搜档网
当前位置:搜档网 › 高等数学,课后习题答案,第七章,高分必备

高等数学,课后习题答案,第七章,高分必备

高等数学,课后习题答案,第七章,高分必备
高等数学,课后习题答案,第七章,高分必备

高等数学,课后习题答案,第七章,高分必备

习题七

1. 在空间直角坐标系中,定出下列各点的位置:

A(1,2,3); B(-2,3,4); C(2,-3,-4);

D(3,4,0); E(0,4,3); F(3,0,0).

解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;

点D在xOy面上;点E在yOz面上;点F在x轴上.

2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?

答: 在xOy面上的点,z=0;

在yOz面上的点,x=0;

在zOx面上的点,y=0.

3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?

答:x轴上的点,y=z=0;

y轴上的点,x=z=0;

z轴上的点,x=y=0.

4. 求下列各对点之间的距离:

(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);

(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).

解:(1

s=

(2)

s==

(3)

s==

(4)

s==

5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).

2

s=

x

s==

y

s==

5

z

s==

.

6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则

222222

(4)1(7)35(2)

z z

-++-=++--

解得

14

9 z=

即所求点为M(0,0,14 9).

7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有

|AC|2+|AB|2=49+49=98=|BC|2.

故△ABC为等腰直角三角形.

8. 验证:()() ++=++

a b c a b c.

证明:利用三角形法则得证.见图

7-1

图7-1

9. 设2, 3.u v =-+=-+-a b c a b c 试用a , b , c 表示23.u v -

解:

232(2)3(3)

2243935117u v -=-+--+-=-++-+=-+a b c a b c a b c a b c a b c

10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以

AB =c ,

BC =a 表示向量1D A ,2D A ,3D A 和4D A .

解:

111

5D A BA BD =-=--c a

222

5D A BA BD =-=--c a

333

5D A BA BD =-=--c a

444

.

5D A BA BD =-=--c a

11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.

解:设M 的投影为M ',则

1

Pr j cos 604 2.2u OM OM =?=?

=

12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.

解:设此向量的起点A 的坐标A (x , y , z ),则

{4,4,7}{2,1,7}AB x y z =-=----

解得x =-2, y =3, z =0

故A 的坐标为A (-2, 3, 0).

13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求: (1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;

(3)

12PP 的方向余弦; (4) 12PP 方向的单位向量.

解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP ==

12Pr j 2.z z a PP ==-(2)

12(7PP =

=(3)

12

cos 14

x a PP α=

=

12

cos 14

y a PP β=

=

12

cos 14

z a PP γ=

=

.

(4) 12012

{

14PP PP

=

==e i j .

14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点

. 求合力R 的大小和方向余弦

. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1

,4)

||=R cos cos cos αβγ===

15. 求出向量a = i +j +k , b =2i -

3j +5k

和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a

, b , c .

解:

||=

=a ||

==

b ||3==c

, , 3. a b c ===a b c e

16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量. 解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影

a x =13,在y 轴上分向量为7

j .

17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r . 解:因α

βγ

==,故2

3cos

1 α=

,

cos , cos αα=

=(舍去)

{cos ,cos ,cos }{

})3333r αβγ===++e i j k .

18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M

MM =,求向径OM

的坐标.

解:设向径OM ={x , y , z }

12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----

因为,123M M

MM =

所以,11423(3)153(2) 433(5)3

x x x y y y z z z ?=?-=-??

??

-=--?=-??

??

+=-?=???

故OM ={

111,,3

44-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是

236

,,

777,求点P 的坐标.

解:设P 的坐标为(x , y , z ),

2222||(12)49PA x y z =++-=

222

9524x y z z ++=-+

126570cos 6, 749z z γ=

=?==

122190

cos 2, 7

49x x α==?==

123285

cos 3, 749y y β=

=?==

故点P 的坐标为P (2,3,6)或P (190285570

,,

494949).

20. 已知a , b 的夹角2π3?=

,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ).

解:(1)a ·b =2π1

cos ||||cos

3434632???=??=-??=-a b

(2) (32)(2)3624-?+=?+?-?-?a b a b a a a b b a b b

2223||44||334(6)416

61.

=+?-=?+?--?=-a a b b

21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:

(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2

||-a b

解:(1)46(2)(3)4238?=?+-?-+?=a b (2)

(23)()2233-?+=?+?-?-?a b a b a a a b a b b b

22

2222222||3||2[4(2)4]383[6(3)2]

23638349113=-?-=?+-+--+-+=?--?=-a a b b

(3) 222

||()()2||2||-=-?-=?-?+?=-?+a b a b a b a a a b b b a a b b

36238499=-?+=

22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的

投影. 解:

AB ={3,-2,-6},CD ={6,2,3}

Pr j CD AB CD AB CD

?

=

4.

7=

=-

23. 设重量为100kg 1M 2(1,4,2),计算重力所作的功(长度单位为m ).

解:取重力方向为z 轴负方向, 依题意有

f ={0,0, -100×9.8}

s = 12M M ={-2, 3,-6}

故W = f ·s ={0, 0,-980}·{-2, 3,-6}=5880 (J)

24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =2

27||1615||0+?-=a a b b ①

(a -4b )·(7a -2b ) =

227||308||0-?+=a a b b ②

由①及②可得:22

2221()1

||

||2||||4???==?=a b a b a b a b a b 又21||0

2?=

>a b b ,所以

1cos ||||2θ?==a b a b , 故1π

arccos 23θ==

. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.

解:设动点为M (x , y , z )

0{1,1,1}M M x y z =---

因0M M n ⊥,故00M M n ?=. 即2(x -1)+3(y -1)-4(z -1)=0

整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.

26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2} a -b ={-6,10,14}

又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).

27. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a .

解:(1) 211332

375122111--?=++=----a b i j k i j k

(2) 2714()429870?=?=--a b a b i j k

(3) 7214()14()429870?=?=-?=-++b a b a a b i j k

(4)

0?=a a .

28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:

(1) |(a +b )×(a -b )|; (2) |(3a +b )×(a -2b )|.

(1)|()()|||2()|+?-=?-?+?-?=-?a b a b a a a b b a b b a b

π

2||||sin

242=??=a b

(2) |(3)(2)||362||7()|+?-=?-?+?-?=?a b a b a a a b b a b b b a

π

734sin

842=???=

29. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦.

解:

411334

555111221----?=

++=--+--a b i j k i j k

与?a b

平行的单位向量

)||?=

=--+?a b e i j k a b

||sin ||||26θ?=

==

?a b a b .

30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为

13=+=-l a b i j ,232=-=+-l a b i j k

因为12

|||2610|?=++l l i j k

12||||=l l

所以

1212||sin 1

||||θ?=

==l l l l .

即为所求对角线间夹角的正弦.

31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:

1

()4MN MP AC BC ?=

?.

证明:中点M ,N ,P 的坐标分别为

31

(1,1,), (1,3,), (0,1,3)

22M N P --

{2,2,2}MN =--

3

{1,0,}

2MP =-

{4,4,4}AC =--

{2,0,3}BC =-

2222

2

2

35233

10

01

22MN MP ----?=++=++--i j k i j k

44444

4

1220803322

0AC BC ---?=++

=++--i j k i j k

故 1

()

4MN MP AC BC ?=?.

32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.

解:设横轴向量为b =(x ,0,0) 则同时垂直于a ,b 的向量为

344223

0000x x ?=

++a b i j k =4x j -3x k

故同时垂直于a ,b 的单位向量为

1

(43)||5?=±

=±-?a b e j k a b .

33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-

1,2)求四面体的表面积.

解:设四顶点依次取为A , B , C , D . {0,1,2}, {2,2,1}AB AD ==-

则由A ,B ,D 三点所确定三角形的面积为

1

11|||542|22

S AB AD =

?=+-=i

j k .

同理可求其他三个三角形的面积依次为1

2故四面体的表面积

12S =

+.

34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC =

显然

2AC AB =

则22()0AB AC AB AB AB AB ?=?=?= 故A ,B ,C 三点共线.

35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)

故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.

36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.

解:所求平面的法向量可取为0{

1,7,3}OM ==-n 故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=0

37. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程. 解:设平面在y 轴上的截距为b

则平面方程可定为122x y z b b b ++=

又(1,2,-1)在平面上,则有

121

122b b b -++=

得b =2.

故所求平面方程为1

424x y z

++=

38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知

11121212131

31

31

0x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有11

1

2121210

11

1121

x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.

39. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.

解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图

7-3)

图7-2 图7-3

(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)

(4) x–y=0表示过z轴的平面(如图7-5)

(5) 2x-3y+4z=0表示过原点的平面(如图7-6)

.

图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0

则其法向量为n={A,B,C}

已知平面法向量为n1={1,1,-1}

过已知两点的向量l={1,1,1}

由题知n·n1=0, n·l=0

0,.

A B C

C A B A B C

+-=

?

?==-?

++=

?

所求平面方程变为Ax-Ay+D=0

又点(1,1,1)在平面上,所以有D=0

故平面方程为x-y=0.

41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:

(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π

4的角.

解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9

得k=-4.

(2)两平面的法向量分别为

n1={1,k,-2} n2={2,-3,1}

12

12

π

cos cos

||||42

θ

?

====

n n

n n

解得

k=

42. 确定下列方程中的l和m:

(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;

(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.

解:(1)n1={2,l,3}, n2={m,-6,-1}

12

232

,18

613

l

m l

m

?==?=-=

--

n n

(2) n1={3, -5, l }, n2={1,3,2}

12

315320 6.

l l

⊥??-?+?=?=

n n

43. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0

其法向量n={A,B,C}

n1={1,-1,1}, n2={2,1,1}

1

2

2

03

20

3

A C

A B C

A B C C

B

?

=-

?

⊥?-+=?

??

⊥?++=?

=

??

n n

n n

又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0

故所求平面方程为

2033C

Cx y Cz -++=

即2x -y -3z =0

44. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.

12,⊥⊥n n n n 故

12177331

52122111--=?=

++=+---n n n i j k i j k

2).n =+-e i j k

45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为

s ={3-1,1+2,-1-1}={2,3,-2}

故直线的标准方程为:

121232x y z -+-==- 或 311232x y z --+==-

(2)直线方向向量可取为

s ={1-3,0+1,-3-0}={-2,1,-3}

故直线的标准方程为:

31213x y z -+==-- 或 13

213x y z -+==--

46. 求直线2340

35210x y z x y z +--=??

-++=?的标准式方程和参数方程.

解:所给直线的方向向量为

12311223

719522335--=?=

++=----s n n i j k i j k

另取x 0=0代入直线一般方程可解得y 0=7,z 0=17 于是直线过点(0,7,17),因此直线的标准方程为:

717

1719x y z --==--

且直线的参数方程为:

771719x t y t z t =??

=-??=-?

47. 求下列直线与平面的交点:

(1)

11126x y z -+==-, 2x +3y +z -1=0; (2)

213

232x y z +--==, x +2y -2z +6=0.

解:(1)直线参数方程为1126x t

y t z t

=+??

=--??=?

代入平面方程得t =1 故交点为(2,-3,6).

(2) 直线参数方程为221332x t y t z t

=-+??

=+??=+?

代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:

(1)533903210x y z x y z -+-=??

-+-=?和 2223038180x y z x y z +-+=??

++-=?; (2)

231

4123x y z ---==- 和 38

1

21y z x --?=?

--??=?

解:(1)两直线的方向向量分别为:

s 1

={5, -3,3}×{3, -2,1}=

533

321i j k

--={3,4, -1}

s 2={2,2, -1}×{3,8,1}=

221

381i j k -={10, -5,10}

由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2

从而两直线垂直,夹角为π2.

(2) 直线

231

4123x y z ---==-的方向向量为

s 1={4, -12,3},直线38

1

21

y z x --?=?

--??

=?的方程可变为

22010y z x -+=??

-=?,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是

1212cos 0.2064

785θθ?==≈?'

≈?s s s s

49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;

(3)过点(-1,2,1),且与直线

31

213x y z --==-平行. 解:(1)可取直线的方向向量为

s ={3,-1,2}

故过点(2,-3,4)的直线方程为

234

312x y z -+-==-

(2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量

12102{2,3,1}

013=?==--i j k

s n n

故过点(0,2,4)的直线方程为

24231x y z --==-

(3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}

故过点(-1,2,1)的直线方程为

121

213x y z +--==-.

50. 试定出下列各题中直线与平面间的位置关系:

(1)34273x y z

++==--和4x -2y -2z =3; (2)3

27x y z ==

-和3x -2y +7z =8; (3)

223

314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}

平面的法向量n ={4,-2,-2},所以 (2)4(7)(2)3(2)0?=-?+-?-+?-=s n

于是直线与平面平行.

又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043?--?--?=-≠.故直线不在平面上.

(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.

(3) 直线在平面上,因为3111(4)10?+?+-?=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线

230

30x y z x y z -+-=??

+-+=?

的平面方程.

解:直线的方向向量为12123111-=++-i

j

k

i j k ,

取平面法向量为{1,2,3},

故所求平面方程为1(1)2(2)3(1)0x y z ?-+++-=

即x +2y +3z =0.

52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)

故213(2)33(13(2)231)0λ?-?-+-++?-+?+= 解得λ=-4.

故所求平面方程为

2x +15y +7z +7=0

53. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.

解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即

s =n ={1,2,-1}

所以垂线的参数方程为

1

22 x t y t z t

=-+?

?

=+?

?=-

?

将其代入平面方程可得(-1+t)+2(2+2t)-(-t)+1=0

2

3 t=-

于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点

522 (,,)

333 -

54. 求点(1,2,1)到平面x+2y+2z-10=0距离.

解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s=n={1,2,2}

所以垂线的参数方程为

1

22

12 x t y t z t

=+?

?

=+?

?=+

?

将其代入平面方程得

1

3 t=

.

故垂足为

485

(,,)

333,且与点(1,2,1

)的距离为

1

d==

即为点到平面的距离.

55. 求点(3,-1,2)到直线

10

240

x y z

x y z

+-+=

?

?

-+-=

?的距离.

解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量

11133

211

==-=--

-

i j k

n s j k

故过已知点的平面方程为y+z=1.

联立方程组

10 240

1

x y z

x y z

y z

+-+=

?

?

-+-=?

?+=

?

解得

13 1,,.

22 x y z

==-=

13

(1,,)

22

-

为平面与直线的垂足

于是点到直线的距离为

d==

56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.

解:球的半径为

R==

设(x,y,z)为球面上任一点,则(x-1)2+(y-3)2+(z+2)2=14

即x2+y2+z2-2x-6y+4z=0为所求球面方程.

57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高等数学 课后习题答案第九章

习题九 1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为 πππ ,,343αβγ=== 的方向导数。 解: (1,1,2)(1,1,2) (1,1,2)cos cos cos u u u u y l x z αβγ ????=++???? 22(1,1,2)(1,1,2)(1,1,2)πππ cos cos cos 5.(2)()(3)343xy xz y yz z xy =++=--- 2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:{4,3,12},13.AB AB == u u u r u u u r AB u u u r 的方向余弦为 4312 cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xy z ?==??==??==? 故4312982105. 13131313u l ?=?+?+?=? 3. 求函数22221x y z a b ??=-+ ??? 在点处沿曲线22 2 21x y a b +=在这点的内法线方向的方向导 数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为 2222220,x y b x y y a b a y ''+==- 所以在点 处切线斜率为 2.b y a a ' ==- 法线斜率为 cos a b ?= . 于是 tan sin ??==

∵ 22 22 ,, z z x y x a y b ?? =-=- ?? ∴ 22 22 z l a b ? ? =--= ?? 4.研究下列函数的极值: (1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y); (3)z=(6x-x2)(4y-y2); (4)z=(x2+y2) 22 () e x y -+ ; (5)z=xy(a-x-y),a≠0. 解:(1)解方程组 2 2 360 360 x y z x x z y y ?=-=? ? =-=?? 得驻点为(0,0),(0,2),(2,0),(2,2). z xx=6x-6, z xy=0, z yy=6y-6 在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0. 在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点. 在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)点不是极值点. 在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8. (2)解方程组 22 2 e(2241)0 2e(1)0 x x x y z x y y z y ?=+++=? ? =+= ?? 得驻点为 1 ,1 2 ?? - ? ??. 22 2 2 4e(21) 4e(1) 2e x xx x xy x yy z x y y z y z =+++ =+ = 在点 1 ,1 2 ?? - ? ??处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值 e 1 ,1 2 2 z??=- - ? ??. (3) 解方程组 2 2 (62)(4)0 (6)(42)0 x y z x y y z x x y ?=--=? ? =--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4). Z xx=-2(4y-y2), Z xy=4(3-x)(2-y) Z yy=-2(6x-x2) 在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36. 在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点. 在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点. 在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点. 在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点. (4)解方程组 22 22 ()22 ()22 2e(1)0 2e(1)0 x y x y x x y y x y -+ -+ ?--=? ? --=?? 得驻点P0(0,0),及P(x0,y0),其中x02+y02=1, 在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0. 再讨论函数z=u e-u

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

高等数学课后习题答案第六章 (1)

习题六 1. 指出下列各微分方程的阶数: (1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解: 2(1)2,5xy y y x '==; 解:由25y x =得10y x '=代入方程得 故是方程的解. (2)0,3sin 4cos y y y x x ''+==-; 解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解. 2(3)20,e x y y y y x '''-+== ; 解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++ 代入方程得 2e 0x ≠. 故不是方程的解. 解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+ 代入方程得 故是方程的解. 3. 在下列各题中,验证所给二元方程为所给微分方程的解: 证:方程22 x xy y C -+=两端对x 求导: 得 22x y y x y -'= - 代入微分方程,等式恒成立.故是微分方程的解. 证:方程ln()y xy =两端对x 求导: 11y y x y ''= + (*) 得 (1)y y x y '=-. (*)式两端对x 再求导得 将,y y '''代入到微分方程,等式恒成立,故是微分方程的解. 4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线: 解:当0x =时,y = 5.故C =-25 故所求曲线为:22 25y x -= 解: 2212(22)e x y C C C x '=++ 当x =0时,y =0故有1 0C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e x y x =. 5. 求下列各微分方程的通解: (1)ln 0xy y y '-=;

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学课后习题答案第六章

习题62 1 求图621 中各画斜线部分的面积 (1) 解 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 6 1 ]2132[)(102231 0=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 1 |)()(101 0=-=-=?x x e ex dx e e A 解法二 画斜线部分在y 轴上的投影区间为[1 e ] 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e (3) 解 画斜线部分在x 轴上的投影区间为[3 1] 所求的面积为 3 32]2)3[(1 32= --=?-dx x x A (4) 解 画斜线部分在x 轴上的投影区间为[ 1 3] 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A 2. 求由下列各曲线所围成的图形的面积 (1) 22 1 x y =与x 2y 28(两部分都要计算) 解 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A

34 238cos 16402+=-=?ππ tdt 3 4 6)22(122- =-=ππS A (2)x y 1 =与直线y x 及x 2 解 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A (3) y e x y e x 与直线x 1 解 所求的面积为 ?-+=-=-102 1 )(e e dx e e A x x (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3 求抛物线y x 24x 3及其在点(0 3)和(3 0)处的切线所围成的图形的面积 解 y 2 x 4 过点(0, 3)处的切线的斜率为4 切线方程为y 4(x 3) 过点(3, 0)处的切线的斜率为2 切线方程为y 2x 6

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

同济版高等数学课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ΛΛ2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1) (数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限,得)(21b a b b +=,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(21+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12 --+x ax ,求常数a .

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题 第一章 一、选择题 1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2 ln )(,ln 2)(x x g x x f == B .0 )(,1)(x x g x f == C .1)(,11)(2-=-?+= x x g x x x f D .2)(|,|)(x x g x x f == 2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .| |)(x e x f = C .x x f cos )(= D .1 sin )1()(2--= x x x x f 3.极限??? ? ?+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .2 1 D .∞ 4.极限x x x x sin lim +∞→的值为.. …….. ……..……………………………………………………………………………...…….( ) A .0 B .1 C .2 D .∞ 5.当0→x 时,下列各项中与 2 3 x 为等价无穷小的是…………………………………………………….( ) A .)1(3-x e x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=x x f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小 7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 8.设函数?? ? ??<≤--<≤≤≤-=01,110, 21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

相关主题