搜档网
当前位置:搜档网 › 指数与指数幂的运算

指数与指数幂的运算

指数与指数幂的运算
指数与指数幂的运算

指数与指数幂的运算

导入新课

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题

(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①5

10

a

=3

52)(a =a 2

=a

5

10;

②8a =2

4)(a =a 4=a 2

8; ③4

12

a =443)(a =a 3

=a 412; ④210a

=2

2

5)(a =a 5

=a

2

10.

(3)利用(2)的规律,你能表示下列式子吗?

4

35,357,57a ,n m x (x>0,m,n ∈N *,且n>1).

(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =

n a

1

(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①5

10

a =a

5

10,②8

a =a 2

8,③412

a

=a

4

12,④210

a

=a

2

10结果的a 的指数是2,4,3,5

分别写成了

510,28,412,5

10,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,43

5=54

3,35

7=735,5

7

a =a 5

7,

n

m

x =x n

m .

(4)53的四次方根是54

3,75的三次方根是73

5,a 7的五次方根是a 5

7,x m 的n 次方根是x n

m . 结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么a m

的n 次方根可表示为n

a m

=a n

m ,即a n

m =n a m (a>0,m,n ∈N *,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a m

n =n a m (a>0,m,n ∈N *,n>1).

提出问题

①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?

③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?

⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?

⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =

n a

1(a≠0),n ∈N *

. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1).

③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是a m

n =n m a (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

⑤若没有a >0这个条件会怎样呢?

如(-1)3

1=3-1=-1,(-1)6

2=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2

=|a|3

2,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例

思路1 例1求值:①83

2;②25

2

1-③(21)-5;④(81

16)43

-.

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,

21写成2-1,8116写成(3

2

)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①83

2=(23)32=23

23?=22=4; ②25

2

1

-=(52)

2

1-

=5

)

2

1(2-?=5-1=

5

1; ③(

2

1)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43

-=(32))43

(4-?=(3

2)-3=827.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如83

2

=328=364=4. 例2用分数指数幂的形式表示下列各式.

a 3·a ;a 2·3

2a ;3a a (a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 2

1

=a 2

13+

=a 2

7;

a 2·32a =a 2

·a 3

2=a

2

32+

=a 3

8;

3

a a =(a·a 31)2

1=(a 3

4)2

1=a 3

2.

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3计算下列各式(式中字母都是正数): (1)(2a 3

2b 2

1)(-6a 2

1b 3

1)÷(-3a 6

1b 6

5); (2)(m 4

1

n

83-)8.

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)]a 612132-+b

6

53121-+=4ab 0=4a;

(2)(m 4

1

n

83-)8

=(m 41)8

(n

83-

)8

=m 84

1?n

88

3?-=m 2n -3

=32

n

m .

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:

(1)33·33·6

3; (2)646

3

)12527(n

m . 解:(1)33·33·6

3=3·32

1·33

1·36

1=3

6

131211+++=32=9;

(2)64

6

3

)12527(n

m =(6

4

63

)12527(n m =(6

4633

3

)53(n m =6

466436

43

6

43)()5()()3(n m =42

259n m =42259-n m . 例4计算下列各式: (1)(125253-)÷425; (2)

3

2

2a

a a ?(a >0).

活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答. 解:(1)原式=(253

1

-1252

1)÷254

1=(53

2-52

3)÷52

1

=5

2

132--5

2

123-=56

1-5=65-5;

(2)

32

2a a a ?=

3

22

12a

a a ?=a

3

2212--=a 6

5=65a .

思路2

例1比较5,311,6123的大小.

活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.

解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121. 所以5>6123>311.

点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:

(1)4

3

29

81?;

(2)23×35.1×612.

活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外4

3

29

81?=4

2

1344

)3(3?,对(2)化为同底的分数指数幂,及时对学生活动进行评价.

解:(1)4

3

29

81?=[34

×(33

4)2

1]4

1=(3

3

24+

)4

1=(3

3

14)4

1=36

7=633;

(2)63125.132??=2×32

1

×(2

3)31

×(3×22)61

=231

311++·36

1

3121++=2×3=6.

例3计算下列各式的值: (1)[(a

2

3

-b 2)-1

·(ab -3)21(b 21)7]3

1;

(2)

1

112

12

1-+-

++-

-a a a a

a

;

(3)14323

)(---÷a b b a

.

活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,

然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算. 解:(1)原式=(a

2

3-b 2

)

3

1-

(ab -3)6

1·(b 21)37=a 2

1b

3

2-

a 6

1b

2

1-

b 67=a

6

121+b

6

72132+--=a 3

2b 0

=a 3

2;

另解:原式=(a 23b -2a 2

1b 2

3-·b 27)3

1

=(a

2

123+b

2

7232+

--)31=(a 2b 0)3

1=a 3

2;

(2)原式=

1

111

1-+

-

++

a a

a a

a =

)

1(1-+a a a =

)

1(11-+-

a a a a

=

)1

1

1(1-+-

a a a

= )

1(2

--a a =

)1(2a a a

-;

(3)原式=(a 2

1

b 3

2)-3

÷(b -4a -1)2

1

=a

2

3-

b -2÷b -2

a

2

1

-

=a

2

123+-b -2+2=a -1=

a

1. 例4已知a >0,对于0≤r≤8,r ∈N *,式子(a )8-r ·

)1(4a

r

能化为关于a 的整数指数幂的情形有几种?

解:(a )8-r ·)1

(4a

r =a 2

8r -·a

4

r

-

=a

4

48r

r --=a

4

316r -.

16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂. 点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式. 例5已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求

)

()

(y x g y x g -+的值.

解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )] =(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4; 另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2 =e 2x -2e x e -x +e -2x-e 2x -2e x e -x -e -2x =-4e x -x=-4e 0=-4; (2)f (x )·f (y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x-y)=g (x+y )-g (x -y )=4, 同理可得g (x )g (y )=g (x+y )+g (x -y )=8,

得方程组?

??=++=+8,y)-g(x y)g(x 4,

y)-g(x -y)g(x 解得g (x+y )=6,g (x -y )=2.

所以

)()(y x g y x g -+=2

6=3.

点评:将已知条件变形为关于所求量g (x+y )与g (x -y )的方程组,从而使问题得以解决,这种处理问题的方法在数学上称之为方程法,方程法所体现的数学思想即方程思想,是数学中重要的数学思想. [补充练习]

1.(1)下列运算中,正确的是( ) A.a 2·a 3=a 6 B.(-a 2)3=(-a 3)2 C.(a -1)0=0 D.(-a 2)3=-a 6

(2)下列各式①42)4(n -,②41

2)4(+-n ③54a ,④45a (各式的n ∈N ,a ∈R )中,有意义的是

( )

A.①②

B.①③

C.①②③④

D.①③④ (3)24

3

6234

6)()(

a a ?等于( )

A.a

B.a 2

C.a 3

D.a 4

(4)把根式-232

)(--b a 改写成分数指数幂的形式为( )

A.-2(a-b)5

2-

B.-2(a-b)

2

5-

C.-2(a

5

2--b 5

2-) D.-2(a

2

5-

-b 2

5-)

(5)化简(a 3

2b 2

1)(-3a 2

1b 3

1)÷(3

1a 61

b 65

)的结果是( )

A.6a

B.-a

C.-9a

D.9a 2.计算:(1)0.027

3

1--(-7

1

)-2+25643

-3-1+(2-1)0=________.

(2)设5x =4,5y =2,则52x -y =________.

3.已知x+y=12,xy=9且x <y,求

2

12

1212

1y

x y x +-的值.

答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

3.解:

2

12

12121y

x y x +-=

)

)(())((2

12

12

12

12

1212121y x y x y x y x -+--=

y

x y

y x x -+-2

1212.

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x <y,所以x-y=-2×33=-63.所以原式

3

6612--=3

3

-

.

拓展提升

1.化简

1

1

11

13

13

13

13

13

2---

+++

++-x x

x x x x x x .

活动:学生观察式子特点,考虑x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1=(x 31)3

-13

=(x 31-1)·(x 32+x 3

1+1); x+1=(x 31)3

+13=(x 3

1+1)·(x 3

2-x 3

1+1); x-x 3

1

=x 3

1[(x 31)2

-1]=x 3

1(x 3

1-1)(x 3

1+1). 构建解题思路教师适时启发提示.

解:

1

1

11

13

13

13

13

13

2---

+++

++-x x

x x x x x x =

1

1

1)(1

1

)(3

13

132313

13

3

313

13

23

3

31---

+++

++-x x x x x x x x x

=

)

1()

1)(1(1

)

1)(1(1

)

1)(1(3

13

1313

13

13

13

23

12

13

23

13231-+--

++-++

++++-x x x x x x x x x x x x x

=x 31-1+x 32-x 31+1-x 32-x 31=-x 3

1. 点拨:解这类题目,要注意运用以下公式, (a 2

1-b 2

1)(a 2

1+b 2

1)=a-b, (a 2

1±b 21)2

=a±2a 2

1b 2

1+b, (a 3

1±b 3

1)(a

3

2 a 31b 31+b 3

2)=a±b.

2.已知a 2

1

+a 2

1-=3,探究下列各式的值的求法.

(1)a+a -1;(2)a 2+a -2;(3)

2

12

1232

3-

-

--a

a a a .

解:(1)将a 2

1+a

2

1-

=3,两边平方,得a+a -1+2=9,即a+a -1=7;

(2)将a+a -1=7两边平方,得a 2+a -2+2=49,即a 2+a -2=47; (3)由于a 2

3-a

2

3-

=(a 21)3

-(a

21-

)3

,

所以有

2

12

12

32

3--

--a

a a a =

2

12

12

12

11

2

12

1)

)((--

--

-++-a

a a a a a a a =a+a -1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a m

n =n a m (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的

负分数指数幂没有意义.

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. (3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质: ①a r ·a s =a r+s (a>0,r,s ∈Q ), ②(a r )s =a rs (a>0,r,s ∈Q ), ③(a·b)r =a r b r (a>0,b>0,r ∈Q ). (4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.

②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用(a n )n

m =n

m n a

?

=a m 来计算.

2.1.1指数与指数幂的运算(2)

§2.1.1指数与指数幂的运算(2) 学习目标 1. 理解分数指数幂的概念; 2. 掌握根式与分数指数幂的相互转化; 3 掌握有理数指数幂的运算. 预习案 预习课本P 50—P 52 页内容 1.正数a 的正分数指数幂=n m a (),,0*N n m a ∈> 2.正数a 的负分数指数幂=- n m a (),,0*N n m a ∈> 3.s r a a ?= (其中),,0Q s r a ∈> 4.s r a )( = (其中),,0Q s r a ∈> 5.s b a )(?= (其中),0,Q s b a ∈> 预习自测 1. 求下列各式的值: (1)3 28 (2)2 1100- (3)2 39- 2.用分数指数幂的形式表示并计算下列各式(式中字母都是正数): (1)a a ?2 (2)323a a ? (3)a a 3.计算下列各式(式中字母都是正数): (1)(2a 3 2b 2 1)(-6a 2 1b 3 1)÷(-3a 6 1b 6 5); (2)(m 4 1n 8 3- )8. 我的疑问

探究案 自主探究一: (1)观察以下式子,并总结出规律:a >0, ①510a =55 2)(a =a 2 =a 5 10; ②8a =2 4)(a =a 4 =a 2 8; ③4 12 a =44 3)(a =a 3 =a 4 12; ④210a =22 5)(a =a 5 =a 2 10. (2)利用(1)的规律,你能表示下列式子吗? 4 35,357,57a ,n m x (x>0,m,n∈+N ,且n>1). (3)你能用方根的意义来解释(3)的式子吗? (4)0的正分数指数幂等于多少?0有负指数幂吗? (5)负整数指数幂的意义是怎样规定的? 合作探究 例1. 已知231 21 1322[()()] a b a b ab a ------==求的值. 变题1:已知31 =+-x x ,求下列各式的值:(1)2 12 1- +x x 例2. 比较63123,11,5的大小.

指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题及答案 一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算:6.计算:22﹣(﹣1)0+.7.计算:. 8.计算:.

9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:. 13.计算:.14.(2009重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.

15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0 16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2. 21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣. 22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.

23.计算:.24.计算:22+(4﹣7)÷+()0 25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解答:解:原式=3﹣1+4=6.故答案为6. 2.计算: 解答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解答:解:原式=(﹣2)+1+2=1,故答案为1. 5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解答:解:原式=4﹣1+2=5. 7.计算:. 解答: 解: =1+3﹣1﹣(﹣2) =5. 故答案为5. 8.计算:. 解答: 解:原式= =.

指数与指数幂的运算教案

指数与指数幂的运算 课题:指数与指数幂的运算 课型:新授课 教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析: 1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础. 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入. 学习任务分析: 1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值. 2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化. 3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算. 教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化. 2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力. 3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面. 教学流程图: 教学过程设计: 一.新课引入:

(一)本章知识结构介绍 (二)问题引入 1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系: (1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为 (3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为 122 12?? ???6000 5730 12?? ???100005730 12?? ? ??

高一数学指数幂及运算练习题及答案

1.若(a -3)14 有意义,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a =3 D .a ∈R 且a ≠3 【解析】 要使(a -3)14 有意义,∴a -3≥0,∴a ≥3.故选A. 【答案】 A 2.下列各式运算错误的是( ) A .(-a 2b)2·(-ab 2)3=-a 7b 8 B .(-a 2b 3)3÷(-ab 2)3=a 3b 3 C .(-a 3)2·(-b 2)3=a 6b 6 D .[(a 3)2·(-b 2)3]3=-a 18b 18 【解析】 对于C ,∵原式左边=(-1)2·(a 3)2·(-1)3·(b 2)3=a 6·(-1)·b 6=-a 6b 6,∴C 不正确. 【答案】 C 3.计算[(-2)2]-12 的结果是________. 【解析】 [(-2)2]-12=2-12=1212=22. 【答案】 22 4.已知x 12+x -12=3,求x +x -1-3x 2+x -2-2 . 【解析】 ∵x 12+x -12 =3, ∴(x 12+x -12 )2=9,即x +x -1+2=9. ∴x +x - 1=7. ∴(x +x -1)2=49 ∴x 2+x -2=47. ∴原式=7-347-2=445.

一、选择题(每小题5分,共20分) 1.????1120-(1-0.5-2)÷????27823 的值为( ) A .-13 B.13 C.43 D.73 【解析】 原式=1-(1-22)÷????322=1-(-3)×49=73 .故选D. 【答案】 D 2.a a a(a>0)计算正确的是( ) A .a·a 12a 12=a 2 B .(a·a 12·a 14)12=a 78 C .a 12a 12a 12=a 32 D .a 14a 14a 18=a 58 【答案】 B 3.化简-a 3 a 的结果是( ) A.-a B. a C .--a D .- a 【解析】 由题意知a<0 ∴-a 3 a =--a 3a 2 =--a.故选C. 【答案】 C 4.若4|x|-2有意义,则x 的取值范围是( )

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

整数指数幂练习(含答案)人教版

整数指数幂 一、课前预习 (5分钟训练) 1.下列计算正确的是( ) A.(-2)0=-1 B.-23=-8 C.-2-(-3)=-5 D.3- 2=-9 2.填空:(1)a·a 5=__________;(2)a 0·a -3=________;(3)a -1·a - 2=________;(4)a m ·a n =____________. 3.填空:(1)a÷a 4=__________;(2)a 0÷a -2=_____________;(3)a -1÷a - 3=;(4)a m ÷a n =_________. 4.某种细菌的长约为0.000 001 8米,用科学记数法表示为_______________. 二、课中强化(10分钟训练) 1.下列计算正确的是( ) A.(a 2)3=a 5 B.(a -2)-3=a - 5 C.(31 )-1+(-π+3.14)0=-2 D.a+a -2=a -1 2.(1)(a -1)2=___________(a≠0);(2)(a -2b)-2=__________(ab≠0);(3)( b a )-1=________(ab≠0). 3.填空:(1)5-2=_______________;(2)(3a -1b)-1=_______________(ab≠0). 4.计算:(1)( a b )-2·(b a )2; (2)(-3)-5÷33. 5.计算:(1)a -2b 2·(ab -1); (2)(y x )2·(xy)-2÷(x -1y). 6.我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)

最新指数与指数幂的运算练习题整理

2.1.1指数与指数幂的运算练习题 高一( )班 座号: 姓名: 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()1 0,n n a a n N a -*= ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2,要注意以下几点: (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1) 3 4y x = (2) )0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25=

高中数学指数与指数幂的运算(一)

课题:指数与指数幂的运算(一) 课 型:新授课 教学目标: 了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念 教学重点:掌握n 次方根的求解. 教学难点:理解根式的概念,了解指数函数模型的应用背景 教学过程: 一、复习准备: 1、提问:正方形面积公式?正方体的体积公式?(2a 、3a ) 2、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一 个数的立方等于a ,那么这个数叫做a 的立方根. → 二. 讲授新课: 1. 教学指数函数模型应用背景: ① 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1.某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,问对折后的面积与厚度? ② 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后 体内碳14的含量P 与死亡时碳14的关系为57301()2 t P =. 探究该式意义? ③小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 2. 教学根式的概念及运算: ① 复习实例蕴含的概念:2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根. 探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根.( n th root ),其中1n >,n *∈N 例如:328=2= ③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如: 33-, 记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±, 记: 强调:负数没有偶次方根,0的任何次方根都是0, 即. 0= ④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 . ⑤ radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥ 计算2→ 探究: n 、n n a 的意义及结果? (特殊到一般) n a =. 当n 是奇数时,a a n n =;当n (0)||(0)a a a a a ≥?==?-

指数与指数幂的运算(教学设计)

2.1.1(2)指数与指数幂的运算(教学设计) 内容:分数指数幂 一、教学目标 (一)知识目标 (1)理解根式的概念及其性质,能根据性质进行简单的根式计算。 (2)理解掌握分数指数幂的意义并能进行基本的运算。 (二)能力目标 (1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力. (2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想. (3)训练学生思维的灵活性 (三)德育目标 (1)激发学生自主学习的兴趣 (2)养成良好的学习习惯 教学重点: 次方根的概念及其取值规律。 教学难点:分数指数幂的意义及其运算根据的研究。 教学过程: 一、复习回顾,新课引入: 指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义。 .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出 及 ,同时追问这里 的由来。 二、师生互动,新课讲解: 1.分数指数幂 看下面的例子: 当0>a 时, (1)2552510)(a a a ==,又5102=,所以510 510a a =; (2)3443412)(a a a ==,又4123=,所以412 412a a =. 从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢? 根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m n m a a =(0>a ,1*,,>∈n N n m ). 0的正分数指数幂等于0, 0的负分数指数幂无意义. 由于分数有既约分数和非既约分数之分,因此当0

指数与指数幂的运算

指数与指数幂的运算 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(] - = (10)(1 2 2 1?????? = (11)=3 264

(完整版)指数与指数幂的运算练习题

2.1.1指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂; (2)零指数幂; (3)负整数指数幂 (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1) (2) (3) 知能点2:无理数指数幂 若>0,是一个无理数,则表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果,那么叫做的次方根,其中,叫做根式,叫做根指数,叫被开方数。 2、对于根式记号,要注意以下几点: (1),且; (2)当是奇数,则;当是偶数,则; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1); (2) 一、填空 1、用根式的形式表示下列各式 (1)= (2)= (3)= (4)= 2、用分数指数幂的形式表示下列各式: (1)= (2) (3)= ;(4)= ; (5)(6)(7) (8) 3、求下列各式的值 (1)= ;(2)= ;(3)= ; (4)= ;(5)= ;(6)= ; (7)= ;(8)= ;(9)= ; (10) 4.化简 (1)(2)

(3)(4)= (5)= (6)= (7)= (8)= 5.计算 (1)(2) (3)(4) 6.已知,求下列各式的值(1)= ;(2)= 7.若,则和用根式形式表示分别为和,和用分数指数幂形式表示分别为和。 8.使式子有意义的x的取值范围是_. 9.若,,则的值= . 10.已知,则的值为. 二.选择题. ,下列各式一定有意义的是() A. B. C. D. ,下列各式一定有意义的是() A. B. C. D. 下列各式计算正确的是() A. B. C. D. 4、若,且为整数,则下列各式中正确的是() A、B、C、D、 5、下列运算结果中,正确的是() A.B.C.D. 6.下列各式中成立的是() A.B.C.D. 7.下列各式成立的是() A. B. C. D.

2.3指数与指数幂的运算

2.3指数与指数幂的运算 班级___________姓名____________ 一、选择题(共5小题;共25分) 1. 下列各式中正确的是 ( ) A. √(?2)26 =(?2)1 3 B. √x 3y 34 =xy 3 4(x >0,y >0) C. 223 =a 13 ?b 13 D. √x y 3 =(y x ) ?1 3 (x ≠0,y ≠0) 2. 将 532 写成根式,正确的是 ( ) A. √523 B. √3 C. √3 25 D. √53 3. 下列运算中,正确的是 ( ) A. a 2a 3=a 6 B. (?a 2)5=(?a 5)2 C. (√a ?1)0 =0 D. (?a 2)5=?a 10 4. ?25 可化为 ( ) A. a ? 25 B. a 52 C. a 25 D. ?a 52 5. 若点 (a,9) 在函数 y =3x 的图象上,则 tan aπ6 的值为 ( ) A. 0 B. √33 C. 1 D. √二、填空题(共4小题;共20分) 6. 将 ?√223 化为分数指数幂的形式为 . 7. 计算:(14) ?2 +(1 6 √2)0 ?271 3= . 8. (1) n ∈N ? 时,(√a n )n = . (2) n 为正奇数时,√a n n = ;n 为正偶数时,√a n n = . 9. 若 log a 2=m ,log a 3=n ,则 a 2m+n = 三、解答题(共3小题;共39分) 10. 求值: (1) 4? 32 +(?27 8 )2 3 ?(0.1)0; (2)[(1?√2)2]12 ?(1+√2) ?1 ?1+213÷214.

(完整版)幂的运算练习题

幕的运算练习题(每日一页) 【基础能力训练】 」、同底数幕相乘 1下列语句正确的是() A ?同底数的幕相加,底数不变,指数相乘; B. 同底数的幕相乘,底数合并,指数相加; C. 同底数的幕相乘,指数不变,底数相加; D. 同底数的幕相乘,底数不变,指数相加 2. a 4 ? a m ? a n =() A. a 4m B . a 4(m+n) C . a m+n+4 D . a m+n+4 7. 计算:a ? (-a ) 2 ?(-a ) 3 8. 计算:(x — y ) 2 ? (x -y ) 3-(x — y ) 4 ? (y -x ) 3. (-x ) ? (-x ) 8 ? (-x ) 3=() A . (-x ) 11 B . (-x ) 24 C . x 12 4. 下列运算正确的是() A . a 2 ? a 3=a 6 B . a 3+a 3=2a T C . a 3a 2=a 6 5. a- a 3x 可以写成() A . (a 3 ) x+1 B . (a x ) 3+1 C . a 3x+1 6. 计算:100X 100m - 1x 100m+1 12 a 8- a 4=a D . (a x ) 2x+1

、幕的乘方 9?填空:(1) (a8) 7= ______ ; (2) (105) m= _______ ; (3) (a m) 3= ______ ; (4) (b2m) 5= _______ ; (5) (a4) 2? (a3) 3= _______ . 10. 下列结论正确的是() A .幕的乘方,指数不变,底数相乘; B .幕的乘方,底数不变,指数相加; C. a的m次幕的n次方等于a的m+n次幕; D. a的m次幕的n次方等于a的mn次幕 11. 下列等式成立的是() A. ( 102) 3=105 B. (a2) 2=a4 C. (a m) 2=a m+2 D. (x n) 2=x2n 12. 下列计算正确的是() A. (a2) 3? (a3) 2=a6? a6=2a6 B. ( —a3) 4? a7=a7? a2=a9 2 3 3 2 6 6 12 C. (—a ) ?( —a ) = ( —a ) ?( —a ) =a D. — (—a3) 3? ( —a2) 2=—(—a9) ? a4=a13 13. 计算:若642X 83=2x,求x的值. 、积的乘方 14. 判断正误: (1)积的乘方,等于把其中一个因式乘方,把幕相乘( ) (2)(xy) n=x ? y n() (3)(3xy) n=3 (xy) n() (4) (ab) nm=a m b n() (5) ( —abc) n= (—1) n a n b n c n() 15. (ab3) 4=()

2[1].1.1指数与指数幂的运算练习题(整理)1

高一( )班 座号: 姓名: 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3) ()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则?? ?<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

零指数幂与负整数指数幂练习题

? 零指数幂与负整数指数幂练习题 1、计算:-1-(-1)0的结果正确是() A.0 B.1 C.2 D.-2 2、芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为() A.×10-6千克 B.×10-5千克 C.×10-7千克 D.×10-7千克 3、已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为() A.B.C.D. 4、如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是() : A.30×10-9米B.×10-8米C.×10-10米D.×10-9米 5、计算的结果是( ) A.4 B.-4 C. D. 6、若(x-2)0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠2 7、若,则x=( ) A.10 B.1 C.0 D.以上结论都不对 > 8、下列运算正确的是( )

A.=0 B.(9-33)0=0 C.(-1)0=1 D.(-2)0=-2 9、化简(x≠-y)为() A.1 B.0 C.x+y D.以上结论都不对 10、英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅000 000 34米,将这个数用科学记数法表示为() A.×10-9B.×10-9%C.×10-10D.×10-11 11、花粉的质量很小,一粒某种植物花粉的质量约为毫克,已知1克=1000毫克,那么毫克可用科学记数法表示为() A.×10﹣5克B.×10﹣6克 C.37×10﹣7克D.×10﹣8克 12、计算:. ' 13、某种原子直径为×10-2纳米,把这个数化为小数是_______纳米. 14、钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为平方公里,最小的岛是飞濑屿,面积约为平方公里.请用科学记数法表示飞濑屿的面积约为_______平方公里. 15、若(a-2)a+1=1,则a=______. 16、若,则x=______. 17、如果无意义,则=______. 18、计算:4-2x5?(23x-2)2=________. 19、用小数表示:×10-5=______. 20、 ,

高一数学必修一指数与指数幂的运算练习总结

高一数学练习19——指数与指数幂的运算 1. 3)8(-的值是 ( ) A .2 B. 2- C. 2± D. 8 2.给出下列4个等式:① a a =2;②a a =2)(;③a a =33;④a a =33)(。其中不一定正确的是 ( ) A. ① B. ② C. ③ D. ④ 3.若 332)21(144a a a -=+-,则实数a 的取值范围为 ( ) A.21≤a B. 21≥a C. 2 121≤≤-a D .R 4.下列说法正确的是 ( ) A.正数的n 次方根是正数)(*N n ∈ B.负数的n 次方根是负数)(*N n ∈ C.0的n 次方根是0)(*N n ∈ D. n a 是无理数)(*N n ∈ 5.若,3120<-x ,则化简33 44)6()8(x x -+-的结果是 9.求下列各式的值: (1)=3248 (2)=462525 (3)=-2)3( (4)=-33)3( (5= (6)=-2)3(a (7)=-+-+-33443 3)2()4()2(ππ 10.化简下列各式:

(1)2115113 36622133a b a b a b ??????-÷ ? ?????,其中0,0.a b >> (2)121 1334223x y x y -????- ??????? (3 )186255a b --??? ??? 一、 选择题 1.化简(1+2321-)(1+2161 -)(1+281 -)(1+2-41 )(1+221 -),结果是( ) A 、 21(1-2321-)-1 B 、(1-232 1 -)-1 C 、 1-2321- D 、21(1-2321 - ) 2.(369a )4(639a )4等于( ) A 、 a 16 B 、 a 8 C 、 a 4 D 、 a 2 3.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) A 、6 B 、±2 C 、-2 D 、2 4.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31>b 31,(5)(31)a <(31) b 中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个 5.下列关系中正确的是( ) A 、(21)32<(51)32<(21)31 B 、(21)31<(21)32<(51)3 2 C 、(51)32<(21)31<(21)32 D 、(51)32<(21)32<(21)31 6.已知三个实数a,b=a a ,c=a a a ,其中0.9

指数与指数幂的运算练习题

指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2,要注意以下几点: (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1) 3 4y x = (2) )0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

指数与指数幂的运算习题.doc

《指数与指数幂的运算》习题 1.下列各式正确的是 ( ) =- 3 = a = 2 D . a 0= 1 2.若 (x - 5)0 有意义,则 x 的取值范围是 ( ) A . x>5 B . x = 5 C . x<5 D . x ≠5 3.若 xy ≠0,那么等式 4x 2y 3 =- 2xy y 成立的条件是 () A . x>0,y>0 B . x>0, y<0 C . x<0, y>0 D . x<0, y<0 n + 12 1 2n + 1 2 · 4.计算 2 (n ∈ N * )的结果为 ( ) n - 2 4 ·8 B .2 2n + 5 C . 2n 2 -2n + 6 D . 1 - ( ) 2n 7 2 5.化简 23- 6 10-4 3+2 2得 ( ) A .3+ 2 B .2+ 3 C .1+2 2 D . 1+2 3 1 - 1 a 2+ 1 ) 6.设 a - a 2 =m ,则 = ( 2 a A . m 2 - 2 B .2- m 2 C . m 2+ 2 D . m 2 7.根式 a - a 化成分数指数幂是 ________. 8.化简 11+ 6 2+ 11- 6 2 =________. 9.化简 ( 3+ 2)2010·( 3- 2)2011= ________. 10.化简求值: (1) - 1 1 3 +; 3 - (- )0 +16 4 8 - 1 - 1 a + b (2) ab - 1 (a , b ≠ 0).

高中数学实数指数幂及其运算测试题(有答案)-word文档

高中数学实数指数幂及其运算测试题(有答案)第三章基本初等函数(Ⅰ) 3.1指数与指数函数 3.1.1有理指数幂及其运算 【目标要求】 1.理解根式的概念。 2.理解分数指数的概念,掌握根式与分数指数幂的关系。3.掌握有理数幂的运算性质并注意灵活运用。 4.掌握用计算器计算有理指数幂的值。 【巩固教材稳扎马步】 1.下列说法中正确的是() A.-2是16的四次方根 B.正数的次方根有两个 C. 的次方根就是 D. 2.下列等式一定成立的是() A. =a B. =0C.(a3)2=a9D. 3. 的值是() A. B. C. D. 4.将化为分数指数幂的形式为( )[ A. B. C. D. 【重难突破重拳出击】 5.下列各式中,正确的是() A. B. C . D.

6.设b 0,化简式子的结果是() A.a B. C. D. 7.化简[3 ]的结果为 () A.5 B. C.- D.-5 8.若,则等于 ( ) A.2 -1 B.2-2 C.2 +1 D. +1 9. 成立的充要条件是() A. 1C.x<1 D.x2 10.式子经过计算可得到() A. B. C. D. 11.化简 (a>0,c<0 的结果为() A. B.- C.- D. 12.设x0, 等于() A. B.2或-2C.2D.-2 【巩固提高登峰揽月】 13.计算0.027 -(-)-2+256 -3-1+(-1)0=__________. 14.化简 =__________. 【课外拓展超越自我】 15.已知求的值. 第三章基本初等函数(Ⅰ) 3.1指数与指数函数

3.1.1有理指数幂及其运算 题号 1 2 3 4 5 6 7 8 9 10[ 11 12 答案 D D A A D A B A D D B C 13.1914. 15.解:由可得x+x-1=7 =27 =18, 故原式=2

相关主题