、打磨等过程,才能够成为一件合格铸件。(end)文章内容仅供参考() (2012-5-16) 1/ 1

汽车轮毂的制造工艺.

汽车轮毂制造技术 班级:机电1302班 学号:13221045 姓名:师世健 指导教师:邢书明

目录 一、摘要 (3) 二、汽车轮毂的选材 (3) 1. 钢铁材料 (3) 1.1 球墨铸铁 (3) 1.2 其他钢铁材料 (3) 2.合金材料 (3) 3.复合材料 (3) 三、铸造方法 (3) 1.压力铸造 (3) 2.金属型铸造 (4) 3.熔模铸造 (4) 4.低压铸造 (5) 5.离心铸造 (5) 四、工艺方案 (6) 1.零件图 (6) 2.浇注位置 (6) 3.分型面 (7) 4.砂芯 (7) 5.浇注系统 (7) 6.主要工艺参数的确定 (7) 7.冒口 (7) 8.铸造工艺图 (8)

汽车轮毂制造技术 一、摘要 轮毂,作为汽车一个重要组成结构,起着支撑车身重量的作用,对汽车节能、环保、安全性、操控性都有着极其重要的影响。对其工作环境及使用要求予以充分分析,对其结构进行合理设计,选取性能优良的材料及适当的加工方法,都是汽车轮毂制造中不可或缺的环节。 二、汽车轮毂的选材 1.钢铁材料 1.1 铸铁、铸钢 球墨铸铁以其优良的综合力学性能应用在轮毂上,如铁素体球墨铸铁、高韧性球墨铸铁等。但是,由于类似碳素钢轮毂的缺点,以及铸造过程的复杂性和铸造模型所限,轮毂形状难于控制,限制了其应用。 1.2 其他钢铁材料 一些合金钢如加入钛元素的低合金钢,合金元素可以细化晶粒,提高钢的力学性能,使钢具有强度高、塑韧性好、加工成形性和焊接性良好,可以作为轮毂用钢;此外,低合金高强度双相钢,如低碳含铌钢,提高贝氏体含量,可以提高屈服强度,提高扩孔率,也可以用作轮辐和轮辋用钢。在实际应用中的多数钢制轮毂是通过已成型的轮缘和轮盘焊接而成,尽量使自重降低。 2.合金材料 汽车采用铝合金轮毂后减重效果明显,轻型车使用铝合金轮毂比传统钢制轮毂轻30%-40%,中型汽车可轻30%左右。美国森特来因·图尔公司用分离旋压法制出的整体板材(6061合金)车轮,比钢板冲压车轮重量减轻达50%,旋压加工时间不到90s/个,不需要组装作业,适宜大批量生产。另外,相同外径尺寸的轮毂使用铝合金轮毂抗压强度还有所提高。 3.复合材料 复合材料是应现代科学技术发展而出现的具有强大生命力的材料。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。 三、铸造方法 1.压力铸造

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

汽车鼓式制动器开题报告

毕业设计(论文)开题报告 设计(论文)题目:路宝汽车后轮制动器的设计 院系名称: 汽车与交通工程学院 专业班级: 车辆工程 学生姓名: 导师姓名: 开题时间: 指导委员会审查意见: 签字:年月日

一、课题研究目的和意义 制动系统是保证行车安全的极为重要的一个系统,既可以使行驶中的汽车减速,又可保证停车后的汽车能驻留原地不动。对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力、上坡阻力、空气阻力都能对汽车起到制动作用,但这些外力的大小都是随机的、不可控制的。因此,汽车上必须装设一系列专门装置,以便驾驶员能根据道路和交通等情况,使外界(主要是路面)对汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,相应的一系列专门的装置即称为制动装置。由此可见,汽车制动系对于汽车行驶的安全性,停车的可靠性和运输经济效益起着重要的保证作用。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,汽车制动系的工作可靠性显得日益重要。因此,许多制动法规对制动系提出了许多详细而具体的要求。 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 二、课题研究现状及分析

轮毂制造工艺

日本轮毂先进的制造工艺 相信对于很多汽车消费者而言,轮毂基本上只有两种,那就是钢制轮毂和铝合金轮毂,而铝合金轮毂更好。那么在铝合金轮毂之中,是否都是一样的?如果不是,那么哪一种才更好?更好的轮毂可以为您带来什么好处呢?今天我们就为您浅析一下不同的铝合金轮毂的种类,以及除铝合金轮毂之外,是否还有更好的产品? 铝合金轮毂种类 现在我们虽然知道了铝合金轮毂比钢轮毂更好,更适用于乘用车,但您知道铝合金轮毂也有不同的种类吗?从制造工艺上我们所见过的铝合金轮毂基本有三种,第一种是铸造,也就是绝大多数家用车或者部分豪华车所用。另一种是锻造,多被用于高性能车、高级跑车,还有很多汽车轮毂改装品牌的高端产品也是锻造产品。除上述两种原有的工艺之外,现在还有一种新的工艺形式,叫做MAT旋压铸造。 铸造铝合金轮毂 铸造成型的铝合金轮毂是如何生产的呢,简单的说,是将被铸造的金属物质加热至液态,然后将极高温的液态金属倒入不同样子的铸模,然后再通过打磨、抛光等精加工来做出最终成品。铸造一般分为两种,一种是重力铸造,另一种是低压铸造。重力铸造是比较原始的铸造

工艺,就是依靠铝水自身的重力倾注到铸模之中,铝水通过自身压力充满至整个铸模各个角落。这种工艺的方法比较简单而且成本也更低,但产品质量可控性不高,并且容易出现瑕疵,在汽车轮毂制造业中几乎已经完全被低压铸造取代。 低压铸造顾名思义,就是将铝水通过设备施加压力灌注到铸模之中,铝水整个凝固过程都处在有一定压力的状态下。这样的好处是铝水因为压力会产生更大的密度,凝固后成品的强度更高。在造型比较复杂的铸模中也可以保证完全充满铸模,很多样式比较复杂的铸造铝合金轮毂只能通过低压铸造方式制造。低压铸造的过程全部由机械完成,并且铸造成型的良品率高,非常适合大批量生产,所以目前汽车厂商指定的铸造铝合金轮毂都是由这种工艺生产出来的。 锻造铝合金轮毂 锻造是一种比铸造更加高级的工艺,因为成品价格昂贵,所以一般的家用车甚至中高级车都不会采用锻造铝合金轮毂。锻造就是通过锻压机对固态的铝合金材料胚料施加巨大压力,使其挤压变形,行程一定的形状、强度和尺寸的制造工艺。然后锻造成型的毛坯在经过精加工最终成为成品,这点与铸造是一样的。经过合理的锻造比、温度控制等等一系列复杂工艺的调整,可以锻造出不同强度和性能的锻造件。

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

鼓式制动器说明书

第一章制动参数选择及计算 第一节汽车参数(符号以汽车设计为准) 制动器设计中需要的重要参量: 汽车轴距:L=1370mm 车轮滚动半径:r r =295 mm 汽车满载质量:m a=4100Kg 汽车空载质量:m o=2600Kg 满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm 空载时质心高度:hg'=850mm 质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。 第二节制动器的设计与计算 一制动力与制动力矩分配系数

0 水平路面满载行驶时,前、后轴的负荷计算 对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg) 前轴的负荷F1=Ga(L2-?hg)/(L-?hg)=3830.8N 后轴的负荷F2=GaL1/(L-?hg)=36349.2N ?--- 附着系数,沥青.混凝土路面,取0.6 轴荷转移系数: 前轴:m,1= F Z1/G1=0.24 后轴:m,2= F Z1/G2=1.48 1、(汽车理论108页) 水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载) F Z1= G L (L2+? g h) =4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55N F Z2=G L (L1-? g h) =4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力; L-- 汽车轴距; 1 L--汽车质心离前轴距离; L 2 --汽车质心离后轴距离; g h--汽车质心高度; g --重力加速度;(取9.80N/kg) 2 (汽车理论8,22)

制动鼓与制动盘的优缺点

制动盘与制动鼓的优缺点: 几十年来四轮制动鼓都是汽车的标配。在制动鼓中,液压被施加到活塞上,活塞将曲形制动蹄推出。粘合或铆钉在制动蹄上的摩擦材料压住制动鼓内部,减缓制动鼓和车轴的转动,然后这些老式汽车就会停下来——如果顺利的话!以前能把4轮鼓式刹车都调整的不跑偏还是修理工最值得骄傲的手艺, 事实上,有时候制动鼓很有效,但如果你只使用制动鼓试图停下一辆高速汽车,就会发现它们的局限性:它们会衰减。制动鼓摩擦生热,导致膨胀。制动蹄必须要向外移动以便接触到制动鼓,这意味着必须深入踩下制动踏板。摩擦材料发热产生的气体也被困在制动蹄和制动鼓内部,减弱了制动能力。第一次制动汽车可能会从高速很快停下,但是在第二次制动时,你的运气就不一定那么好了。 汽车制造商在制动鼓上添加散热片或铝制材料,来冷却制动鼓和金属制动衬面,但这不是高性能制动装置的解决方案。于是出现了制动盘。 制动盘曾经被应用于飞机和工业用途。通过施加到制动钳上的液压力,摩擦材料(制动片)夹住转动的制动片。制动盘似乎不像制动鼓那么容易“抓死”,因此当停车的时候它们能提供更好的方向稳定性。和封闭式制动鼓不同,制动盘是敞开式的,这一点兼具优缺点。 由于空气很容易通过摩擦性材料,可以更好地冷却制动盘。通风式盘片有两个摩擦表面,由一些散热片隔开。这使得位于摩擦表面之间盘片内部的空气能够更好地冷却。现在大部份前轮制动盘为通风式,因为它们进行大部分制动工作;大部分后制动盘为非通风式,有一个“实心”盘片,因为后轮制动盘不会产生那么多热量。 制动盘还有一个优点,脏东西和气体会被旋转的制动盘甩出去,而制动鼓会聚集脏东西。水,油和摩擦材料产生的气体很快散开,可进行更好的制动。有些制动盘带孔或槽,部分原因是为了美观,另外也有实际用途:在制动片和盘片摩擦物质表面的水和气体可以通过孔径,这样制动装置可以立刻发挥作用,无需通过盘片转动进行清洁。这在赛车环境中是很重要的,但在普通道路上不很实用。孔洞降低了摩擦物质的面积,甚至会卡住小石头,所以它们需要更多的维护。

刚性转动零件的静平衡与动平衡试验的概述

刚性转动零件的静平衡与动平衡试验的概述1. 基本概念: 1.1不平衡离心力基本公式: 具有一定转速的刚性转动件(或称转子),由于材料组织不均匀、加工外形的误差、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算: 式中:G------转子的重量(公斤) e-------转子的重心对旋转轴线的偏心量(毫米) n-------转子的转速(转/分) ω------转子的角速度(弧度/秒) g-------重力加速度9800(毫米/秒2) 由上式可知,当重型或高转速的转子,即使具有很小的偏心量,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原由之一.所以零件在加工和装配时,转子必须进行平衡. 1.2转子不平衡类别: 1.2.1转子的惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴 线上,如图1a所示.当转子旋转时,将产生不平衡的离心力. 1.2.2转子的主惯性轴与旋转轴线主交错将产生不平衡的离心力,且相交于转 子的重心上,即转子重心在旋转轴线上,如图1b所示.这时转子虽处于平衡状态,但转子旋转时将产生一不平衡力矩. 1.2.3大多数情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静 动不平衡.即转子的主惯性轴与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点,如图1c所示.当转子旋转时,将产生一个不平衡的离心力和一个力矩. 1.2.4 转子静不平衡只须在一个平面上(即校正平面)安放一个平衡重量,就可以使转子达 到平衡,故又称单面平衡.平面的重量的数值和位置,在转子静力状态下确定,即将转 子的轴颈放置在水平刀刃支承上,加以观察,就可以看出其不平衡状态,较重部份会 向下转动,这种方法叫静平衡.

《机械设计基础》实验报告

. 广西科技大学鹿山学院 实验报告 课程名称: 指导教师: 班级: 姓名: 学号: 成绩评定: 指导教师签字: 年月日

实验一机构运动简图的测绘与分析 一、实验目的: 1、根据各种机械实物或模型,绘制机构运动简图; 2、学会分析和验证机构自由度,进一步理解机构自由度的概念,掌握机构自 由度的计算方法; 3、加深对机构结构分析的了解。 二、实验设备和工具; 1、缝纫机头; 2.学生自带三角板、铅笔、橡皮; 三、实验原理: 由于机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略符号(见教科书有关“常用构件和运动副简图符号”的规定)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。

四、实验步骤及方法: l、测绘时使被测绘的机械缓慢地运动,从原动件开始,仔细观察机构的运动,分清各个运动单元,从而确定组成机构的构件数目; 2、根据相联接的两构件的接触特征及相对运动的性质,确定各个运动副的种 类; 3、选定投影面,即多数构件运动的平面,在草稿纸上徒手按规定的符号及构 件的连接次序,从原动件开始,逐步画出机构运动简图。用数字1、2、 3、……。分别标注各构件,用英文字母A、B、C、,……分别标注各运动副; 4、仔细测量与机构运动有关的尺寸,即转动副间的中心距和移动副导路的方 向等,选定原动件的位置,并按一定的比例画出正式的机构运动简图。 五、实验要求: l、对要测绘的缝纫机头中四个机构即a.压布、b走针、c.摆梭、d.送布,只绘出机构示意图即可,所谓机构运动示意图是指只凭目测,使图与实物成比例,不按比例尺绘制的简图; 2、计算每个机构的机构自由度,并将结果与实际机构的自由度相对照,观察计 算结果与实际是否相符; 3、对绘制的机构进行结构分析(高副低代,分离杆组;确定机构级别等)。 六、思考题:

机械原理实验三实验四指导及实验报告.docx

实验三:刚性转子动平衡实验 一、实验目的 1、加深对刚性转子动平衡概念的理解; 2、掌握刚性转子动平衡实验的原理及基本方法。 3、了解动平衡试验机的结构组成及工作原理。 二、实验设备 1、JPH-A型动平衡实验台; 2、转子试件; 3、平衡块; 4、百分表0~10mm。 三、实验原理 由《机械原理》所述的回转体动平衡原理知:一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡质量i m所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡质量1m 和2m (它们的质心位置分别为1r和2r,半径大小可根据数值1m、2m的不同而不同)所产生的离心力。动平衡的任务就是在这两个任选的平面(称为平衡基面Ⅰ、Ⅱ)内的适当位置(1r'和2r')加上两个适当大小的平衡重1m'和2m',使它们产生的平衡力与当量不平衡重产生的不平衡力大小相等,而方向相反,即: 半径r'越大,则所需的平衡重m'就越小。此时,ΣF =0且ΣM=0,该回转体达到动平衡。 转子不平衡质量的分布有很大的随机性,而无法直接判断其大小和方位。因此很难用公式来计算平衡重,但可用实验方法来解决。 “刚性转子动平衡实验”是利用实验用动平衡实验台测定需加于两个平衡基面上的平衡质量的大小和方位,并通过增减配重质量来进行校正,直到达到平衡。 四、实验方法和步骤 1、将平衡试件装到摆架的滚轮上,把试件右端的联轴器盘与差速器轴端的联轴器盘,用弹性柱销柔性联成一体。装上传动皮带。 2、用手转动试件和摇动蜗杆上的手柄,检查动平衡机各部分转动是否正常。松开摆架最右端的两对锁紧螺母,调节摆架上面的安放在支承杆上的百分表,使之与摆架有一定的接触,并随时注意振幅大小。 3、开机前将试件右端圆盘上装上适当的待平衡质量(四块平衡块),接上电源启动电机,待摆架振动稳定后,调整好百分表的位置并记录下振幅大小y0(格),百分表的位置以后不要再变动,停机。

汽车轮毂的制造工艺

汽车轮毂制造技术 班级:机电1302班 学号: 姓名:师世健 指导教师:邢书明 目录 一、摘要 (3) 二、汽车轮毂的选材 (3) 1、钢铁材料 (3) 1、1 球墨铸铁 (3) 1、2 其她钢铁材料 (3) 2、合金材料 (3) 3、复合材料 (3) 三、铸造方法 (3) 1、压力铸造 (3) 2、金属型铸造 (4) 3、熔模铸造 (4) 4、低压铸造 (5) 5、离心铸造 (5) 四、工艺方案 (6) 1、零件图 (6) 2、浇注位置 (6) 3、分型面 (7) 4、砂芯 (7)

5、浇注系统 (7) 6、主要工艺参数的确定 (7) 7、冒口 (7) 8、铸造工艺图 (8) 汽车轮毂制造技术 一、摘要 轮毂,作为汽车一个重要组成结构,起着支撑车身重量的作用,对汽车节能、环保、安全性、操控性都有着极其重要的影响。对其工作环境及使用要求予以充分分析,对其结构进行合理设计,选取性能优良的材料及适当的加工方法,都就是汽车轮毂制造中不可或缺的环节。 二、汽车轮毂的选材 1.钢铁材料 1、1 铸铁、铸钢 球墨铸铁以其优良的综合力学性能应用在轮毂上,如铁素体球墨铸铁、高韧性球墨铸铁等。但就是,由于类似碳素钢轮毂的缺点,以及铸造过程的复杂性与铸造模型所限,轮毂形状难于控制,限制了其应用。 1、2 其她钢铁材料 一些合金钢如加入钛元素的低合金钢,合金元素可以细化晶粒,提高钢的力学性能,使钢具有强度高、塑韧性好、加工成形性与焊接性良好,可以作为轮毂用钢;此外,低合金高强度双相钢,如低碳含铌钢,提高贝氏体含量,可以提高屈服强度,提高扩孔率,也可以用作轮辐与轮辋用钢。在实际应用中的多数钢制轮毂就是通过已成型的轮缘与轮盘焊接而成,尽量使自重降低。 2.合金材料 汽车采用铝合金轮毂后减重效果明显,轻型车使用铝合金轮毂比传统钢制轮毂轻30%-40%,中型汽车可轻30%左右。美国森特来因·图尔公司用分离旋压法制出的整体板材(6061合金)车轮,比钢板冲压车轮重量减轻达50%,旋压加工时间不到90s/个,不需要组装作业,适宜大批量生产。另外,相同外径尺寸的轮毂使用铝合金轮毂抗压强度还有所提高。 3.复合材料 复合材料就是应现代科学技术发展而出现的具有强大生命力的材料。由于复合材料具有特殊的振动阻尼特性,可减振与降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。 三、铸造方法 1、压力铸造

动平衡测量原理

动平衡测量原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。 在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法 活塞的速度为 活塞的加速度为 我的论文中的对应表达式与以上两个式子不同: 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。

相关主题